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Abstract
Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate sup-

ply processes is critical for muscle bioenergetics and electrical activity. Whether age-depen-

dent muscle weakness and increased electrical instability depends on perturbations in

cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocar-

dium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phospho-

transfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/

glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology.

Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling

procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS tech-

nique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O],

β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP

utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic

phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant

glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-

shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium.

Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third

(18O3), and fourth (18O4) positions of Pi[
18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio,

indicating delayed energetic communication and ATP cycling between mitochondria and

cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP

turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabo-

lomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways

and G3P substrate shuttle deficits hindering energetic communication and ATP cycling,

which may underlie energetic vulnerability of aging atrial myocardium.
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Introduction
Vigorous atrial function is critical for sustaining normal heart work and uninterrupted blood flow
yet it declines with aging increasing susceptibility to atrial fibrillation (AF) [1,2]. Whether a
change in dynamics of atrial energetics contributes to functional decline and its significance in
aging process is unknown [1–5]. In ventricles, coordination of contractile and electrical activities
of myocardium depends on the integrated energetic signaling system that ensures optimal sub-
strate supply, generation of ATP, and delivery of high-energy phosphoryls to cellular ATPases
subsequently conveying energy demand signals to mitochondrial ATP production [6–12]. In
recent years, new evidence has accumulated that phosphotransfer circuits composed from crea-
tine kinase (CK), adenylate kinase (AK), and glycolytic/glycogenolytic enzymes along with sub-
strate shuttles, such as glycerol-3-phosphate (G3P), are essential parts of the cardiac bioenergetic
infrastructure integral to maintaining energy homeostasis [11,13–17]. The failing ventricle myo-
cardium is characterized by reduction of high-energy phosphates and lower activity of the phos-
photransfer enzymes CK and AK which facilitate transfer of high-energy phosphoryls and their
metabolites from sites of production to sites of utilization [7,9,10,18–20]. These phosphotransfer
systems serve also as metabolic signal transducers, coupling the cell energetic status to ion chan-
nel function and membrane excitability [21–24]. Disruption of energetic signaling pathways or
ion channels with metabolic-sensing properties predisposes the myocardium to electrical instabil-
ity [21,22,25–27]. In humans with chronic AF discrete defects in cellular and mitochondrial ener-
getics develop in the atrial myocardium, suggesting a potential link between metabolic
derangements and electrical perturbations [28–33]. Enzyme activities of CK and AK tightly corre-
lated with ATP concentration and AF duration, implying that impairment in atrial bioenergetics
may contribute to the substrate for AF [7,18,34]. However, the significance of changes in meta-
bolic flux through atrial phosphotransfer systems in aging myocardium has not been determined.

Mitochondria function and regulation of mitochondrial biogenesis decline with the aging
process, which results in increased reactive oxygen species and decreased ATP synthesis [35–
38]. Moreover, changes in dynamics of ATP delivery and hindered energetic communication
between ATPases and mitochondria and metabolic signaling to metabolic sensors can worsen
situation yet the significance of altered energetic dynamics has not been determined. This is of
importance since metabolic perturbations can trigger energy-driven oscillations in potassium
currents producing cyclical changes in the cardiac action potential that may underlie to the
genesis of arrhythmias, fibrillation and cardiac arrest [27,39–42].

The aim of this study was to gain insights into the fine mechanisms of altered dynamics of
energy metabolism in aging myocardium by revealing age-dependent perturbations in the atrial
bioenergetics system coupled with phosphotransfer pathway and ATP cycling rearrangements.
Age-dependent shift of cellular energetics and phosphotransfer dynamics in rat atria was deter-
mined using 18O-labeling phosphometabolomic methodology and mass spectrometry specifi-
cally design to study small myocardial samples which can be applied to human myocardium
[15,17,43,44]. Our study uncovered age-dependent decline in phosphometabolite turnover rates
and dynamic energetic rearrangements in aging rat atria with simultaneous phosphotransfer cir-
cuit and mitochondrial substrate shuttle deficits hindering ATP cycling that may underlie the
vulnerability of the whole energetic system, muscle weakness and electrical instability.

Materials and Methods

Animal Models
Fischer 344 rats, 6 months (adult) and 24 months (aged), were used in this study. Fischer 344
rats (obtained from the National Institute of Aging) were maintained on a standard chow diet
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and housed in a controlled environment for at least 1 week before being sacrificed. Rats were
anesthetized with intraperitoneal injection of sodium pentobarbital (50 mg/kg). All experimen-
tal procedures were designed in accordance with the National Institutes of Health guidelines
and were approved by the Mayo Institutional Animal Care and Use Committee.

18O Isotopic Labeling of Cellular Phosphoryls
Atrial tissues were removed surgically from excised hearts and washed and preincubated in
oxygenated Krebs-Henseleit (KH) solution. Subsequently, samples of intact atrial myocardium
from adult and aged rats were subjected to metabolite 18O-labeling procedure [17,44,45].
Briefly, atrial tissue samples were transferred to oxygenated KH solution enriched with 30% of
H2O[

18O] (Isotec Inc) and incubated for 1 minute then quickly freeze-clamped into liquid
nitrogen and stored for 18O-labeling and biochemical analyses. Separately, atrial tissues were
incubated in KH solution enriched with 18O and isoproterenol (ISO) (0.001 μM) for 1 minute
for 18O-labeling to simulate oxidative and metabolic stress conditions [46,47]. The tissue was
frozen immediately in liquid nitrogen and stored at –80°C until further analysis of 18O-labeling
by mass spectrometry. This protocol can be used on small human atrial myocardium samples,
which studies are underway.

Purification and Isotopic Analysis of 18O-Labeled Cellular Phosphoryls
Atrial samples were freeze-clamped and pulverized in mortar with liquid nitrogen, and
extracted in a solution containing 0.6 M HClO4 and 1 mM EDTA. The samples were centri-
fuged at 10,500 rpm for 10 minutes at 4°C to precipitate proteins. The pellet then was left in 2N
NaOH for protein estimation and the supernatants were neutralized using 2M KHCO3 until
neutral (pH>7.0). The supernatants were left on ice for 30 minutes in a cold room. Then sam-
ples were centrifuged at 3000 rpm for 10 minutes to precipitate KClO4. The supernatants were
stored at –20°C until they were analyzed using HPLC for fractionation and subsequent 18O-
assisted GC/MS for 18O-enrichment analyses (Fig 1A and 1B). Metabolites were analyzed with
a Hewlett-Packard 5980B/5973 gas chromatograph mass spectrometer and data was analyzed
using Chemstation software. Cellular phosphometabolites were purified and quantified with
HPLC HP 1100 (Fig 1A) using a Mono Q HR 5/5 ion-exchange column (Pharmacia Biotech)
with triethylammonium bicarbonate buffer (pH 8.8 at 1 mL/min flow rate) [10,19,48,49]. From
each sample, 4 fractions were collected. The first fraction contained glucose-6-phosphate
(G6P), glycerol-3-phosphate (G3P), and glucose-1-phosphate (G1P), and the second through
fourth fractions contained inorganic phosphate (Pi), ADP, and ATP, respectively (Fig 1A).
Fractions were dried out using vacuum centrifugation (SpeedVac, Savant) and reconstituted
with water. Pi, G3P, G1P, and G6P reconstitutions were transferred to GC/MS vials for silyla-
tion (Fig 1B), while the β-phosphoryl of ADP, γ- and β-phosphoryl of ATP and phosphoryl of
creatine phosphate (CrP) were analyzed after enzymatic transfer of corresponding phosphoryls
to glycerol (Fig 1C) [19,49,50]. Samples that contained phosphoryls of γ-ATP, β-ATP, β-ADP
as G3P, Pi, G6P, G1P, and G3P were converted to respective trimethylsilyl derivatives with Tri-
Sil/BSA (Pierce) as the derivatization agent [10,49,51]. The 18O enrichments of phosphoryls
were determined with GC/MS operated in the select ion-monitoring mode. GC/MS analysis of
Pi, G3P, and G6P 18O-labeling is presented in Fig 1B. Left panel represents GC/MS chromato-
grams of metabolites, while in the right panel oxygen the isotope abundance is shown. Using
this approach in a single run the metabolic dynamics of glycolysis (G6P) and glycogenolysis
(G1P) and mitochondrial substrate shuttle activity (G3P) can be monitored.
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The cumulative percentage of phosphoryl oxygens replaced by 18O in the metabolites was
calculated using the formula [17,51]:

%18O1 þ 2 %18O2ð Þ þ 3 %18O3ð Þ þ . . . :nð%m18OnÞ½ �= nð%18OinH2OÞ½ �

where n is the total number of phosphoryl oxygen sites in the metabolite. Calculation of turn-
over rates has been described in detail previously [17,49,51–53]. Briefly, phosphometabolites
turnover times were calculated using the formula:

pt phosphometaboliteð Þ ¼ 1� 2�Nð Þ’p 18O½ �H2Oð Þ

Fig 1. 18O-labeling analysis of phosphometabolites using HPLC and 18O-assisted GC/MS. A, Sample preparation and fractionation for GC/MS analysis.
B, Analysis of Pi, G3P, and G6P using GC/MS. C, Enzymatic reactions for γ- and β-ATP and CrP to analyze their 18O-metabolic–labeling ratio with GC/MS as
G3P. AK indicates adenylate kinase; CrP, creatine phosphate; G3P, glycerol-3-phosphate; G6P, glucose-6-phosphate; Pi, inorganic phosphate.

doi:10.1371/journal.pone.0136556.g001
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where pt(phosphometabolite) is a fraction of 18O-labeled phosphometabolite at given time t, N
is equal to the number of turnover cycles observed during incubation period, and p([18O]H2O)
is a fraction of 18O in media water [49,52–54].

Statistical Analysis
Data are expressed as mean±SE. The Student t test for unpaired samples was used for statistical
analysis and a difference at P<0.05 was considered significant.

Results

Aging-Associated Changes in Atrial ATP Synthesis, Consumption, and
Phosphotransfer Dynamics
Vigorous ATP consumption and synthesis cycle is critical in maintaining cellular energy
homeostasis. Knowledge of basal metabolic state, which is independent of contractile activity,
is a valuable parameter for understanding remodeling of energy metabolism during aging.
Here, we determined metabolite turnover rates in basal state which is more stable and not con-
founded by variation in contractile activity. With aging, ATP consumption rate of intact atrial
myocardium (Fig 2A), as assessed by 18O incorporation into Pi during ATP hydrolysis, was sig-
nificantly depressed. Specifically, Pi 18O-labeling rate decreased from 22.7±1.6 in adult to 12.6
±1.2%18O/min (P<0.01, n = 6) in the aged atrial myocardium. Presence of ISO and metabolic
stress did not produce a significant effect on ATP consumption and Pi 18O-labeling rate in the
adult atrial tissue. However, ISO had a significant effect on restoring depressed ATP consump-
tion in aged atria (Fig 2A and S1 Table). Specifically, Pi 18O-labeling rate of aged myocardium
increased to 16.8±1.0%18O/min, or by 33%, in the presence of ISO compared to the aged atria
without ISO (P<0.05, n = 6). Despite significant improvement in ATP consumption, the differ-
ence in Pi 18O-labeling rate between adult (+ISO) (25.3±1.6%18O/min) and aged (+ISO) (16.8
±1.0%18O/min) still were significant at P<0.01.

ATP synthesis rate, as assessed by the rate of γ-ATP 18O-labeling which takes place mostly
in mitochondria, was lower in aged atrial myocardium at 29.0±3.3%18O/min compared to 38.8
±3.8%18O/min in adult; however, it do not reach statistical significance (Fig 2B and S1 Table).
Significant reduction in ATP synthesis rate between adult and aged atria was observed only in
the presence of ISO. The γ-ATP 18O-labeling rate was decreased from 48.3±5.4 in adult (+ISO)
to 32.2±1.8%18O/min in aged (+ISO) atria (P<0.05, n = 6).

AK metabolic flux, as assessed by β-ADP 18O-labeling, was significantly lower in aged atrial
myocardium (Fig 2C and S1 Table). The rate of β-ADP 18O-labeling was decreased from 15.7
±0.7%18O/min in adult to 7.8±1.1%18O/min in aged rat atria (P<0.01, n = 6). The presence of
ISO significantly improved AK phosphotransfer in aged atrial myocardium to 12.6±1.6%18O/
min, which was significant compared to the absence of ISO (P<0.05). Despite enhancement by
ISO, AK flux was still significantly depressed in aged (+ISO) compared to adult (+ISO) atria
(P<0.05, n = 6).

CK metabolic flux, as assessed by CrP 18O-labeling, was significantly lower in aged atrial
myocardium (Fig 2D and S1 Table). The rate of CrP 18O-labeling was decreased from 60.2
±0.6%18O/min in adult to 39.1±2.7%18O/min in aged rat atria (P<0.01, n = 4–8). The presence
of ISO significantly improved CK phosphotransfer in aged atrial myocardium to 48.4
±3.0%18O/min, which was significant compared to without ISO (P<0.05, n = 6–8). Due to
improvement by ISO, CK flux was no longer statistically significantly depressed in aged (+ISO)
compared to adult (+ISO) atria.
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Aging-Dependent Changes in Atrial Glycolytic, Glycogenolytic, and
Substrate Shuttle Activities
Intracellular spatially arranged glycolytic and glycogenolytic networks, in addition to their
energy (ATP)-producing role, have the robust capability to catalyze high energy phosphoryl
exchange and distribution from cellular sites of ATP generation in mitochondria to ATP con-
sumption providing energy to remote cellular processes [17,51,55]. Here, glycolytic and

Fig 2. Aging-associated changes in atrial Pi, γ-ATP, β-ADP, and CrP 18O-metabolic–labeling reflecting altered ATP consumption and synthesis
processes, and AK and CK velocities. A, Aging and stress (ISO) effects on atrial Pi turnover, indicators of ATP consumption rate. B, Aging and stress
effects on atrial ATP γ-phosphoryl turnover, indicators of ATP synthesis rate. C, Aging and stress effects on atrial ADP β-phosphoryl turnover, indicators of
AK metabolic flux. D, Aging and stress effects on atrial CrP turnover, indicators of CK metabolic flux. E, Schematic representation of 18O-labeling reaction
sequence. *P<0.05 and **P<0.01. AK indicates adenylate kinase; CK, creatine kinase; CrP, creatine phosphate; ISO, isoproterenol; Pi, inorganic
phosphate.

doi:10.1371/journal.pone.0136556.g002
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glycogenolytic net phosphotransfer fluxes were monitored by measuring the rate of appearance
of 18O-labeled phosphoryl species in G6P[18O] and G1P[18O], respectively (Fig 3A, 3B and S1
Table). G6P 18O-labeling and glycolytic flux was significantly reduced from 23.6±1.6%18O/min
to 17.2±1.9%18O/min, or by 27% (P<0.05, n = 5–6), in aged rat atria, while G1P 18O-labeling,
reflecting glycogenolytic phosphotransfer flux, which was 2.87±0.9%18O/min and 3.18
±1.4%18O/min in adult and aged rat atria (n = 5–6), respectively, was not affected by aging.
Metabolic stress induced by ISO had no major effect on both glycolytic and glycogenolytic
phosphotransfer fluxes except a trend of higher glycogenolytic flux in the presence of ISO in
both adult and aged atria, which was equal to 4.0±0.8 and 4.15±1.5%18O/min (n = 5–6),
respectively.

Alpha-glycerophosphate substrate shuttle plays a pivotal role in cellular bioenergetics by
linking cytosolic metabolic networks to mitochondrial oxidations [56]. Here, the G3P shuttle
activity was examined by measuring the rate of appearance of 18O-labeled phosphoryl species
in G3P[18O] (Fig 3C and S1 Table). Labeling of G3P by 18O was reduced by 42% from 11.01
±1.70 in adult to 6.62±1.08%18O/min in the aged rat atria (P<0.05, n = 6–8). The difference
between adult and aged atria was more significant in the presence of metabolic stress induced
by ISO. Under these conditions, G3P 18O-labeling and shuttle activity was reduced by 53%
from 11.44±0.84 in adult to 5.68±0.50%18O/min in aged rat atria (P<0.01, n = 6–8).

Aging-Associated Depression of Atrial ATP Cycling and Energetic
Communication
Kinetics of 18O-labeling of Pi at ATPase site and γ-ATP at mitochondrial site and resulting Pi
[18O]/γ-ATP[18O] ratio is an indicator of energetic communication between intracellular ATP
consumption and ATP production processes.[17,44] The Pi/γ-ATP 18O-labeling percentage
ratio was significantly reduced from 0.60±0.05 in adult to 0.41±0.05 (P<0.05, n = 4–6) in aged
rat atria, indicating impediment of energetic communication between mitochondria and cellu-
lar ATPases in aging myocardium (Fig 3D and S1 Table). In the presence of ISO and metabolic
stress, the Pi[18O]/γ-ATP[18O] ratio was improved in the aged atria, and there was no signifi-
cant difference compared to adult atria. Thus, 18O-labeling technology permits tracking intra-
cellular energetic communication along with glycolytic, glycogenolytic, and substrate shuttle
dynamics (Fig 3E and S1 Table).

Aging-Associated Changes in ATP Turnover Cycles and Metabolic
Pathways
Diminished ATP turnover in aging myocardium could be a result of reduced ATPases and
ATP synthases as well as hindered transfer and cycling of ATP between mitochondria and sites
of ATP utilization [9,16]. Stable isotope 18O–labeling technology uniquely permits tracking of
ATP and Pi cycling between cellular ATPases and sites of ATP regeneration in mitochondria
in intact tissue [44]. ATP cycling and energetic communication can be monitored by the incor-
poration of 18O into first (18O1), second (

18O2), third (
18O3) and fourth (18O4) positions of Pi

(Fig 4A and S2 Table). The rate of incorporation of 18O into different positions of Pi indicates
how fast 18O-labeled Pi species produced during ATP hydrolysis can reach mitochondria and
get back to ATPases as γ-ATP[18O], to get second, third, and fourth 18O atoms incorporated
during cycles of ATP hydrolysis (Fig 4B). The results demonstrate that aging atrial myocar-
dium has a lower rate of incorporation of 18O into second (18O2), third (

18O3), and fourth
(18O4) positions of Pi (Fig 4A). Specifically, the percentage of oxygens replaced in

18O1 position
was reduced from 13.7±0.58 in control (n = 10) to 11.1±085 in aging atria (P<0.05, n = 17); in
18O2, from 5.1±0.51 to 3.6±0.17 (P<0.01); in 18O3, from 0.64±0.12 to 0.29±0.03 (P<0.01); and
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in 18O4, from 0.06±0.01 to 0.05±0.00 (P>0.05). Thus, cycling of Pi and ATP between cellular
ATPases and mitochondria is compromised in aged atria myocardium.

Metabolite turnover and pathway data analysis (Fig 4C and S3 Table) further revealed
dynamic rearrangements in the aging atrial myocardial energetic system with diminished CK,
AK, and glycolytic phosphotransfer rates, and ATPase velocity and mitochondrial substrate
shuttle function. Specifically, CrP turnover, reflecting CK phosphotransfer rate, was reduced
from 1.26±0.06 in control to 0.67±0.08 in aging atria (P<0.01, n = 4–8). β-ATP and β-ADP

Fig 3. Aging-associated changes in atrial G6P, G1P, and G3P 18O-metabolic–labeling indicating alterations in glycolytic, glycogenolytic, and
substrate shuttle activities. A, Aging and stress (ISO) effects on atrial G6P turnover, indicators of glycolytic rate. B, Aging and stress effects on atrial G1P
turnover, indicators of glycogenolytic rate. C, Aging and stress effects on atrial G3P turnover, indicators of substrate shuttle activity. D, Aging and stress (ISO)
effects on atrial Pi/γ-ATP 18O-labeling ratio, indicators of energetic communication between ATP consumption and ATP production processes. E, Schematic
representation of reaction sequences and metabolite18O-labeling allowing to track glycolytic, glycogenolytic, and α-glycerophosphate substrate shuttle
dynamics. * P<0.05 and ** P<0.01. G1P indicates glucose-1-phosphate; G3P, glycerol-3-phosphate; G6P, glucose-6-phosphate; ISO, isoproterenol; Pi,
inorganic phosphate.

doi:10.1371/journal.pone.0136556.g003

Phosphometabolomics of Atrial Energetics

PLOS ONE | DOI:10.1371/journal.pone.0136556 September 17, 2015 8 / 17



turnovers, indicating AK phosphotransfer velocity, were reduced from 0.40±0.05 and 0.37
±0.02 in control to 0.17±0.03 and 0.17±0.04 in aging atria, respectively (P<0.01, n = 5–6). Pi
turnover, reflecting ATPase rate, was reduced from 0.49±0.05 in control to 0.27±0.03 in aging
atria (P<0.01, n = 5–6). G6P and G3P turnovers, indicating glycolytic phosphotransfer and
substrate shuttle activity, respectively, were reduced from 0.47±0.04 and 0.24±0.04 in control
to 0.33±0.04 and 0.14±0.03 in aging atria (P<0.05, n = 5–6). G1P turnover, an indicator of gly-
cogenolysis, was not different between control and aging myocardium.

Fig 4. Aging-associated decline in atrial ATP and Pi cycling between ATP synthesis and ATP consumption sites and stress effect on energetic
pathways. A, Aging effects on first, second, third, and fourth 18O-atom incorporation into Pi signifying cycles of ATP/Pi exchange between consumption and
synthesis sites. B, Schematic representation of 18O-labeling during ATP cycling. C, Aging effects on atrial metabolite turnover rates and corresponding
pathways. D, Aging and stress effects on atrial energy metabolite turnover rates and corresponding pathways. * P<0.05 and ** P<0.01. CrP indicates
creatine phosphate; G1P, glucose-1-phosphate; G3P, glycerol-3-phosphate; G6P, glucose-6-phosphate; ISO, isoproterenol; Pi, inorganic phosphate.

doi:10.1371/journal.pone.0136556.g004
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Metabolite turnover and pathway analysis in the presence of metabolic stress (+ISO) (Fig
4D and S3 Table) revealed a positive effect of ISO on CrP and β-ATP/ADP turnovers, reflecting
CK and AK velocities, respectively, in aging myocardium compared to without ISO and control
adults. In the presence of ISO, CrP turnover was increased to 0.93±0.09 (n = 6) in aging atria
with no effect on adult myocardium (not shown). β-ATP and β-ADP turnovers were almost
doubled by increasing to 0.36±0.09 and 0.29±0.04 (n = 6) in the presence of ISO. In this regard,
aging myocardium had higher Pi and ATP turnovers in the presence of ISO and trend to
increase in γ-ATP turnover or ATP synthesis rate, indicating potential of stress response and
adaptability of the energetic system.

Discussion
Aging imposes structural and metabolic alterations in atrial myocardium and increases risk to
AF [1,2,7,29]. Defining metabolic mechanisms of aging is necessary for designing interventions
to improve human health span, quality of life and prevention of associated diseases [57]. Here,
age-dependent shift of cellular energetics and phosphotransfer kinetics of atrial myocardial
samples were determined using advanced 18O-labeling phosphometabolomic methodology
and mass spectrometry [15,44]. To get a broader picture of rearrangements in the energetic sys-
tem and insights into mechanisms, turnover rates of Pi[18O] (an indicator of ATP utilization),
γ-ATP[18O] (an indicator of ATP synthesis), β-ATP[18O] and β-ADP[18O] (indicators of AK
flux), CrP[18O] (an indicator of CK flux), G6P[18O] (an indicator of glycolytic flux), G1P[18O]
(an indicator of glycogenolytic flux), and G3P[18O] (an indicator of substrate shuttle activity)
were determined using 18O-assisted mass spectrometry[15,17,44,58].

Using stable isotope 18O–assisted dynamic metabolic profiling, we have uncovered develop-
ing simultaneous ATP cycling, phosphotransfer, and mitochondrial substrate shuttle deficits in
aging myocardium. Aged atrial myocardium had significant lower ATP turnover rate which
was significantly potentiated by applying adrenergic stress. This indicates that reduced β-
adrenergic signaling and Ca2+ cycling may preclude activation of mitochondrial enzymes in
aging atrial myocardium limiting ATP turnover. Significant reduction in ATP synthesis rate
between adult and aged atria was still evident in the presence of ISO, indicating confounding
defects in protein levels and gene expression [35,36,59]. The observation that stress has a signif-
icant effect on the aged myocardium could also be a link to higher susceptibility to attacks of
aged hearts which have lower energetic capacity [37,38,60].

In the aging atria, both CK and AK phosphotransfers, which are responsible for distributing
high-energy phosphoryls, were significantly depressed. The presence of adrenergic stress
improved both CK and AK phosphotransfers in aged myocardium, indicating regulatory
potential of β-adrenergic signaling. Due to improvement, CK flux was no longer statistically
significantly depressed in aged atria. Specific molecular mechanisms of such improvement
remain to be determined, although they can include changes in posttranslational modification
of enzymes. Previous our study did not reveal significant transcriptomic and proteomic
changes in AK and CK levels [38]. Changes in AK and CK flux could be related to posttransla-
tional modification, as there is an increase in AK1 is carbonylation and CK nitration with
aging [61,62]. Beside high-energy phosphoryl transfer, the high CK- and AK-mediated cataly-
sis is necessary to maintain intact myocardial phosphoryl-carrying molecule pools, apparently
through rapid rephosphorylation of them, thus preventing loss of molecules through the degra-
dation and/or efflux pathways [9,15,18,63]. In heart failure, depressed phosphotransfer enzyme
activities correlate with reduced tissue ATP levels, whereas CrP levels inversely relate with
atrial and ventricular load [18].
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The turnover of G3P, which connects glycolytic and mitochondrial metabolism, was also
significantly depressed in aged atrial myocardium, indicating deficient activity of G3P shuttle
and substrate supply to mitochondria [44,56]. Of note, the difference in G3P turnover between
adult and aged atria was more significant in the presence of metabolic stress. In this regard,
critical significance of G3P turnover is indicated by mutations in G3P dehydrogenase 1-like
(GPD1-L) protein, which is highly expressed in the heart, that are linked to Brugada and sud-
den infant death syndromes characterized by vulnerability to metabolic stress [64–66]. G3P
shuttle is important and underappreciated component in cellular energetic system. We demon-
strate for the first time that it is depressed in aging. Concomitantly, G6P turnover was
depressed in aged atrial myocardium, too, indicating deficient glycolytic phosphotransfer and
hexokinase catalyzed shuttling of ATP from mitochondria to cellular ATPases. G1P turnover,
an indicator of phosphoryl transfer in glycogenolysis, was not changed in aging atria compared
to control. Applied metabolic stress had no major effect on both glycolytic and glycogenolytic
phosphotransfer fluxes. Thus, 18O stable isotope–resolved metabolite dynamics provide a sys-
temic view of deficits and rearrangements in the energetic system of aging atrial myocardium,
uncovering most vulnerable steps.

Cardiac contractile function depends not only on the rate of delivery of high-energy phos-
phoryls (ATP, CrP) but also on removal of the end products of the ATPase reaction (ADP, Pi,
and H+) and conveying metabolic signals to ATP generation sites [9,17]. Specifically, 18O-
labeled Pi species produced during ATP hydrolysis at an ATPase site must reach a distinct
ATP production site to be incorporated into γ-ATP. Delay in activation of ATP production
will result in different kinetics of γ-ATP 18O-labeling compared to that of Pi[18O]. Thus, by fol-
lowing Pi and γ-ATP 18O-labeling kinetics, intracellular energetic communication can be mon-
itored. Indeed, the Pi/γ-ATP 18O-labeling ratio was significantly reduced in aged rat atria,
indicating impediment of energetic communication between mitochondria and cellular
ATPases [17,67]. Metabolic stress and associated increase in Ca2+ mobilizes cellular energetic
resources and activates number of enzymatic process [68]. In the presence of metabolic stress,
the Pi[18O]/γ-ATP[18O] ratio and energetic communication was significantly improved in
aged atria compared to adult. This was associated with alleviation of some key energetic param-
eters after adrenergic stress in aging myocardium including creatine kinase flux, adenylate
kinase catalyzed β-ATP turnover, Pi/ATP turnover and energetic communication. Taken
together, these results indicate potential of improvement of aging myocardial bioenergetics by
metabolic stress training.

Optimal functioning and the rate of communication between components of the cellular
bioenergetic system are supported by complementation in phosphotransfer enzyme activity
and intimate interaction of phosphotransfer proteins with cellular sites of ATP utilization, met-
abolic sensing (K-ATP, AMPK) and energy transduction (mitochondria, glycolysis)
[6,11,16,23,24]. Using advantages of 18O-labeling technology, we demonstrate that aging atrial
myocardium has lower rates of incorporation of 18O into separate positions of Pi, indicating
diminished cycling of Pi and ATP between cellular ATPases and mitochondria. This could be
due to rearrangements in the aging atrial energetic system with diminished CK, AK, and glyco-
lytic phosphotransfer rates, and ATPase velocity and mitochondrial substrate shuttle function.
Previous our gene array data show reduced transcript levels of genes in ATP and G3P metabo-
lism in aged hearts [38]. In addition, transcript levels of mitochondrial Complex I nDNA
encoded genes in the aged hearts was associated with functional decline and a 46% reduction
in enzymatic activity as determined by the rotenone-sensitive reduction of ubiquinone-1 and
decreased state 3 respiration in malate-pyruvate NAD-dependent substrate [38]. No significant
changes in Complex II activity in the aged hearts were found as determined by the reduction of
ubiquinone-2 by succinate.
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The data presented here is along with the concept of cardiac bioenergetic infrastructure, con-
sisting of coupled mitochondrial, glycolytic, and phosphotransfer networks, which are arranged
to maintain energy homeostasis by ensuring tight energy supply-demand match, force-fre-
quency, and mechano-electrical coupling relationships [6,11,15,16,59,69]. According to this con-
cept, the AK, CK, and glycolytic/glycogenolytic phosphotransfer circuits along with
glycerophosphate shuttle are essential parts of myocardial bioenergetics infrastructure. These
enzymatic conduits provide energetic continuum by distributing high-energy phosphoryls to
cellular ATPases, maintaining high ΔG for ATP hydrolysis and conveying energy demand sig-
nals and substrates to support mitochondrial ATP production [6,59,70–73]. New evidence sug-
gest that glycolytic and glycogenolytic enzymes, distributed intracellularly and associated with
mitochondria, also have the ability to provide network capacity for transferring and distributing
ATP produced in mitochondria [13,16]. Mitochondria, on the other side, can be interconnected
providing cable properties for conduction of membrane potential along mitochondrial reticulum
from precapillary area to inside muscle fibers as was elegantly demonstrated in Skulachev’s labo-
ratory back in 70’s and 80’s [74]. However, ATP still needs to be exported from narrow mito-
chondrial cristae channels and delivered to cellular ATPases by facilitated diffusion or ligand
conduction mechanisms [16]. Trans-mitochondrial cristae arrangement and phosphotransfer
enzymes may facilitate navigation of ATP molecules out of mitochondrial cluster [16,75]. In this
regard, deletion of intermembrane adenylate kinase AK2 isoform compromises ATP export and
is embryonically lethal suggesting critical significance of phosphotransfer in facilitating ATP dif-
fusion [76,77]. To this end, each heart muscle contraction, associated with ATPase activity, trig-
gers precise and coordinated flux changes in coupled reaction systems maintaining almost
constant metabolite levels [16,68]. Alteration of phosphotransfer fluxes, mostly in CK and AK
systems, has been demonstrated under ischemic conditions and heart failure associated with
poor contractile performance of the failing myocardium [7,9,20]. As was suggested previously
[7,9], systemic accumulation of defects at various steps of the myocardial energetic systemmay
compromise the ability to adequately restore electrical stability in the face of induced AF.

In summary, our data demonstrate that systemic alterations in ATP production and con-
sumption and phosphotransfer-mediated energetic communication, and mitochondrial substrate
supply processes underlie energetic limitation of the aging atrial myocardium. Aging induced
decline in AK, CK, and glycolytic phosphotransfer circuits along with alpha-glycerophosphate
shuttle, which are essential parts of myocardial bioenergetics infrastructure, hindering energetic
communication and ATP cycling. Due to the tight relationship between myocardial energetic
dynamics and cardiac electrical activity [21–24,27,65], these metabolic perturbations could
increase vulnerability of aging atria to fibrillation, stroke, and sudden cardiac death. Potentiation
of adrenergic signaling and associated Ca2+ cycling, such as occurs during physical activity, had
beneficial effects on aging atrial bioenergetics system indicating potential of targeted prevention
or slowing decline in specific energetic circuits to maintain quality of life.
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S1 Table. Mean values of phosphometabolite dynamics in adult and aging atrial myocar-
dium. Data are expressed as % of oxygen replaced/min and represented as mean ± SEM
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adenosine triphosphate; ADP β-phosphoryl, phosphate at the beta position of diphosphate;
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erol-3-phosphate. Student’s t-Test was used to determine the significance between groups
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S1 Table. Student’s t-Test was used to determine the significance between groups (p<0.05).
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