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Due to cancer heterogeneity, only some patients can benefit from drug therapy. The
personalized drug usage is important for improving the treatment response rate of cancer
patients. The value of the transcriptome of patients has been recently demonstrated in
guiding personalized drug use, and the Connectivity Map (CMAP) is a reliable
computational approach for drug recommendation. However, there is still no
personalized drug recommendation tool based on transcriptomic profiles of patients
and CMAP. To fill this gap, here, we proposed such a feasible workflow and a user-
friendly R package—Cancer-Personalized Drug Recommendation (CPDR). CPDR has
three features. 1) It identifies the individual disease signature by using the patient subgroup
with transcriptomic profiles similar to those of the input patient. 2) Transcriptomic profile
purification is supported for the subgroup with high infiltration of non-cancerous cells. 3) It
supports in silico drug efficacy assessment using drug sensitivity data on cancer cell lines.
We demonstrated the workflow of CPDR with the aid of a colorectal cancer dataset from
GEO and performed the in silico validation of drug efficacy. We further assessed the
performance of CPDR by a pancreatic cancer dataset with clinical response to
gemcitabine. The results showed that CPDR can recommend promising therapeutic
agents for the individual patient. The CPDR R package is available at https://github.
com/AllenSpike/CPDR.
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INTRODUCTION

Due to the multifaceted heterogeneity of cancer, the treatment response rate of patients is far below
100%. For example, a meta-analysis of phase II single-agent clinical studies shows that the median
response rate for chemotherapy is only 11.9% and 30% for personalized targeted therapy
(Schwaederle et al., 2015). Personalized drug use is important for improving the treatment
response rate of cancer patients. The value of patient-derived transcriptomic data, which contain
the key biological alterations triggering cancers (Casamassimi et al., 2017), have been recently
demonstrated in guiding cancer patients’ personalized drug use (Rodon et al., 2019; Tuxen et al.,
2019; Vaske et al., 2019).

Edited by:
Ruixin Zhu,

Tongji University, China

Reviewed by:
Lu Xie,

Shanghai Institute for Biomedical and
Pharmaceutical Technologies, China

Lei Liu,
Fudan University, China

*Correspondence:
Zhongyang Liu

liuzy1984@163.com
Dong Li

lidong.bprc@foxmail.com

Specialty section:
This article was submitted to
Gastrointestinal and Hepatic

Pharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 26 March 2022
Accepted: 29 April 2022
Published: 20 June 2022

Citation:
Chen R,Wang X, Deng X, Chen L, Liu Z
and Li D (2022) CPDR: An R Package
of Recommending Personalized Drugs
for Cancer Patients by Reversing the

Individual’s Disease-
Related Signature.

Front. Pharmacol. 13:904909.
doi: 10.3389/fphar.2022.904909

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9049091

TECHNOLOGY AND CODE
published: 20 June 2022

doi: 10.3389/fphar.2022.904909

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.904909&domain=pdf&date_stamp=2022-06-20
https://www.frontiersin.org/articles/10.3389/fphar.2022.904909/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.904909/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.904909/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.904909/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.904909/full
https://github.com/AllenSpike/CPDR
https://github.com/AllenSpike/CPDR
http://creativecommons.org/licenses/by/4.0/
mailto:liuzy1984@163.com
mailto:lidong.bprc@foxmail.com
https://doi.org/10.3389/fphar.2022.904909
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.904909


The Connectivity Map (CMAP) is a hopeful computational
approach for discovering personalized drugs based on patient-
derived transcriptomic data. The CMAP measures the perturbed
gene expression signatures of human tumor cell lines treated by
various drugs, which are then compared with the signatures
under a certain physiological or pathological condition, to
reveal drug–gene condition associations (Lamb et al., 2006).
Identifying potential anticancer drugs by associating perturbed
signatures with cancer patients’ signatures is one of the successful
applications of the CMAP (Sanda et al., 2010; Claerhout et al.,
2011; Lim et al., 2014; Spijkers-Hagelstein et al., 2014).

Some anticancer drug recommendation tools have been
developed on the basis of the CMAP, such as DrInsight (Chan
et al., 2019), CMapBatch (Fortney et al., 2015), and OCTAD
(Zeng et al., 2021). DrInsight can automatically create cancer
signatures from a whole ranked gene list of differential analysis,
avoiding the subjective impact during the cancer signature
identification. CMapBatch is a meta-analysis tool, designed for
applying the CMAP to multiple signatures of same cancer. Chen
et al. (2017) established OCTAD, which supports the signature
creation of cancer subtypes defined by molecular features before
CMAP and proposed a method for drug effectiveness validation
in silico. However, all these tools aimed at establishing
associations between drugs and a bunch of cancer patients and
are unable to give drug recommendation when coming to a single
patient, which is a more common situation in clinical therapy
compared to a large cohort of patient.

To fill this gap, here, we proposed a personalized drug
recommendation tool based on CMAP and used an
individual’s transcriptomic profile as the input. We developed
a user-friendly R package—Cancer-Personalized Drug
Recommendation (CPDR). CPDR consists of three steps: 1)
Identification of an individual disease signature. 2) Candidate
drug screening by reversing the individual disease signature. 3) In
silico assessment of candidate drug efficacy. There are three
features in CPDR: 1) Considering the widespread and
stochastic biological alterations unrelated to the disease status
in an individual’s transcriptomic profile, CPDR identifies the
disease signature by using a patient subgroup as biological
replicates, which have phenotypes and transcriptomic profiles
similar to those of the individual. 2) For the subgroup with high
infiltration of non-cancerous cells, CPDR supports profile
purification to extract gene expression patterns of cancer cells.
3) CPDR supports in silico drug efficacy assessment using drug
sensitivity data of cancer cell lines. In Results and Discussion
section, we demonstrated the workflow of CPDR with the aid of a
colorectal cancer dataset and performed the in silico validation.
We further verified the effectiveness of CPDR using a pancreatic
cancer dataset with clinical response to gemcitabine.

MATERIALS AND METHODS

Background Data and Data Preprocessing
CPDR used gene expression profiles of cancer patient cohorts
from The Cancer Genome Atlas project (TCGA) and those of
human normal tissues from The Genotype-Tissue Expression

Database (GTEX) (Cancer Genome Atlas Research et al., 2013;
Consortium, 2013). For the cancer patient cohorts, molecular
information and RNA-seq count data were downloaded by using
the R package ‘cBioPortal’ (Cerami et al., 2012), and for human
normal tissues, RNA-seq count data were downloaded by using
the R package ‘OCTAD’ (Zeng et al., 2021).

The drug perturbation data were downloaded from the Library
of Integrated Network-Based Cellular Signatures (LINCS, Level 5,
Accession Number: GSE70138). LINCS is an expanded project of
CMAP, which contains perturbed signatures for 1,808
compounds at a variety of durations, concentrations, and cell
lines (Subramanian et al., 2017). The 10,174 ‘best-inferred genes’
with high fidelity were used as drug perturbation signatures
in CPDR.

In order to perform in silico validation, CPDR also integrated
baseline (i.e., pre-treatment) gene expression profiles and drug
sensitivity data on cancer cell lines. The former were obtained
from the Cancer Cell Line Encyclopedia project (CCLE),
involving baseline gene expression profiles of 1,036 cell lines
covering 36 cancer types (Barretina et al., 2012). The latter were
downloaded from the Profiling Relative Inhibition
Simultaneously in Mixtures project (PRISM), involving drug
sensitivity data from 499 cell lines treated by 1,448
compounds (Yu et al., 2016). We further unified drug names
using the PubChem online tool (Kim et al., 2021) and unified cell
line names using the R package ‘PharmacoGx’ (Smirnov et al.,
2016). Finally, we obtained a total of 661 consensus drugs and 475
consensus cell lines between PRISM and CCLE.

Data for the Use Case
(1) Colorectal cancer dataset: to demonstrate the workflow of

CPDR, in the use case Ⅰ, we used a colorectal cancer dataset as
an example. This dataset was obtained from the GEO
database (GSE164541), containing gene expression profiles
of five colorectal cancer patients.

(2) Pancreatic cancer dataset: to further assess the performance
of CPDR, in the use case Ⅱ, we applied CPDR on a pancreatic
cancer dataset. This dataset was obtained from the CTR-DB
(dataset ID in CTR-DB: CTR_RNAseq_202), containing
baseline gene expression profiles of 46 patients with
known treatment response to gemcitabine. CTR-DB has
comprehensively collected and uniformly reprocessed
83 patient-derived clinical transcriptome source datasets
with cancer drug response (involving 28 cancer types and
123 drugs) and meanwhile provided various analysis
functions facilitating the integration and re-mining of
these data (Liu et al., 2022).

Mechanisms of CMAP
Most cancer mutations are passengers, which makes it difficult to
find driver mutations for an individual patient. In addition, a
study focusing on genome-driven oncology concluded that only
7% (63 out of 843) of tumor patients who received molecular
screening could benefit from targeted therapy (Massard et al.,
2017), largely as a consequence of the low coverage of existing
targetable driver mutations. It has been revealed that the
widespread molecular variability is often reduced to a much
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smaller set of pathway-based dysfunctions (Hanahan and
Weinberg, 2011; Vogelstein et al., 2013; Menche et al., 2017).
This research paradigm at the system level offered a new
opportunity for personalized therapy. Therefore, we considered
CMAP as a hopeful approach.

CMAP measures the therapeutic effect of a drug on disease at
the transcriptomic level. To be more specific, CMAP conducted
treatment experiments in various human tumor cell lines with
various drugs at diverse concentrations and durations and then
collected paired gene expression profiles (control and treatment).
The fold change values of treatment verse control were calculated
and converted to rank values, which constitute the so-called
perturbed signatures representing the pattern of action of the
corresponding treatment. The disease signatures, which are
usually from the differential analysis between the disease and
normal samples, represent the pattern of action of a specific
disease state.

A comparison between disease and perturbed signatures
allows the discovery of therapeutic drugs. Notably, to reduce
false discoveries due to the lack of statistical control in perturbed
signatures caused by a few paired profiles, CMAP adopts a rank-
based and pattern-matching strategy. As shown in Figure 2, the
disease signature is split into an upregulated set and a
downregulated set. Then, two Kolmogorov–Smirnov (KS)
statistics are calculated, respectively (a and b), which mean
positive and negative concordances between the regulated sets
and each perturbed signature. If the positive concordance value is
greater than the negative one, it is retained as a well-matched
result. If the negative concordance value is greater than the
positive one, the negative one with a minus sign is retained as
a reversely matched result. Finally, a connectivity score is
assigned for measuring the comprehensive concordance
between the regulated sets (i.e. the disease signature) and the
perturbed signature. A positive connectivity score denotes the
drug-induced effect is similar to the disease effect. In contrast, a
negative concordance denotes the reversal effect, which indicates
the drug is a potential therapeutic agent.

Identification of the Individual Disease
Signature
Considering the widespread and stochastic biological alterations
unrelated to the disease status in an individual’s transcriptome,
we used the disease signature obtained from the subgroup with
transcriptomic profiles similar to those of the input patient. Given
the gene expression profile of an individual cancer patient, its
individual disease signature was obtained by four steps as follows.

(1) Recognition of the cancer subtype that the input patient
belongs to. First, we identified the cancer subtypes based on
the TCGA patient cohort with the same cancer type as that of
the input patient. After a log2 transformation of expression
profiles, we extracted the 1,500 most variant genes across
samples for the following unsupervised consensus clustering.
Then, the non-negative matrix factorization (NMF) method
was used for the clustering (Brunet et al., 2004). We
determined the optimal clustering/subtyping result by

considering the cophenetic scores and average silhouette
widths of different solutions (Brunet et al., 2004; Xu et al.,
2017). We defined the similarity value between the input
patient and each cancer subtype as the median value of the
Spearman rank correlation coefficients between the input
patient and the ones in the cancer subtype, computed based
on the 1,500 most variant genes. Finally, the subtype with the
maximal similarity value was considered as the one the input
patient belongs to.

(2) Identification of the subgroup that the input patient belongs
to. For acquiring a closer cohort from the corresponding
subtype as the biological replicates of the input patient, we
further identified the subgroup the patient belongs to. The
subtype samples with Spearman rank correlation coefficients
(calculated in step 1) ranked in the top N were considered as
the subgroup the input patient belongs to. Referring to a
survey of statistical power to detect differentially expressed
genes (DEGs) (Conesa et al., 2016), we assumed 3, 5, and 10
to be the optional sizes of the biological replicates/subgroup
in CPDR.

(3) Identification of the individual disease signature. Considering
few paired non-tumor samples in TCGA posing a challenge
to differential gene expression analysis, the GTEX database
was determined to be the source of normal samples.
However, first, the experimental processing of GTEX is
different from TCGA, which can lead to batch effects
(Wang et al., 2018; Arora et al., 2020). Second, it is crucial
for differential analysis to select biologically sound control.
To make data from different sources more compatible, the
UCSC Xena project (Caicedo et al., 2020) has recomputed
raw RNA-seq data based on a standard pipeline. To choose
biologically sound control, Zeng et al. developed an auto-
encoder to extract features for each sample from UCSC-
derived profiles. The t-SNE plot and similarity measurement
based on encoded features showed that the batch effect
among different databases was minimized, and GTEX
normal samples highly correlated with TCGA tumor
samples to tend to have same or similar tissue origins
(Zeng et al., 2019). Therefore, in CPDR, we used the
UCSC-harmonized data to compute differential expression
genes and also used the encoded features from OCTAD to
select biologically sound control for the subgroup the input
patient belongs to. The obtained DEGs constituted the
individual disease signature. In addition, we provided a
batch correction option (normalize_samples) that uses
RUVSeq (Risso et al., 2014) to minimize batch effects
when users perform differential analysis with DESeq (Love
et al., 2014) or edgeR (Robinson et al., 2010). We also
provided limma voom (Law et al., 2014) for differential
analysis which is used by UCSC Xena and GEPIA (Tang
et al., 2017).

Purification of Gene Expression Profiles
The bulk tumors (i.e., the patient samples) comprise populations
of different cell types (Liotta and Petricoin, 2000). Thus, the gene
expression pattern of cancer cells could be blurred by non-
cancerous cells (Bachtiary et al., 2006). CPDR supports tumor
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microenvironment (TME) analysis, and for subgroups with high
non-cancerous cell infiltration, CPDR supports gene expression
profile purification before the identification of the disease
signature.

(1) TME analysis: the aim of this analysis was to explore the
extent of non-cancerous cell infiltration of patient samples.
Based on sample gene expression profiles, we performed the
single-sample gene set enrichment analysis (ssGSEA) using
the signature genes defined by the R package ‘estimate’ to
infer the fraction of stromal and immune cells and using the
signature genes defined by Pornpimol Charoentong et al.
(2017) to predict the abundance of 28 immune cell
populations.

(2) Gene expression profile purification: for subgroups with high
non-cancerous cell infiltration, the gene expression profile
purification was performed with the aid of ISOpure (Anghel
et al., 2015), which is a deconvolution method to directly
extract the expression pattern specific to cancer cells from the
heterogeneous tumor bulk (Shen-Orr and Gaujoux, 2013).

Candidate Drug Screening by Reversing the
Disease Signature
Previous studies have shown that there is time and dose
dependence in LINCS, that is, treatments under long duration
and high concentration are more likely to disturb genes (Lim and
Pavlidis, 2021). To obtain the unbiased estimation of drug
reversal efficacy, we used the summary reverse gene expression
score (sRGES) proposed by Chen et al. (2017) to measure the
effect of drugs on the reversal of the individual disease signature.
sRGES is a linear combination of connectivity scores across
different treatments. For any drug in LINCS, the standard
treatment (10 μM concentration and 24 h duration) is set as
the reference, and any other treatment was set as the target. A
reward function is used to standardize the connectivity score for
the target treatments. Ultimately, after the simple linear
combination of standardized connectivity scores, one sRGES is
assigned to each drug.

In silico Estimation of Candidate Drugs
CPDR supports in silico validation of predicted candidate drugs
by three steps as follows.

(1) Recognition of the input patient-relevant cell line: we selected
a CCLE cancer cell line most relevant to the input patient
based on the gene expression profile similarity. We computed
the gene expression profile similarity based on 1,500 most
variant genes across all CCLE cell lines. The similarity was
measured by the Spearman rank correlation coefficient
between a cell line and the input patient. The cell line
with the highest correlation coefficient was considered to
be the input patient-relevant cell line.

(2) Defining effective and ineffective drugs: we used the area
under the drug dose response curve (AUC) to measure the
drug efficacy on a cell line. For each cell line, effective drugs
were defined as those with AUCs at least 0.5 standard

deviation (SD) less than the mean, and other drugs were
ineffective drugs.

(3) In silico evaluation of drug effectiveness

Here, we used three methods to perform the evaluation.

(a) Calculating the correlation between sRGES scores and drug
efficacy AUCs.

We used the in silico evaluation method of drug effectiveness
proposed by Chen et al. (2017). For an individual, a high Pearson
correlation coefficient, between sRGES of the predicted drugs for
the patient and drug efficacy AUCs on the patient-relevant cell
line, means a good prediction performance.

(b) Calculating the sRGES difference between the effective and
the ineffective drugs on the individual-relevant cell line by
t-test.

(c) Comparing with the null distribution: we randomly
permutated the relationship between the individual and
the subgroup it belongs to. For each random, the Pearson
correlation coefficient between sRGESs and drug efficacy
AUCs was computed. The random process was repeated
100 times, constituting the null distribution. We used the one
sample t-test to determine the statistical significance of the
drug prediction result.

RESULTS AND DISCUSSION

Considering CMAP is a hopeful computational approach for
personalized drug recommendation, we proposed a novel tool
named Cancer-Personalized Drug Recommendation (CPDR),
which is designed for personalized drug recommendation based on
CMAP and using an individual’s transcriptomic profile as the input.

Function Descriptions and Principles
Figure 1 shows the workflow of CPDR. The inputs are the gene
expression profile of an individual patient, the corresponding
cancer type provided by the user, and the background data
downloaded by two CPDR data preparation functions. In
addition, CPDR has eight analysis functions for identifying
individual disease signature, screening, and validating
personalized drugs. All these functions are introduced as follows.

Data Preparation Functions
CPDR:download_db implements background data download,
including the following:

(1) TCGA cohorts with 32 optional cancer types. Given the
cancer type of the input patient (setting parameter tset), a
MultiAssayExperiment object will be downloaded from
cBioPortal, which contains RNA-seq count data of patient
samples for that cancer type. It will be saved in the
‘CPDR_db/TCGA’ directory by default.

(2) GTEX datasets (including 51 healthy tissues). Setting
parameter nset = ‘GTEX’, a file named

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9049094

Chen et al. Cancer-Personalized Drug Recommendation (CPDR)

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


‘octad.counts.and.tpm.h5’ will be downloaded and saved in
the ‘CPDR_db/GTEX’ directory by default.

(3) CCLE, PRISM, and LINCS are necessary pharmacogenomic
datasets (see Methods) which can be downloaded by setting
pset = c(‘CCLE’, ‘PRISM’, ‘LINCS’) and will be saved in the
‘CPDR_db/Pharmacogenomic’ directory by default.

CPDR::select_db implements data preprocessing, including
unifying gene names, and removing batch effects. The inputs
are the downloaded TCGA cohort and RNA-seq count data of the
input patient. Since the previous study has shown the weak
correlation between the RNA-seq and microarray data for the
same biological sample (Buzdin et al., 2014), we suggested not to
input microarray data here. It unifies gene names into gene
symbols with the aid of R package ‘clusterProfiler’ (Wu et al.,
2021), and only shared genes between TCGA cohort and the
input patient are retained. Finally, it uses R package ‘limma’ to
remove batch effects between them and outputs the preprocessed
gene expression profiles.

Analysis Functions
We identified the individual disease signature by using the
subgroup with transcriptomic profiles similar to those of the
input patient. Specifically, first, we recognized the cancer
subtype which the input patient belongs to. Then, we extracted
a precise patient group (i.e., subgroup) within this subtype as the
biological replicates of the input patient. Finally, the gene
expression profiles of the subgroup and the corresponding
control group were used for the differential gene expression
analysis. The differentially expressed genes (DEGs) consist of
the individual disease signature of the input patient.

CPDR:get_NMF implements the recognition of cancer
subtypes by the NMF method. The inputs are the
preprocessed gene expression profiles of TCGA cohort, and
the output is the cancer subtyping result (Figure 3A).

CPDR::get_subgroup implements the identification of the
subgroup and the control group. The inputs are the cancer
subtyping result and the preprocessed gene expression profile
of the input patient, and the output is the normalized RNA-seq

FIGURE 1 | Workflow of CPDR. The flow diagram shows the user’s inputs (parallelogram), the functions (rectangles), and the background data (cylinder). CPDR
has two data preparing functions to download and preprocess background data (right functions) and eight analysis functions for identifying an individual disease
signature, screening, and validating personalized drugs (left annotations).
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count data of the subgroup and the corresponding control group
(see Methods) (Figure 3B).

CPDR::get_estimateScore implements the evaluation of non-
cancerous cell infiltration of each cancer subtype (see Methods).
The inputs are the cancer subtyping result and the preprocessed
gene expression profiles of TCGA cohort, and the output is an
infiltration score matrix of non-cancerous cells (Figure 3C).

CPDR::get_puretumor implements profile purification of the
subgroup with a high non-cancerous infiltration score by the
ISOpure method (see Methods). This function is aimed at
extracting the expression pattern of cancer cells to improve
the prediction performance of the CMAP. The input is the
normalized RNA-seq count data of the subgroup and the
control group, and the outputs are purified gene expression
profiles.

CPDR::get_diff implements the identification of the individual
disease signature by differential gene expression analysis. The
input is the normalized RNA-seq count data of the subgroup and
the control group, and the outputs are DEGs. CPDR provides
three differential analysis methods (limma, DEseq, and edgeR),
and a batch normalization method (RUVseq).

CPDR::get_reverse_score implements the calculation of the
Summary Reverse Gene Expression Score (sRGES), which
evaluates the reversal efficacy of drugs on the input individual
disease signature (see Methods). The output is a candidate drug
list with sRGES scores, and the lower value of sRGES means a
stronger reversal efficacy.

CPDR::getcell implements the recognition of the individual-
relevant cell line based on RNA-seq count data on the input
patient (see Methods) and used for the in silico validation of drug
effectiveness at the cell line level.

CPDR::drugcorTest implements the in silico validation. The
results include the Pearson correlation coefficients between
sRGES scores of the predicted drugs and their drug efficacy
AUCs on the patient-relevant cell line and the sRGES difference
between effective and ineffective drugs (see Methods) (Figure 3D).

Use Case I: Personalized Drug
Recommendation for Colorectal Cancer
Patient PT1
Colorectal cancer is the third most common cancer worldwide
and the second most common cause of cancer-relevant death
(Global Burden of Disease Cancer et al., 2017). Currently, the
main chemotherapy for colorectal cancer is fluoropyrimidine (5-
FU), with response rates only at 10–15% (Kelly and Goldberg,
2005). It is important to develop tailored treatments for colorectal
cancer patients. Here, we demonstrated the workflow of CPDR
using a colorectal cancer dataset as an example. This dataset
(GSE164541) contains gene expression profiles of the primary
tumors from five patients, and we tried to find personalized
therapeutic agents for them using CPDR.

Patients Belonging to S-3 and S-4 Subtypes
Guinney et al. (2015) developed a consensus molecular subtype
(CMS) system for colorectal cancer, which has clear functional
characteristics for each subtype. Considering the CMS system

that has demonstrated clinical utility in predicting patient therapy
response (Mooi et al., 2018; Lenz et al., 2019), we employed it as
the standard to detect the reliability of our subtyping result. The
colorectal cancer patient cohort from TCGA was downloaded by
CPDR::download_db (tset = ‘coadread’) and preprocessed by
CPDR::select_db (i.e., unifying gene names, removing batch
effects).

A total of 365 colorectal cancer patient samples were classified into
four subtypes (sample size: S-1 = 84, S-2 = 135, S-3 = 70, and S-4 = 76)
by CPDR::get_NMF (Figure 2A; Supplementary Figures 1A, B).
Then, we compared our subtyping result with the CMS system
defined by CMS classifiers from the R package ‘CMScaller’ and
‘CMSclassifier.’ The Pearson correlation test result showed our
subtyping result was highly correlated with the CMS system (the
average correlation coefficient is 0.75) (Figure 3A), and the Fisher exact
test and gene set enrichment analysis results revealed their clear
correspondence: S-1, S-2, S-3, and S-4 correspond to CMS-1, CMS-
2, CMS-3, and CMS-4, respectively (Supplementary Figures 1C,D).
Finally, we determined the cancer subtypes for thefive input patients by
CPDR::get_subgroup. PT1, PT2, andPT4belonged to S-4, that is, CMS-
4, while PT3 and PT5 belonged to S-3, that is, CMS-3 (Figure 3B).

Identification of Individual Disease
Signatures From Purified Gene Expression
Profiles
We further usedCPDR::get_subgroup to identify subgroups to which
each of the five patients belonged and also identified the
corresponding normal control groups with the same size. Next,
we assessed the non-cancerous cell infiltration scores of each
subgroup using the CPDR::get_estimateScore. From Figure 3C,
we found that the S-4 where the patients PT1, PT2, and PT4
belonged was high infiltration and therefore required gene
expression profile purification using CPDR::get_puretumor.
Furthermore, differential gene expression analysis was performed
using CPDR::get_diff to obtain the individual disease signatures.
Comparing the amount of DEGs obtained before and after
purification, we found that differential analysis using purified
tumors identified more DEGs (Supplementary Figure S2), which
is consistent with the previous report (Quon et al., 2013).

Reliable Prediction of Personalized
Candidate Agents
To identify candidate drugs that can reverse the individual disease
signature, we calculated the sRGES scores of 661 drugs for each
input patient using CPDR::get_reverse_score. To assess prediction
efficacy, we further used CCLE cell lines to simulate patients
(Methods), and calculated the Pearson correlation coefficients
between drug efficacy AUCs of the patient-related cell line and
the sRGES scores of predicted drugs. In total, we identified three
individual-related cell lines for five patients. PT1, PT2, and PT4
were simulated by HCC-56, PT3 by SNU-61, and PT5 by CL-34.
For all five input patients, the sRGES of predicted drugs were
significantly and positively correlated with the drug efficacy
AUCs on the corresponding individual-related cell lines
(Pearson correlation coefficients were 0.46, 0.28, 0.15, 0.35,

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9049096

Chen et al. Cancer-Personalized Drug Recommendation (CPDR)

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


and 0.14, and p-values were 9.77e-26, 1.67e-09, 1.41e-03, 9.46e-
15, and 3.82e-03, respectively) (see Figure 4A for PT1 and
Supplementary Figure S3 for other patients), and the

coefficients were all significantly higher than those of the
random null distribution (one sample t-test, p-values were
2.25e-71, 1.20e-59, 2.85e-48, 1.10e-64, and 5.18e-25,

FIGURE 2 | Mechanistic overview of the Connectivity Map (CMAP).

FIGURE 3 | Identification of individual disease signatures for five colorectal cancer patients. (A) Heatmap of the NMF consensus matrix of 365 TCGA colorectal
cancer patient samples. Rows and columns are samples, and the similarity between samples is colored in the body of the heatmap. The column annotation bars show
four clustering methods: the non-negative matrix factorization (NMF), the random forest (RF), the single-sample predictor (SSP), and the nearest template prediction
(NTP), respectively. The NMF method is used by CPDR, and others are CMS classifiers from R package ‘CMScaller’ and ‘CMSclassifier.’ (B) Heatmap of similarity
values between five colorectal cancer patients and four NMF subtypes. Each column represents an input patient, and each row represents a cancer subtype. The value in
each cell is the median value of the Spearman rank correlation coefficients between the input patient and the ones in the cancer subtype, computed across the
1,500most-variant genes (seeMethods). (C)Heatmap of the non-cancerous cell infiltration scorematrix. The row annotation bar represents four types of non-cancerous
cells, and the column annotation bar represents four NMF subtypes. The enrichment scores computed by ssGSEA are colored in the body of the heatmap.
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FIGURE 4 | In silico estimation of the effectiveness of predicted drugs. (A) Correlation analysis between sRGES scores and efficacy AUCs of the predicted drugs
(the top panel) and differential analysis (t-test) of sRGES scores between effective and ineffective drugs (the bottom panel) on PT1-relevant cell line. The y-axis of the top
panel represents the median AUC of multiple treatments of a drug on this cell line. See Supplementary Figure S3 for results of other four patients. (B) Comparison
results of the correlation coefficients between five patients and null distributions. The x-axis represents the individual-related cell lines of the five patients, and the
y-axis represents the Pearson correlation coefficients between sRGES scores and drug efficacy AUCs. (C) sRGES scores of EGFR and VEGFR inhibitors of five patients.
(D) Predicted topoisomerase inhibitors for PT1 and the corresponding sRGES scores, MOA, and target annotations.
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respectively) (Figure 4B). In addition, we also compared sRGES
scores between the effective and ineffective compounds of the
relevant cell lines and found the difference was statistically
significant (t-test, p-values were 8.51e-46, 1.70e-09, 1.40e-03,
1.00e-14, and 3.80e-03, respectively) (see Figure 4A for PT1
and Supplementary Figure S3 for the other patients). These in
silico estimation results indicated the reliability of predicted
candidate drugs, to some extent.

Previous studies have documented that CMS-3 is sensitive to
EGFR and VEGFR inhibitors, while CMS-4 is resistant to them
(Sawayama et al., 2020). The sRGES of 36 known EGFR andVEGFR
inhibitors from the PRISM database showed that PT3 and PT5,
which belong to the CMS-3, had lower sRGES scores than PT1, PT2,
and PT4, which belong to CMS-4 (Figure 4C). This further
demonstrated the reliability of our prediction.

Doxorubicin and Valrubicin Are
Recommended Drugs for PT1
We used PT1 as an example for which we tried to further identify
effective drugs simultaneously based on prediction results and prior
knowledge. Previously, topoisomerase inhibitors targeting TOP2A
were reported to be sensitive drugs for CMS-4 that PT1 belongs to
(Sveen et al., 2018; Carvalho et al., 2021; Fohlen et al., 2021), and we
did find that PT1 showed parent sensitivity (sRGES < -0.1) to four
of the eight topoisomerase inhibitors targeting TOP2A (mean
sRGES was -0.11, and the mean rank was 78) (Figure 4D). We
used the PT1-related cell line (HCC-56) to further filter effective
drugs. By setting sRGES < -0.1 and drug category as effective, only
drugs with low sRGES and effective on HCC-56 were retained. We
ultimately recommended two compounds of four candidates for
PT1: doxorubicin and valrubicin.

Use Case II: Estimation on Clinical Patients
With Drug Response
In order to further assess the performance of CPDR, we used a
pancreatic cancer dataset downloaded from the CTR-DB, which
has baseline RNA-seq profiles of 46 patients and their response to
gemcitabine. Considering that resistance is influenced by
concentration and duration of treatment, we uniformly used
the standard treatment (10 μM concentration and 24 h
duration) of gemcitabine to compute sRGES for each patient,
then stratified patients according to actual clinical outcomes
(defined as resistant or sensitive to gemcitabine), and
compared predicted sRGES scores between the two groups by
t-test (Figure 5). The results showed that the predicted sRGES
scores of gemcitabine were able to correctly classify patients into
the responder/non-responder category (t-test, p-value = 0.001)
with an AUC of 0.77. This further validated the effectiveness
of CPDR.
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