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Abstract LAMP1 and LAMP2 proteins are highly abundant, ubiquitous, mammalian proteins that

line the lysosome limiting membrane, and protect it from lysosomal hydrolase action. LAMP2

deficiency causes Danon’s disease, an X-linked hypertrophic cardiomyopathy. LAMP2 is needed for

chaperone-mediated autophagy, and its expression improves tissue function in models of aging.

We show here that human LAMP1 and LAMP2 bind cholesterol in a manner that buries the

cholesterol 3b-hydroxyl group; they also bind tightly to NPC1 and NPC2 proteins that export

cholesterol from lysosomes. Quantitation of cellular LAMP2 and NPC1 protein levels suggest that

LAMP proteins represent a significant cholesterol binding site at the lysosome limiting membrane,

and may signal cholesterol availability. Functional rescue experiments show that the ability of

human LAMP2 to facilitate cholesterol export from lysosomes relies on its ability to bind

cholesterol directly.

DOI: 10.7554/eLife.21635.001

Introduction
Eukaryotic lysosomes are acidic, membrane-bound organelles that contain proteases, lipases and

nucleases and degrade cellular components to regenerate catabolic precursors for cellular use

(Xu and Ren, 2015; Schwake et al., 2013; Saftig and Klumperman, 2009). Lysosomes are crucial

for the degradation of substrates from the cytoplasm, as well as membrane bound compartments

derived from the secretory, endocytic, autophagic and phagocytic pathways. The limiting membrane

of lysosomes is lined with so-called lysosomal membrane glycoproteins (LAMPs) that are comprised

of a short cytoplasmic domain, a single transmembrane span, and a highly, N- and O-glycosylated

lumenal domain (Wilke et al., 2012; Kundra and Kornfeld, 1999; Granger et al., 1990). Because of

their abundance and glycan content, LAMPs have been proposed to serve as a protective barrier to

block hydrolase access to the limiting phospholipid bilayer. LAMP1 and LAMP2 are 37% identical

and may overlap in function, but knockout of LAMP1 in mouse has a much milder phenotype than

depletion of LAMP2 (Tanaka et al., 2000): LAMP2-deficient mice have very short lifespans, and

show massive accumulation of autophagic structures in most tissues. Indeed, LAMPs are required for

fusion of lysosomes with phagosomes (Huynh et al., 2007) and LAMP2 has also been proposed to

serve as a receptor for chaperone-mediated autophagy (Cuervo and Dice, 1996,

2000; Bandyopadhyay et al., 2008).

Previous work has implicated LAMP2 in cholesterol export from lysosomes, as LAMP-deficient

cells show cholesterol accumulation that can be rescued by LAMP2 expression (Eskelinen et al.,

2004; Schneede et al., 2011). Proteome-wide analysis of cholesterol binding proteins included

LAMP1 and LAMP2 among a long list of candidate proteins (Hulce et al., 2013). Despite these hints,

the precise function of LAMP proteins has remained unclear, and they are often presumed to be
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structural components. We show here that LAMP proteins bind cholesterol directly and this capacity

contributes to their role in cholesterol export from lysosomes.

Results and discussion
We sought to verify direct cholesterol binding to LAMP proteins using LAMP protein lumenal

domains, engineered to be secreted from cells by simple deletion of their transmembrane and short

cytoplasmic domains (Figure 1—figure supplement 1; Figure 1A). Soluble, purified, LAMP1 and

LAMP2 proteins appeared to bind 3H-cholesterol saturably, at a stoichiometry comparable to equi-

molar amounts of purified, NPC1 N-terminal domain (NTD) that contains a single cholesterol binding

site (Infante et al., 2008; Kwon et al., 2009; Figure 1B,D,E) (note that this does not provide infor-

mation about relative binding affinities). Binding was not especially sensitive to pH (Figure 1H) and

was complete after ~2 hr at 4˚C (Figure 1I).

Cholesterol is poorly soluble, thus binding reactions were carried out in the presence of sub-criti-

cal micelle concentration amounts of Nonidet P40 detergent (0.004%) to help solubilize the choles-

terol, as worked out by Infante et al. in their studies of cholesterol binding to the N-terminal domain

of NPC1 protein (Infante et al., 2008). Under these conditions, most of the cholesterol remains in a

mixed micelle of cholesterol and detergent and is still poorly soluble. Thus, the apparent affinity for

cholesterol is likely to be tighter than the curves indicate, as the amounts added do not reflect the

concentration of free cholesterol that is actually available for binding.

Preliminary experiments showed that 3H-cholesterol binding was competed by unlabeled choles-

terol, 24-hydroxycholesterol, but not cholesterol sulfate (Figure 1G). This suggested that binding

occurs via the 3b-hydroxyl moiety of the cholesterol molecule, similar to the orientation with which

the NPC1 N-terminal domain binds cholesterol (Kwon et al., 2009). Consistent with this, LAMP2

also bound 3H-25-hydroxycholesterol with similar apparent affinity as cholesterol; binding was com-

peted by excess cold 25-hydroxycholesterol (Figure 1C), as would be expected for a specific interac-

tion. Only low levels of background binding were detected using GFP-binding protein or TIP47 as

controls (Figure 1D,E). More detailed analysis confirmed that 25-hydroxycholesterol (Figure 2B) and

7-ketocholesterol (Figure 2D), but not cholesterol sulfate (Figure 2A), compete with 3H-cholesterol

for binding to LAMP2 protein.

Epicholesterol is a cholesterol epimer that differs only in the chirality of carbon 3 such that the

hydroxyl group is in the alpha rather than beta conformation. Importantly, epicholesterol failed to

compete for cholesterol binding to LAMP2 protein under conditions where cholesterol competed

for binding (Figure 2C). It was not possible to add higher concentrations of sterol competitors due

to solubility issues, but significant inhibition was observed. Together, these data strongly support

the conclusion that cholesterol binds LAMP2 via its 3b-hydroxyl moiety.

eLife digest Living cells contain many membrane-bound compartments surrounded by a gel-like

substance called the cytoplasm. Lysosomes are compartments found in most animal cells, which

contain enzymes that can break down virtually all kinds of biological molecules. Cell biologists

around the world use two proteins called LAMP1 and LAMP2 to mark lysosomes to study them. The

loss of LAMP2 causes a condition called Danon disease that is characterized by thickening of the

heart muscle. However, relatively little is known about what these proteins actually do.

Previous studies had hinted that these proteins might bind to the fatty molecule, cholesterol. Li

and Pfeffer set out to test this directly and showed that LAMP1 and LAMP2 proteins do indeed bind

to cholesterol. The two LAMP proteins also interact with another two proteins, called NPC1 and

NPC2, which export cholesterol out of lysosomes.

Li and Pfeffer then showed that cells contain 5- to 10-times more LAMP proteins than they do

NPC1-cholesterol exporters. This suggests that LAMP proteins have additional roles that need to be

characterized and studied to see how important cholesterol binding is for these processes too.

Future studies could also explore if LAMP proteins signal that free cholesterol is available for the

cell’s needs.

DOI: 10.7554/eLife.21635.002
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A slight stimulation of binding was seen in reactions containing low levels of competitor choles-

terol sulfate or 25-hydroxycholesterol (Figure 2A,B); this is presumably due to the higher solubility

of these sterols, which will help solubilize 3H-cholesterol present in the reaction’s mixed micelles,

and presumably make it more available for LAMP2 binding (see also ref. Infante et al., 2008).

Despite its somewhat higher solubility, 25-hydroxycholesterol did not appear to bind LAMP2 much

Figure 1. Cholesterol binding to LAMP proteins. (A) Coomassie-stained SDS-PAGE of purified, secreted human LAMP1, LAMP2 or LAMP domains from

LAMP2. B,C. 3H-cholesterol or 3H-25 hydroxycholesterol binding to soluble LAMP2 (full length protein). Also shown in C is binding in the presence of

50 mM cold hydroxycholesterol. D,E, 3H-cholesterol binding to indicated, soluble proteins compared with the soluble NPC1 N-terminal domain. (F),

Cholesterol binding to LAMP2 domains 1 and 2 compared with full length, soluble LAMP2 protein. P values were determined relative to the full length

soluble LAMP2 protein. (G) Sterol competition (30 mM) for 3H-cholesterol binding to soluble LAMP2. P values were determined relative to no cold

addition. H, I. pH dependence and kinetics of 3H-cholesterol binding to LAMP2. In B,C,E,H and I, a representative experiment is shown; C and E show

the average of duplicates. In C, the background counts in reactions containing the control protein, GFP-binding protein, were subtracted; in D and E,

the control was TIP47 protein. D,F, and G show the combined results of two experiments in duplicate. Numbers at right (A) indicate mass in kD for this

and all subsequent figures. Reactions contained D,E,G,H,I, 500 nM total cholesterol; F, 5 mM total cholesterol; B and C were carried out using

increasing concentrations of the indicated sterol.

DOI: 10.7554/eLife.21635.003

The following figure supplement is available for figure 1:

Figure supplement 1. Diagram of constructs used.

DOI: 10.7554/eLife.21635.004
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more tightly than cholesterol, at least as inferred from its ability to compete with cholesterol for

binding (Figure 2B) or to bind directly (Figure 1C).

The LAMP protein family includes LAMP1, LAMP2, DC-LAMP, BAD-LAMP and Macrosialin

(Wilke et al., 2012). Each of these proteins contains a related ’LAMP’ domain; LAMP1 and LAMP2

proteins each contain two (Figure 1—figure supplement 1). Soluble versions of the individual,

membrane distal (’domain 1’) and membrane proximal (’domain 2’) LAMP domains of LAMP2

(Figure 1A) bound cholesterol with different capacity: the N-terminal, domain 1 bound more choles-

terol than its membrane proximal, domain 2 counterpart under these conditions (Figure 1F). It is

possible that both are capable of binding cholesterol within the full length molecule, as total domain

1 binding was less than that seen with the full length, secreted LAMP2 construct (Figure 1F).

To verify that LAMP2 binds cholesterol in cells, soluble LAMP2 protein was expressed and puri-

fied from the secretions of HEK293F cells grown in protein-free, FreeStyle 293 Expression Medium

Figure 2. Cholesterol binding to LAMP2 is competed by 25-hydroxycholesterol (B), cholesterol (C), 7-ketocholesterol (D) but not cholesterol sulfate (A)

or epicholesterol (C). The structures above indicate the regions of the sterol that differ from cholesterol. In C, the background obtained in reactions

containing GFP was subtracted. All panels used 50nM 3H-cholesterol and the indicated amounts of competitors.

DOI: 10.7554/eLife.21635.005
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that does not contain cholesterol. Under these conditions, any LAMP2-bound sterol must come from

intracellular sources. We subjected freshly purified LAMP2 protein to chloroform:methanol extrac-

tion and analyzed the extract by thin layer chromatography. As shown in Figure 3C, the LAMP2

extract contained a molecular species that co-chromatographed with cholesterol but not 24-

hydroxy-, 25-hydroxy-, or 26-hydroxycholesterol, lanosterol or 7-beta-hydroxycholesterol. Mass

spectrometry of the eluted material (Figure 3B) confirmed a profile identical with purified choles-

terol standard (Figure 3A) (Figure 3C). These experiments show that LAMP2 purified from cell

secretions carries primarily, bound cholesterol.

NPC1 and NPC2 proteins mediate cholesterol export from lysosomes (Kwon et al., 2009;

Rosenbaum and Maxfield, 2011). NPC1 has 13 transmembrane domains, and three large, lumenal

domains that are important for its function. As mentioned earlier, the NPC1 N-terminal domain

binds cholesterol directly (Kwon et al., 2009). Because of a possible connection between LAMP pro-

tein cholesterol binding and NPC-mediated cholesterol export, we checked for an interaction

between these proteins. Membrane anchored, endogenous LAMP2 co-immuno-precipitated with full

length NPC1-GFP but not with the control protein, GFP (Figure 4A) or the lysosomal membrane

protein, MCOLN1 (Figure 4D), upon expression in HEK293T cells. Interestingly, co-

Figure 3. Mass spectrometry identification of small molecules released from LAMP2 after chloroform:methanol

(2:1) extraction. (A) masses from cholesterol standard; (B) masses of LAMP2-bound material; (C) Copper sulfate/

phosphoric acid detection of indicated markers after thin layer chromatography compared with material eluted

from soluble LAMP2 (50 mg). Shown are the results of a representative experiment carried out twice.

DOI: 10.7554/eLife.21635.006
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Figure 4. LAMP2 interacts with NPC1 protein. (A) Anti-GFP immunoprecipitation from HEK293T cells grown in FBS

containing medium expressing GFP or mouse NPC1-GFP. The blot was developed with ECL. Upper panel, anti-

GFP immunoblot (100% elution); lower panel, anti-LAMP2 immunoblot to detect endogenous, full length protein

(100% elution). B,C, co-immunoprecipitation of LAMP2 and NPC1-GFP in cells grown in FBS, LPDS (5%) or LPDS +

cyclodextrin (1 mM) for 24 hr. Left panels, 1% inputs; right panels, 50% elutions. Error bars represent SEM for two

combined experiments carried out in duplicate; P value is from comparison with LPDS by two-tailed Student’s

t-test. B shows duplicate reactions to document reproducibility. D, Anti-GFP immunoprecipitation of HEK293T

cells grown in FBS expressing GFP-MCOLN1 or mouse NPC1-GFP. GFP-MCOLN1 occurs as a ~90 kD form, a

proteolytically processed form, and as higher oligomers (Vergarajauregui et al., 2011). Left panels, inputs (2%);

Figure 4 continued on next page
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Figure 4 continued

right panels, total elution carried out in duplicate. GFP proteins are green; LAMP2 is presented in red. Shown is a

representative experiment carried out twice in duplicate.

DOI: 10.7554/eLife.21635.007

Figure 5. LAMP2 binds NPC1 and NPC2 proteins. A,B, Structures of NPC1 (Gong et al., 2016; pdb 3jD8) and

NPC2 (Xu et al., 2007; pdb 2 hka) proteins; C,E, Microscale thermophoresis (E) or fluorescence (C) obtained with

mixtures of soluble, AF647 labeled-NPC1 N-terminal domain or AF647-RNase B with increasing concentrations of

soluble LAMP2 in 1 mM cholesterol. D,F, Microscale thermophoresis of AF647 labeled-NPC2 with increasing

concentrations of soluble LAMP2 or RNase B in 1 mM cholesterol sulfate. For C–F, a representative experiment

carried out at least twice is shown.

DOI: 10.7554/eLife.21635.008

The following figure supplement is available for figure 5:

Figure supplement 1. Quantitation of NPC1 (A) and LAMP2 (B) proteins in HeLa and HEK293T cells.

DOI: 10.7554/eLife.21635.009
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immunoprecipitation decreased in cells treated for 24 hr with cyclodextrin to remove cholesterol

from lysosomes (Abi-Mosleh et al., 2009; Rosenbaum et al., 2010) and the plasma membrane

(Figure 4B,C). These conditions (~0.1% cyclodextrin) have been shown to be non-toxic (cf.

Ulloth et al., 2007) and did not alter cell growth rate or viability in our hands.

Purified, soluble LAMP2 protein also bound very tightly (and directly) to the N-terminal domain of

NPC1 protein (Figure 5A, red) in the presence (or absence, not shown) of cholesterol (KD = 6 nM),

as monitored by microscale thermophoresis using AF647 dye-conjugated NPC1 protein—binding

significantly altered the fluorescence of NPC1 protein (Figure 5C). No interaction was observed for

the control glycoprotein, RNase B (Figure 5E). The smaller, NPC2 protein (Figure 5B) also bound to

LAMP2 (KD = 122 nM), but ~20 fold less tightly that NPC1 N-terminal domain (Figure 5D); binding

was monitored in the presence of cholesterol sulfate which will occupy the binding site of NPC2 but

not LAMP2 (Figures 1 and 2). No binding was seen for NPC2 to the control RNase B protein

(Figure 5F). Thus, LAMP2 binds directly to both NPC1 N-terminal domain and NPC2 proteins. For

NPC1, the enhanced binding seen in cells in the presence of cholesterol does not appear to reflect

occupancy of NPC1’s N-terminal domain, as this variable did not influence LAMP2 binding in solu-

tion. However, it is important to note that NPC1 also likely binds cholesterol within its membrane

spanning region which may also influence its overall conformation (Lu et al., 2015; Li et al., 2016).

LAMP proteins are highly abundant components of the lysosome membrane and may serve as a

reservoir for cholesterol extracted from intra-lysosomal membranes by NPC2, prior to cholesterol

export from lysosomes by NPC1. [The term, reservoir, is meant to imply a holding station for choles-

terol molecules that have been solubilized from the internal lipid contents of lysosomes by NPC2,

and held closer to the limiting membrane, prior to NPC1-mediated export.]

Are LAMP proteins abundant enough to represent a cholesterol reservoir? We used purified

LAMP2 and NPC1 proteins as standards to determine their precise abundance in HeLa and HEK293

cell lysates (Figure 5—figure supplement 1). Using the polypeptide molecular weights and cellular

protein determinations, we estimate that HeLa cells contain 6.8 � 106 LAMP2 molecules per cell and

3.7 � 105 NPC1 molecules per cell, or 18 fold more LAMP2 than NPC1; HEK293T cells contain 2 �

106 LAMP2 molcules per cell and 5.9 � 105 NPC1 molecules (3.6 � fold more LAMP2).

Baby hamster kidney cells have been estimated to contain an absolute volume of ~37 mm3 lyso-

somes and prelysosomes per cell (3.7 � 10–14 l) and a lysosome membrane area of 370 mm2

(Griffiths et al., 1989). Assuming similar values for HeLa cells, this would represent a LAMP2 mem-

brane density of 18,378 or 5676 molecules per mm2 in HeLa or 293T cell lysosomes, respectively,

consistent with previous reports (Granger et al., 1990). For comparison, tightly packed viral spike

glycoproteins occur at a density of 22,000 molecules per mm2 (Quinn et al., 1984). We assume that

LAMP1 will be of similar high density, together with LAMP2, practically lining the interior of the lyso-

some limiting membrane. In terms of concentrations, 37 femtoliters of lysosome volume would con-

tain 0.3 mM LAMP2-associated cholesterol binding sites in HeLa cell lysosomes (assuming one mole

cholesterol bound per more LAMP2). It does not seem unreasonable to consider this as a significant

reservoir of cholesterol molecules that may be poised for transfer to NPC1 protein prior to export.

Residues needed for cholesterol binding are needed for LAMP protein
function
The structure of an individual LAMP domain from DC-LAMP protein is comprised of a novel, beta-

prism fold that appears to contain a hydrophobic pocket (Wilke et al., 2012); we used this structure

to model the structure of LAMP2 domain 1 (Figure 6A). Site directed mutagenesis of hydrophobic

residues predicted to line the walls of this cavity yielded purified LAMP2 proteins with impaired cho-

lesterol binding activity. Thus, a soluble, LAMP2 domain 1-I111A/V114A construct yielded a secreted

protein (Figure 6B inset, right lane) that bound significantly less cholesterol than its wild type coun-

terpart (Figure 6B inset, left lane and panel B). Because these proteins were obtained from cell

secretions, they are likely to be properly folded, as they escaped the endoplasmic reticulum’s quality

control machinery. These experiments show that residues facing the predicted, prism fold pocket

are important for cholesterol binding and likely contribute to the cholesterol binding site.

Finally, to verify the importance of cholesterol binding to LAMP2 protein as part of its physiologi-

cal role, we tested the ability of wild type and mutant LAMP2 constructs to rescue the cholesterol

accumulation seen in lysosomes from mouse embryonic fibroblasts missing LAMP1 and LAMP2 pro-

teins (Eskelinen et al., 2004; Schneede et al., 2011). The ability of lysosomes to export cholesterol
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Figure 6. Cholesterol binding to LAMP2 domain 1 is required for its ability to rescue cholesterol export from

LAMP-deficient lysosomes. (A), predicted structure model of LAMP2 domain 1; residues I111 and V114 are

highlighted in red. (B) Relative 3H-cholesterol binding to soluble LAMP 2 domain 1 or LAMP2 domain 1-I111A/

V114A. Shown is combined data from 5 independent experiments carried out in duplicate in the presence of 50 nM
3H-cholesterol. Inset, SDS-PAGE analysis of wild type (left) and domain 1-I111A/V114A (right) proteins analyzed. P

value was determined by two-tailed Student’s t-test. (C) flow cytometry analysis of mean fluorescence of GFP

rescue constructs in lentivirus-tranduced cells (>20,000 cells analyzed). (D) Cholesteryl oleate synthesis in MEF cells

lacking LAMP1 and LAMP2 after rescue with either full length, membrane anchored LAMP2, membrane anchored

LAMP2 domain 1, or membrane anchored LAMP2 domain 1-I111A/V114A. C-terminally GFP-tagged, rescue proteins

Figure 6 continued on next page
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can be monitored by feeding cells cholesterol in the form of LDL, and using conversion of 14C-oleic

acid to cholesteryl oleate that takes place after endocytosed cholesterol is transported to the endo-

plasmic reticulum (Goldstein et al., 1983). Previous work showed that LAMP1/2 knockout MEF cells

were impaired in cholesterol export using this assay (Schneede et al., 2011).

We used lentivirus transduction to test the ability of full length LAMP2, a membrane anchored

LAMP2 domain 1 (LAMP2-GFP D194–368; Figure 1—figure supplement 1), or a membrane

anchored LAMP2 domain 1-I111A/V114A to rescue the ability of LAMP1/LAMP2 knockout MEF cells

to export LDL-derived cholesterol from lysosomes. For these experiments, we used LAMP constructs

containing a single LAMP domain, as full length LAMP2 constructs with mutations in both LAMP

domains failed to fold properly or be transported efficiently to lysosomes.

It was important to first verify the precise amounts of each construct in lysosomes, to evaluate

any functional rescue findings. Flow cytometry analysis showed that the rescue constructs were

expressed at comparable levels in each stably expressing cell population (Figure 6C). Light micros-

copy confirmed that the constructs were capable of proper lysosome localization, as determined by

their colocalization with endogenous LAMP1 protein (Figure 6E) in HeLa cells. (Similar staining was

observed in LAMP knockout MEF cells that lack LAMP protein markers).

To fully confirm the folding of these artificial constructs, we analyzed their glycosylation status

and stability after addition of cycloheximide to inhibit new protein synthesis (Figure 6—figure sup-

plement 1). Full length GFP-LAMP2 protein migrated at ~140 kD and its abundance was not altered

after 4 hr cycloheximide treatment, consistent with its long half life in cultured cells (panel B). Simi-

larly, the GFP-domain 1 construct was stable under these conditions and migrated at ~90 kD (panels

A,B). In contrast, the I111A/V114A mutant domain I protein displayed two distinct bands; the upper

band was stable, while the lower band likely corresponded to an ER form that was largely degraded

after 4 hr in cycloheximide (panels A,B). From this we conclude that cells expressing membrane

anchored LAMP2 domain 1 I111A/V114A are less efficient at folding the protein but some folded pro-

tein makes it to lysosomes, where it is stable. This difference was accounted for in subsequent func-

tional rescue experiments (Figure 6D).

Figure 6D shows that as expected, full length, wild type LAMP2 rescued cholesterol export in

LAMP1/2-deficient MEF cells; membrane anchored LAMP2 domain 1 showed a level of rescue con-

sistent with its lower capacity for cholesterol binding (cf. Figure 1F). Importantly, membrane

anchored, LAMP2 domain 1 I111A/V114A failed to rescue cholesterol export from lysosomes

(Figure 6D), consistent with its inability to bind cholesterol; shown are the data corrected for the

amount of mature proteins present in lysosomes in these cells. LAMP2 constructs mutated in both

cholesterol-binding sites could not be tested, as they were only poorly delivered to lysosomes.

These experiments demonstrate a direct role for LAMP2 in cholesterol export from lysosomes,

and confirm that LAMP2’s ability to bind cholesterol correlates with its ability to support cholesterol

export from LAMP-deficient MEF cells. In addition, LAMP proteins bind tightly to NPC proteins in

vitro and in cells, and appear to facilitate cholesterol export from lysosomes.

LAMP proteins are the most highly abundant membrane glycoproteins of the lysosome, and their

lumenally oriented cholesterol binding sites represent a significant binding site for this important

sterol. We measured ~7 � 106 molcules per HeLa cell, representing 0.3 mM binding sites in lyso-

somes. A recent cellular mass spectrometry analysis (Itzhak et al., 2016) estimated LAMP proteins

Figure 6 continued

were stably expressed using lentivirus transduction; shown is the combined result of 2 independent experiments,

normalized for the amount of mature protein in each sample (Figure 6—figure supplement 1) relative to the

amount of rescue seen with full length LAMP2 protein. P-values are in relation to full length for domain 1, or to

domain 1 for the mutant protein, and were determined by one way ANOVA. E, confocal light microscopic analysis

of GFP rescue construct localization (green) and endogenous LAMP1 protein (red) in transiently transfected HeLa

cells; bars represent 20 mm.

DOI: 10.7554/eLife.21635.010

The following figure supplement is available for figure 6:

Figure supplement 1. Immunoblot analysis of LAMP2 constructs from lentivirus transduced LAMP1/LAMP2-knock

out MEF cells.

DOI: 10.7554/eLife.21635.011
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to be present at 260,000 copies and NPC1 at 29,193 copies per HeLa cell. While the relative abun-

dance of these proteins matches the values we report here, their total level was 25 fold lower in that

study. It is possible that these transmembrane glycoproteins were under-represented in due to their

unusual protease resistance as proteins of the lysosome membrane, differences in cell confluency

and/or differences in HeLa cell lines employed.

Lysosomes have recently been shown to sense and signal amino acid availability to influence lyso-

some biogenesis in relation to cellular need (Settembre et al., 2013), and LAMP oligomerization

has been reported to correlate with chaperone mediated autophagy (Bandyopadhyay et al., 2008).

Cholesterol levels may influence LAMP protein conformation or interaction with other partners to

signal the availability of endocytosed cholesterol to influence autophagy and cellular metabolism.

The ten fold higher abundance of LAMP proteins compared with NPC1 protein in HeLa cells sug-

gests that LAMP proteins may do more than just facilitate NPC1 function in cholesterol export.

Future experiments will be needed to fully understand the roles played by these highly abundant

lysosomal membrane glycoproteins.

We have shown that LAMP2 binds tightly to the N-terminal domain of NPC1 and also binds cho-

lesterol with the same orientation as that domain. LAMP2 also aids in cholesterol export from lyso-

somes. How might LAMP2’s cholesterol binding site contribute to cholesterol export? Current

models suggest that the soluble NPC2 protein binds cholesterol from the internal membranes of

lysosomes and delivers it to NPC1 at the limiting membrane of this compartment (Kwon et al.,

2009). One possibility is that NPC2 can deliver cholesterol to both NPC1 and to LAMP2, which is

more abundant. This would help drive the cholesterol export process by moving cholesterol from

the accumulated, lumenal lipid stores to the lysosome’s limiting membrane. Because LAMP2 and

NPC1 N-terminal domains bind cholesterol in the same orientation, it makes sense that NPC2 (which

binds in opposite orientation, [Xu et al., 2007]) could transfer the cholesterol between these two

proteins. The recent crystal structure of NPC2 bound to the middle, lumenal domain of NPC1

(Li et al., 2016) supports a direct handoff between NPC1 and NPC2 (Kwon et al., 2009). In future

work, it will be important to elucidate precisely how LAMP2 interacts with both NPC2 and NPC1 to

facilitate cholesterol export from lysosomes and how cholesterol binding contributes to LAMP2’s

other cellular roles.

Materials and methods
Cholesterol, epicholesterol and sodium cholesteryl sulfate were from Sigma (St. Louis, MO); 24-

hydroxycholesterol (24-HC) was a gift from Rajat Rohatgi (Stanford University, Stanford, CA); 25-

hydroxycholesterol and 7-ketocholesterol were from Steraloids (Newport, RI) or Avanti Polar Lipids

(Alabaster, AL); [1,2-3H]cholesterol (50 Ci/mmol) and 25-[26,27-3H] hydroxycholesterol were from

American Radiolabeled Chemicals (St. Louis, MO). Ni-NTA agarose was from Qiagen (Valencia, CA);

freestyle 293 expression medium and Dulbecco’s modified Eagle’s medium (DMEM) was from Life

Technologies (Carlsbad, CA); lipoprotein deficient serum was from KALEN Biomedical (Montgomery

Village, Maryland). Pierce Protein Concentrators PES were from Thermo Fisher Scientific (Grand

Island, NY); PD-10 desalting columns and Q-Sepharose were from GE Healthcare Life Sciences (Pitts-

burgh, PA); pFastBac NPC1-N-terminal domain plasmid, LAMP1-mGFP and MCOLN1-pEGFP C3

were from Addgene (Cambridge, MA); pGEM-LAMP2 was from Sino Biological Inc; mouse anti-

human LAMP1 and LAMP2 antibody culture supernatants were from Developmental Studies Hybrid-

oma Bank (University of Iowa, Iowa city, IA). Rabbit monoclonal anti-NPC1 was from AbCam (Cam-

bridge, MA); Chicken anti-GFP antibody was from Aves Labs (Tigard, Oregon); IRDye 800CW

donkey anti-chicken and IRDye 680RD donkey anti-mouse antibodies were from LI-COR, Inc. (Lin-

coln, NE); anti-chicken-HRP conjugate was from Promega (Sunnyvale, CA); goat anti-mouse-HRP

conjugate was from BioRad (Hercules, CA); ECL Western Blotting Substrate was from Thermo Scien-

tific (Rockford, IL).

Buffers
Buffer A: 50 mM ammonium acetate, pH4.5, 150 mM NaCl, 0.004% NP-40; buffer B: 50 mM MES,

pH5.5, 150 mM NaCl, 0.004% NP40; buffer C: 50 mM MES, pH6.5, 150 mM NaCl, 0.004% NP-40;

buffer D: 50 mM HEPES, pH7.5, 150 mM NaCl, 0.004% NP-40; buffer E: 25 mM Tris, pH7.4, 150 mM

NaCl; RIPA buffer: 50 mM Tris, pH7.4, 150 mM NaCl, 1% NP-40, 0.2% deoxycholic acid, 0.1% SDS.
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Plasmids
cDNAs encoding full length, soluble human LAMP1(1–382), human LAMP2 (1–375) and domain 1 of

human LAMP2 (1–231) were PCR amplified from LAMP1-mGFP and pGEM-LAMP2 respectively. The

PCR products were inserted into pEGFP-N3 vector. The constructs were assembled to have an

unstructured GSTGSTGSTGA linker at the C terminus, followed by a His10 tag and a FLAG tag. For

LAMP2, another His10 tag was added downstream of the FLAG tag for improved purification.

LAMP2 domain 2 was prepared by deleting residues 39–219 from the full length, soluble domain

construct. FUGENE6 was used for transient transfection of HeLa cells. Membrane anchored rescue

constructs were stably expressed in LAMP1/2 deficient MEF cells by lentivirus transduction and were

comprised of full length LAMP2 bearing a C-terminal GFP (LAMP2-GFP), or LAMP2-GFP D194–368

(encoding membrane anchored domain 1) or the latter construct carrying point mutations.

Cell lines
Authenticated HEK293F, HEK293T, and HeLa cells were from ATCC and used at low passage; Sf9

cells were purchased from Thermo Fisher Scientific (Waltham, MA); Mouse embryonic fibroblasts

from LAMP1/LAMP2 double knockout mice (Bandyopadhyay et al., 2008; Eskelinen et al., 2004)

were the generous gift of Dr. Paul Saftig (Christian-Albrechts-Universität Kiel, Germany). Myco-

plasma contamination was monitored by DAPI staining.

Cell culture
All cells were cultured at 37˚C and under 5% CO2 in Dulbecco’s modified Eagle’s medium supple-

mented with 7.5% fetal bovine serum, 100 U/ml penicillin and 100 mg/ml streptomycin, unless indi-

cated. HEK293F suspension cells were cultured at 37˚C under 5% CO2 in Freestyle 293 medium. In

some experiments, cells were cultured in lipoprotein deficient serum (5%).

Protein purification
pFastBac NPC1-N-terminal domain plasmid was used to make virus for infection of Sf9 insect cells.

72 hr after infection, Sf9 cultures were spun down and ammonium sulfate added to achieve 60% sat-

uration. The resulting precipitate was re-suspended buffer E and incubated with Ni-NTA resin over-

night at 4˚C. After washing with buffer E with 25 mM imidazole, the protein was eluted with buffer E

plus 250 mM imidazole, and further purified using Q-Sepharose.

HEK293F cells were transfected using 293fection according to the manufacturer. After 72 hr,

supernatants were collected after spinning 3000 rpm for 5 min. To purify proteins for [3H] cholesterol

binding, supernatants were subjected to 90% ammonium sulfate precipitation. After spinning at

13,000 rpm for 30 min, pellets were re-suspended in buffer E plus 25 mM imidazole and incubated

with Ni-NTA resin overnight at 4˚C, followed by washing with the same buffer. Bound proteins were

eluted with buffer E plus 250 mM imidazole. Proteins were concentrated and buffer exchanged into

buffer C with Pierce Protein Concentrators PES (10 kD cut-off). Proteins were either used immedi-

ately or stored at �80˚C after snap freezing in liquid nitrogen. For cholesterol extraction and thin

layer chromatography, supernatants were adjusted to pH 7.4 and incubated with Ni-NTA resin over-

night at 4˚C; after washing with buffer E plus 25 mM imidazole, proteins were eluted with buffer E

plus 250 mM imidazole. Proteins were desalted into PBS using a PD-10 column.

3H-cholesterol binding
Each reaction was carried out in a final volume of 80–100 ml of buffer A, B, C or D containing 0.1–1

mg purified His-tagged protein, 1mg BSA and 10–400 nM 3H-cholesterol diluted with 0.1–50 mM cho-

lesterol. For competition assays, reactions were in 80 ml buffer C (50 mM MES, 150 mM NaCl,

0.004% NP-40, pH6.5) with 0.1 mg full length soluble LAMP2 protein and 50 nM 3H-cholesterol, com-

petition was started by adding vehicle (ethanol) or different concentrations of competitors as indi-

cated. After incubation overnight at 4˚C, the mixture was loaded onto a column packed with 30 ml

Ni-NTA agarose beads. After incubation for 10 min, each column was washed with 5 ml of buffer C

plus 10 mM imidazole. The protein-bound 3H-cholesterol was eluted with 250 mM imidazole-con-

taining buffer C and quantified by scintillation counting.
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Mass spectrometry
Samples were analyzed by LC/MS on an Agilent 1260 HPLC and Bruker microTOF-Q II mass spec-

trometer. Full scan mass and product ion spectra were acquired in positive ion mode, using a Phe-

nomenex Kinetex C18 2.6u 2.1 � 100 mm column, and an initial condition of 30%, 0.1% formic acid

in water/70% methanol.

Thin layer chromatography
Full length soluble LAMP2, and domains 1 and 2 of LAMP2 were purified as described above.

Extraction was performed by adding 3 sample volumes of chloroform/methanol (2:1, v/v) to the sam-

ples. After repeating once more, extracts were pooled and dried under nitrogen. The extracts were

re-dissolved in 50–100ml chloroform/methanol (2:1, v/v). Samples were spotted onto a Silica gel

plate. The plate was developed with isopropanol until the front reached 1cm above the loading posi-

tion; after drying under airflow, the plate was further developed using 2% methanol in chloroform

until the front reached the top of the plate. The plate was sprayed with 10% CuSO4 in 4% or 8%

phosphoric acid and heated at 180˚C to visualize the samples.

Co-immunoprecipitation
HEK293T cells expressing pEGFP-N1, pEGFP-N1-mNPC1 or pEGFP-C3-MCOLN1 were harvested

24–48 hr post-transfection and lysed in lysis buffer (50 mM MES, pH 5.5, 150 mM NaCl and 0.1%

digitonin) supplemented with protease inhibitors. After 30 min on ice, lysates were spun at 15,000 g

for 15 min, and protein concentrations of the supernatants were measured. Equal amounts of extract

protein were incubated with GFP-binding protein–conjugated agarose for 2 hr at 4˚C. Immobilized

proteins were washed 4 times with 1ml lysis buffer, eluted with 2� SDS loading buffer, and sub-

jected to BioRad Mini-PROTEIN TGX 4–20% gradient gels. After transfer to nitrocellulose membrane

and antibody incubation, blots were detected with ECL western blotting detection substrate or visu-

alized using LI-COR Odyssey Imaging System.

Microscale thermophoresis (MST)
MST experiments were performed on a Monolith NT.115Pico instrument (Nanotemper Technolo-

gies). Briefly, His6-NPC1 N-terminal domain, RNase B or NPC2 were labeled using the RED-NHS

(Amine Reactive) Protein Labeling Kit (Nanotemper Technologies). A constant concentration of 6 nM

labeled protein was mixed with binding partnerswith a final buffer condition of 50 mM MES, pH 5.5,

containing 150 mM NaCl, 0.004% NP-40. Premium coated capillaries contained 16 sequential, 2 fold

serial dilutions. Analysis was at 40% laser power for 30 s, followed by 5 s cooling. Data were normal-

ized to fraction of bound (0 = unbound, 1 = bound). The dissociation constant KD was obtained by

plotting the normalized fluorescence Fnorm against the logarithm of the different concentrations of

the dilution series according to the law of mass action.

Quantitation of intracellular LAMP2 and NPC1 protein
HeLa and HEK293T cells were grown to sub-confluence in DMEM supplemented with 7.5% FBS.

One 10cm dish of cells was washed 3 times with cold PBS, then lysed with 500ml RIPA buffer with

protease inhibitor cocktail (Sigma). After 30 min on ice, the lysate was centrifuged at 13,000 rpm for

15 min at 4˚C. The resulting supernatant was transferred to a new tube and protein was measured

by BCA assay. Lysates were resolved by SDS-PAGE, using different amounts of purified human

LAMP2 or NPC1 protein as standards. After transfer to nitrocellulose, the blot was probed with anti-

human LAMP2 or NPC1 antibody followed by IRDye 800CW labeled anti mouse (for LAMP2) or rab-

bit (for NPC1) secondary antibody, and visualized using a LI-COR Odyssey Imaging System and ana-

lyzed using ImageJ software. Calculations were based on molecular weights of 45,874 for LAMP2

and 142167 for NPC1 polypeptide chains, and neglected glycan contribution, which is not measured

in the protein assay employed. Purified, full length NPC1 protein was the gift of Dr. Xiaochun Li

(Rockefeller University) and was N-glycanase treated.

Other methods
Confocal immunofluorescence microscopy was carried out as described (Li et al., 2015). Cells grown

on coverslips were fixed with 3.7% (vol/vol) paraformaldehyde for 15 min at room temperature.
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LAMP1 staining was performed with sequential incubation of mouse anti-LAMP1 culture supernate

and Alexa Fluor 594 goat anti-mouse antibody (1:1,000, Invitrogen), each for 1 hr at room tempera-

ture. Coverslips were mounted using Mowiol and imaged using a Leica SP2 confocal microscope

and Leica software with a 60 � 1.4 N.A. Plan Apochromat oil immersion lens and a charge-coupled

device camera (CoolSNAP HQ, Photometrics). Flow cytometry was carried out on a FACScan Ana-

lyzer on gently trypsinized cells fixed as described above (Li et al., 2015). Structures were presented

in drawings created using Chimera software (Pettersen et al., 2004).

Cholesterol ester formation
LAMP1/LAMP2-deficient MEF cells were cultured in DMEM medium with 5% (vol/vol) LPDS for two

days and assayed (Goldstein et al., 1983; Li et al., 2015) with minor modification. After 48 hr, 100

mg/mL LDL, 50 mM lovastatin, and 50 mM sodium mevalonate were added for 5 hr. Cells were pulse

labeled for 4 hr with 0.1 mM sodium [1-14C]oleate (American Radiolabeled Chemicals)–albumin com-

plex. Cells were washed two times with 2 mL 50 mM Tris, 150 mM NaCl, 2 mg/mL BSA, pH 7.4, fol-

lowed by 2 mL 50 mM Tris, 150 mM NaCl, pH 7.4. Cells were extracted and rinsed with hexane-

isopropanol (3:2), pooled, and evaporated. After resuspending each sample in 60 ml hexane, 4 mL of

lipid standard containing 8 mg/mL triolein, 8 mg/mL oleic acid, and 8 mg/mL cholesteryl oleate was

added. Samples were spotted onto a silica gel 60 plastic backed, thin layer chromatogram and

developed in hexane. Cholesteryl oleate was identified with iodine vapor, scraped from chromato-

grams, and radioactivity determined by scintillation counting in 10 mL Biosafe II.

Statistical analysis
Minimum sample sizes were determined assuming 5% standard error and >95% confidence level. p

values were determined using Graphpad Prism software and are indicated in all figures according to

convention: *p�0.05; **p�0.01; ***p�0.001; ****p�0.0001. Error bars represent standard error of

the mean.
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