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Clinical observations have shown that obesity is associated with the severe outcome of
SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other
organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived
mediators such as leptin and other adipokines have also been linked to endothelial
dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate
microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary
human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that
HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral
proteins and no newly produced virus was detected. In addition, exposure to the virus
did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-
selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of
endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus
inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and
did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory
activation of endothelial cells. To verify if the lack of activated phenotype in the presence of
adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from
critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-
1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant
inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of
endothelial cells, even in the presence of leptin and other mediators of obesity. Instead,
endothelial activation associated with COVID-19 is likely a result of inflammatory
responses initiated by other cells. Further studies are required to investigate the
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mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving
severe disease in obese individuals.
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INTRODUCTION

Since the emergence of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) in, 2019, the virus has infected
over 270 million people and resulted in 5,3 million deaths
worldwide (1), causing a tremendous burden on human health.
SARS-CoV-2 infection in humans can lead to various
manifestations ranging from asymptomatic disease to mild flu-
like symptoms to severe lethal disease (2). Patients with severe
coronavirus disease, 2019 (COVID-19) can develop acute
respiratory distress syndrome (ARDS), which can lead to
multiple organ failure. The development of severe disease is
mainly caused by pulmonary injury induced by direct viral
infection of the lungs and the subsequent local immune
responses trying to control and neutralize viral infection (3, 4).

Multiple risk factors and co-morbidities are associated with
the development of severe COVID-19. Clinical observations have
identified that most patients with severe respiratory failure
admitted to the ICU are overweight or obese and have
extensive visceral and subcutaneous adipose tissue (AT) (5–8).
Both visceral and subcutaneous fat can produce AT-derived
mediators, such as the proinflammatory adipokine leptin.
Excess adipose tissue and associated local and systemic
adipokines in obese patients can cause a chronic pro-
inflammatory state predisposing them to thrombosis and other
endothelial disturbances. It is therefore hypothesized that this
chronic inflammatory state might exacerbate the immune
responses to SARS-CoV-2 infection in obese patients rendering
them susceptible to severe disease (8, 9). In line with this
hypothesis, recent studies found plasma leptin to be increased
in COVID-19 patients admitted to the intensive care (8, 10, 11).

A dysregulated immune response which is characterized by
the release of pro-inflammatory cytokines is thought to be the
leading cause of endothelial activation and dysfunction in severe
COVID-19 patients (12–15). Both direct infection of endothelial
cells and increased levels of leptin or other systemic adipokines
could contribute to the endothelial activation and dysfunction
observed in obese patients with severe COVID-19 (12–14).
However, whether endothelial cells can be infected by SARS-
CoV-2 and thereby contribute to endothelial dysfunction is still
debated since contradicting evidence has been found (16–18).
Furthermore, if and how, high levels of leptin or other AT-
derived mediators could influence SARS-CoV-2 infection and
endothelial activation is still unknown.

In this study we sought to elucidate how endothelial cells
respond to direct SARS-CoV-2 exposure and if adipokines and
other AT-derived mediators influence infection and endothelial
activation in vitro. First, we investigated whether endothelial cells
were susceptible to SARS-CoV-2 and if infection would lead to
endothelial activation. Secondly, we examined if exposure of the
org 2
adipokine, leptin would prime the endothelial cells promoting
SARS-CoV-2 viral infection and endothelial activation. Lastly,
since leptin is not the only systemic adipokine abundantly
present in the blood of obese individuals, we investigated
endothelial activation to plasma obtained from obese critically
ill COVID-19 patients.
MATERIALS AND METHODS

Cell Culture
Primary human lung microvascular endothelial cells (HMVEC-L/
HLMVEC) (cat: #CC-2527, Lonza, Breda, The Netherlands) and
Human umbilical vein endothelial cells (HUVEC) (cat: #CC2519,
Lonza) were cultured in EBM-2 supplemented with EGM-2
endothelial growth SingleQuot kit supplement & growth factors
(Lonza). All experiments were performed using passage 6 for
HMVEC-L and passage 5 for HUVECs. The African green
monkey Vero E6 cell line (ATCC CRL-1586) was cultured in
Dulbecco’s minimal essential medium (DMEM) (Thermo Fisher
Scientific, Waltham, MA, U.S.A), high glucose supplemented with
10% fetal bovine serum (FBS) (Life Science Production), 1%
penicillin (100 U/mL), and 1% streptomycin (100 U/mL)
(Gibco- Thermo Fisher Scientific). All cells were maintained at
37°C under 5% CO2 conditions.

Virus Production and Characterization
The SARS-CoV-2 strain NL/2020 was obtained from European
Virus Archive global (EVAg - 010V-03903). The original stock
was passaged twice in Vero E6 cells to obtain a working stock.
Infectious virus titers were determined by plaque assay on Vero
E6 cells and defined as the number of plaque forming units
(PFU) per mL. Briefly, Vero E6 cells were seeded at a density of
1.3×105 cells/well in a 12-well plate format. At 24 hour post-
seeding, cells were infected with 10-fold serial dilutions of the
virus stock performed in duplicates. At 2 hours post inoculation
(hpi), the wells were overlaid with 1% SeaPlaque agarose (Lonza)
prepared in 2x MEM. Plaques were counted after 72 hpi. One
plaque in the lowest dilution corresponds to 150 PFU/mL and
was set as the detection limit of the assay.

Patient Plasma
Plasma was collected for clinical purposes from 12 critically ill
patients with severe COVID-19, and 4 COVID-19-negative
patients admitted to the UMCG intensive care unit (ICU)
during the first wave of COVID-19 admissions. The diagnosis
of COVID-19 was confirmed by RT-PCR of oropharyngeal and
nasopharyngeal swabs. Heparinized blood was centrifuged (1300
RCF for 10 minutes at 4°C) and stored at -80°C until need for
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experiments. Some samples were taken serially during
hospitalization in either the ward (pre-ICU) and subsequently
in the ICU. The median time from hospitalization to sample
collection was 20 days (range 2-34 days). All patients required
invasive mechanical ventilation in the ICU. Analyses were
performed using residual plasma samples obtained from
hospitalized patients for clinical purposes and is therefore not
considered clinical research with human subjects as meant in the
Medical Research Involving Human Subjects Act (WMO)
(UMCG METc, 2020/492).

SARS CoV-2 Infection
Direct SARS-CoV-2 Infection
HMVEC-Ls were infected at a confluency of 80% which
comprises to around 1.2x105 with SARS-CoV-2 at a
multiplicity of infection (MOI) of 5 unless indicated otherwise.
In experiments testing virus production, the inoculum was
removed at 2 hpi, the cells washed twice with PBS and fresh
medium subsequently added and incubation continued for 6 or
22 hr. Cells were harvested using trypsin at 8 and 24hpi and
processed for flow cytometry or mRNA analysis. Cell-free
supernatants were also collected, aliquoted, snap-frozen in
liquid nitrogen, and stored at -80°C. Cells treated with 1µg/mL
LPS (E. coli, serotype O26:B6, Sigma Aldrich, St. Louis, MO,
USA) for 24 hours was used as a positive control for
endothelial activation.

SARS-CoV-2 Infection in the Presence of Leptin
HMVEC-L were preincubated with recombinant human Leptin
(Cat#: 398-LP, R&D Systems, Abington, U.K) for 16h prior to
infection with SARS-CoV-2 MOI 5. For experiments using
patient plasma, endothelial cells were incubated with 30%, 10%
or 3.3% plasma diluted in EGM-2 media for 16 hours prior to
infection. Cells were harvested using trypsin at 8 and 24 hpi and
subjected to further analyses. Cell-free supernatants were
collected, aliquoted, snap-frozen in liquid nitrogen and stored
at -80°C until further analyses.

Frequency of Infection Analysis
Harvested cells were permeabilized using permeabilization
(perm) buffer (PBS 1X (Ca/Mg free) 0.5% Tween) for 15
minutes at 4°C and subsequently incubated with primary
monoclonal mouse anti-NSP8 antibody (GeneTex, Irvine, CA,
USA) or monoclonal mouse anti-Spike antibody (GeneTex)
diluted 1:500 in permeabilization buffer for 30 min 4°C. Cells
were washed and subsequently stained with secondary rabbit
anti-mouse AF647 antibody (Thermo Fisher Scientific) diluted
1:1000 in perm buffer for 30 min at 4°C in the dark. Stained cells
were analyzed using a NovoCyte Quanteon (Agilent
Technologies, Amstelveen, The Netherlands) flow cytometer,
and data analyzed using Kaluza software (Beckman Coulter,
Woerden, The Netherlands).

Progeny Virus Titrations
Infectious virus titer was determined using the plaque assay as
described above. Levels of SARS-CoV-2 RNA in the supernatant
Frontiers in Immunology | www.frontiersin.org 3
were determined using RT-qPCR. Briefly, viral RNA was isolated
from supernatants using the QIAmp Viral RNA Mini Kit
(Qiagen) according to manufacturer’s protocol. CDNA
syn the s i s f rom v i r a l RNA was pe r fo rmed us ing
Omniscript RT kit (Qiagen) with the reverse primer
CARATGTTAAASACACTATTAGCATA. qPCR is performed
by means of using the Qiagen Hot star Taq polymerase kit in
combination with the primers GTGARATGGTCAT
GTGTGGCGG forward, CARATGTTAAASACACTATT
AGCATA reverse and RdRp_SARSr-P2 (5’FAM/3’BHQ) probe
CAGGTGGAACCT CATCAGGAGATGC. DNA amplification
was performed for 50°C 120sec, 95°C 90sec and subsequently
[95°C 15sec, 60°C 60sec] 40x.

Gene Expression Analysis of
Endothelial Genes
Total RNA was isolated from harvested cells using the RNeasy
Plus Mini Kit (Qiagen, Venlo, The Netherlands) following the
manufacturer’s protocol. RNA concentration (OD 260)
and purity (OD260/OD280) were determined using a
NanoDrop® ND-1000 UV-Vis spectrophotometer (NanoDrop
Technologies, Rockland, ME, USA). Samples with an OD260/
OD280 ratio of ≥1.8 were included in the analysis. cDNA
synthesis was performed as previously described (19). qPCR
was performed using a ViiA 7 PCR system (Applied Biosystems,
Nieuwerkerk aan den IJssel, The Netherlands) using the
following assay-on-demand primers (Applied Biosystems),
G A P DH ( a s s a y I D H s 9 9 9 9 9 9 0 5 _ m 1 ) , A C E 2
(Hs01085333_m1), TMPRSS2 (Hs01122322_m1), CD147
(BSG) (Hs00936295_m1), Nrp1 (Hs00826128_m1), E-selectin
(Hs00174057_m1), VCAM-1 (Hs00365486_m1), ICAM-1
(Hs 00 16 49 3 2_m1 ) , I L - 6 (H s 0 01 74 13 1 _m1 ) , I L -
8 (Hs00174103_m1).

Protein Expression of Endothelial
Adhesion Molecules
Harvested cells were fixed with 4% paraformaldehyde (PFA),
washed with FACS buffer; 1x PBS (Gibco), 2% FBS
(BioWhittaker) and subsequently stained for 30 min at 4°C
using the following antibodies diluted in FACS buffer directed
to endothelial adhesion molecules: CD62E E-selectin PE
(1:100, clone HCD62E, #322606), CD106 VCAM-1 APC
(1:100, clone STA, #305810) and CD54 ICAM-1 FITC (1:100,
clone HCD54, #322720). Isotype-matched controls PE anti-
mouse IgG2a (1:100, clone RMG2a-62, #407107), APC
anti-mouse IgG1 (1:100, clone RMG1-1, #406609) and FITC
anti-mouse IgG1 (1:100, clone RMG1-1, #406605) and used for
setting positive cell gates. Cells were subsequently analyzed
using a NovoCyte Quanteon (Agilent Technologies) flow
cytometer, and data analyzed using Kaluza software
(Beckman Coulter).

Statistical Analysis
Statistical analysis of results was performed by one-way
ANOVA followed by Bonferroni post hoc analysis to compare
multiple replicate means using GraphPad Prism software v.9
June 2022 | Volume 13 | Article 879033
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(La Jolla, CA, USA). Differences were considered significant
when p < 0.05.
RESULTS

Lung Microvascular Endothelial Cells Are
Not Susceptible and/or Permissive to
SARS-CoV-2 Infection
To determine if endothelial cells are susceptible to SARS-CoV-2
infection, HLMVEC were infected with SARS-CoV-2 at an MOI
of 1, and MOI 5 for 8 and 24 hr. Infection was determined by
detecting the expression of SARS-CoV-2 nonstructural protein 8
(NSP8) and Spike (S) protein expression by flow cytometry. We
did not detect NSP8 or Spike protein in endothelial cells at both 8
and 24 hr post-infection (hpi) at MOI 1 (Supplemental
Figure 1) and MOI 5 (Figure 1A), indicating that HLMVEC
are not infected by SARS-CoV-2. In contrast, NSP8 and S
proteins were detected in SARS-CoV-2 infected Vero E6
control cells (Figure 1A). Confirming these findings, we
determined the presence of secreted infectious particles in the
Frontiers in Immunology | www.frontiersin.org 4
cell supernatant but detected no PFUs 24 hpi in the supernatant
SARS-CoV-2 (Figure 1B). In addition, we determined the levels
of viral RdRp RNA after washing 2 hpi. The 2 hpi wash sample
had a CT value of ≈30 whereas the CT values for viral RNA at 8,
24 and 48 hpi did not decrease and were higher ≈ 31 than the CT
value of the leftover inoculum ≈ 30 (Figure 1C). In line with
these findings, we found undetectable mRNA levels of the main
SARS-CoV-2 cell entry mediators, angiotensin-converting
enzyme 2 (ACE2) receptor and transmembrane protease serine
2 (TMPRSS2), yet alternative receptors basigin/CD147 (BSG)
and Neuropilin-1 (NRP1), were expressed by HLMVEC
(Figure 1D). Collectively these results show that HLMVEC are
not susceptible and/or permissive to SARS-CoV-2 infection
which might be related to the low expression of ACE2
and TMPRSS2.

Lung Microvascular Endothelial Cells Do
Not Elicit an Inflammatory Response to
SARS-CoV-2 In Vitro
We have shown that SARS-CoV-2 is unable to infect endothelial
cells. Yet, SARS-CoV-2 particles could still be sensed by
A

B C D

FIGURE 1 | SARS-CoV-2 does not infect HLMVEC. HLMVEC were inoculated with SARS-CoV-2 at MOI 5 for 8, 24 and 48 hr and Vero E6 cells were inoculated for
16 hr. (A) Percentage of infected cells was determined in HLMVEC 8 and 24 hpi and Vero E6 cells 16 hpi by the protein expression of NSP8 and S determined by
flow cytometry. The production of new infectious virus (B) and viral RNA (C) was determined at 8, 24 and 48 hpi by plaque assay and qPCR respectively. The
dotted line indicates the threshold of detection. Data are represented as mean ± SD of at least three independent experiments. Each symbol represents data from a
single independent experiment. (D) The mRNA levels of ACE2, TMPRSS2, BSG and NRP1 were obtained by RT-qPCR. Gene expression values were normalized to
the expression of the housekeeping gene GAPDH. Student T tests were used to evaluate statistical differences and a p value ≤ 0.05 was considered significant with
*p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. In the absence of ‘*’ the data is non-significant.
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endothelial cells and thereby elicit an inflammatory response.
Moreover, inflammatory endothelial responses are hypothesized
to play a crucial role in the progression of respiratory failure and
associated coagulative complications (12–14). To investigate this,
we inoculated HLMVEC with SARS-CoV-2 MOI 1 andMOI 5 or
the equivalent volume of UV-inactivated SARS-CoV-2 for 8 and
24 hr and determined the mRNA expression of endothelial
activation markers, E-selectin, VCAM-1, and ICAM-1, as well
as inflammatory cytokine IL-6. The mRNA levels of all genes did
not differ in response to SARS-CoV-2 or UV-inactivated SARS-
Frontiers in Immunology | www.frontiersin.org 5
CoV-2 at 8 hpi (Figure 2A) and 24 hpi (Figure 2B) compared to
the mock, whereas the positive control LPS upregulated E-
selectin, VCAM-1, ICAM-1 and Il-6 in HLMVEC at both 8
and 24 hpi (Figures 2A,B). Moreover, E-selectin, VCAM-1 and
ICAM-1 protein levels in HLMVEC remain unchanged by
exposure to SARS-CoV-2 for 8 and 24 hpi determined by flow
cytometry (Figure 2C). In contrast, LPS was able to induce
upregulation of all endothelial adhesion molecules (Figure 2C).
All together, these findings show that HLMVEC are unable to
elicit a direct inflammatory activation response to SARS-CoV-2.
A

B

C

FIGURE 2 | SARS-CoV-2 does not activate HLMVEC. (A, B) HLMVEC were inoculated with SARS-CoV-2 at MOI 5 or LPS 1 µg/mL for 8 or 24 hr. The mRNA
levels of E-selectin, VCAM-1, ICAM-1, and IL-6 at 8 (A) and 24 hpi (B) were obtained by qPCR. Results are expressed as the mean ± SD of 2-4 individual
experiments with duplicate technical replicates (C) Protein expression of E-selectin, VCAM-1 and ICAM-1 at 8 and 24 hpi by flowcytometry, data is represented as
MFI fold change to mock and represented as the mean ± SD of at least three independent experiments. Each symbol represents data from a single independent
experiment. Gene expression values were normalized to the expression of the housekeeping gene GAPDH. Student T tests were used to evaluate statistical
differences and a p value ≤ 0.05 was considered significant with *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. In the absence of ‘*’ the data is non-significant.
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Leptin Does Not Facilitate Infection nor
Promote Activation of Lung Microvascular
Endothelial Cells In Vitro
Clinical observations have found that the severity of COVID-19
is associated with obesity (5, 6). High levels of plasma leptin and
adipokines are directly associated with the extent of obesity and
have previously been shown to facilitate endothelial dysfunction
(5, 20–22). Moreover, we and others reported before that plasma
leptin levels are increased in critically ill COVID-19 patients (8,
10, 11). We therefore hypothesized that adipokines such as leptin
may prime endothelial cells, thereby facilitating SARS-CoV-2
sensing and/or infection and driving the endothelial dysfunction
which is characteristic of severe COVID-19. To determine dose
dependent endothelial responses upon leptin exposure, we
stimulated HUVEC with physiological and high concentrations
of leptin, 100ng/mL and, 1000 ng/mL respectively. Incubation
with both leptin concentrations did not result in endothelial
activation, since protein expression of E-selectin, VCAM-1 and
ICAM-1 was not increased (Supplemental Figure 3A). To verify
this in HLMVEC we incubated the cells with the highest
concentration of leptin. HLMVEC with leptin alone did not
result in endothelial activation or inflammation since the mRNA
levels of E-selectin, VCAM-1, ICAM-1, IL-6 and IL-8 were not
upregulated compared to control (Figure 3C). To test if leptin
incubation sensitized the cells to infection and/or activation, we
preincubated HLMVEC with, 1000ng/mL recombinant leptin for
16 hr and subsequently inoculated the cells with SARS-CoV-2
MOI 5 or positive control LPS for 8 or 24 hr (Figure 3A). We
found no NSP8 protein expression in the HLMVEC treated with
leptin prior to inoculation at both 8 and 24 hpi (Figure 3B). In
addition, the expression of SARS-CoV-2 entry receptors were
also not influenced by leptin incubation. ACE2 and TMPRSS2
mRNA levels remained undetectable while BSG and NRP1
expression remained unchanged (Supplemental Figure 3B).
Furthermore, the mRNA levels of endothelial activation and
inflammation genes remained at mock control levels after leptin
exposure with or without SARS-CoV-2 infection (Figure 3C).
Similar to our mRNA findings, E-selectin, VCAM-1 and ICAM-
1 protein levels were also not influenced by leptin, or leptin
preincubation prior SARS-CoV-2 infection at 8 hpi (Figure 3D)
and 24 hpi (Figure 3E). These results indicate that leptin alone
does not influence endothelial inflammatory activation
responses, nor does it promote endothelial cell infection, or
modulate SARS-CoV-2-mediated endothelial activation.

Plasma From Overweight and Obese
Critically Ill COVID-19 Patients Does Not
Activate Endothelial Cells In Vitro
In the in vivo situation leptin is not the only adipokine or AT-
derived mediator present in the blood of obese individuals (23).
To investigate each known adipokine separately in vitro would be
a tedious time-consuming approach. We therefore opted to
investigate the influence of adipokines and AT-derived-
mediators and proinflammatory cytokines on endothelial cells
found in the plasma of patients admitted to the intensive care
unit with severe COVID-19. We incubated HLMVEC for 24 hr
Frontiers in Immunology | www.frontiersin.org 6
with 30% patient plasma obtained from severe COVID-19
patients who were admitted to the ICU and analyzed the cells
for the expression of E-selectin, VCAM-1, ICAM-1, and IL-6
(Figure 4A). We observed no differences in the mRNA levels of
all genes between the mock and plasma incubated samples,
whereas the positive control LPS upregulated all the analyzed
genes (Figure 4B). The protein expression of E-selectin, VCAM-
1 and ICAM-1 was also unaltered in samples incubated with
COVID-19 patient plasma compared to mock (Figure 4C).
Similar findings were observed in HUVEC incubated with
different concentrations of patient plasma (Supplemental
Figure 4A) or with COVID-19 negative ICU patient plasma
(Supplemental Figure 4B). To exclude the possibility that the
patient plasma contained anti-inflammatory mediators or traces
of immune suppressive medication administered during their
ICU stay that might prevent endothelial activation, we incubated
the endothelial cells for 4 hr with plasma n=3 containing high
leptin concentrations (average 77,3 ng/mL) and plasma n=2
containing low leptin concentrations (average 2,3 ng/mL)
supplemented with or without LPS. Endothelial cells only
became activated when they were exposed to patient plasma
supplemented with LPS indicating that the plasma does not
contain any immune suppressive medication or anti-
inflammatory mediators that would prevent endothelial
activation (Figure 4D). Together these results suggest that
plasma from overweight and obese critically ill COVID-19
patients are not able to activate endothelial cells in vitro and
that this effect is not due to anti-inflammatory mediators or
immunosuppressive medication that might have been present in
the plasma.
DISCUSSION

Severe obesity is a major risk factor for the development of severe
COVID-19 with patients often requiring mechanical ventilation
and other organ support in the ICU (5). Leptin, one of systemic
adipokines increased in critically ill COVID-19 patients is known
to promote endothelial dysfunction (24, 25) and coagulation (26,
27). To investigate if leptin might play a role in influencing the
severe disease symptoms in obese COVID-19 patients, we
determined whether endothelial cells were susceptible to SARS-
CoV-2 infection and whether mediators of obesity such as leptin
would promote endothelial activation in vitro. We found that
both human lung and umbilical cord vascular endothelial cells
did not replicate SARS-CoV-2 even at high multiplicities of
infection. We also did not detect any evidence of virus sensing
as exposure to the virus did not lead to endothelial activation.
Notably, the presence of leptin or plasma from obese critically ill
COVID-19 patients did not alter this phenotype.

High levels of leptin along with leptin resistance in obesity are
not only responsible for establishing a proinflammatory state but
also make obese individuals more prone to cardiovascular
complications (28, 29). We therefore hypothesized that
mediators of obesity such as high leptin levels might influence
endothelial responses to SARS-CoV-2 infection. The presence of
June 2022 | Volume 13 | Article 879033
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A

C

D

E

B

FIGURE 3 | Leptin does not facilitate infection or activation of HLMVEC. (A) schematic overview of the experimental set-up. HLMVEC were pre-incubated or with
leptin, 1000ng/mL or with media for 16 hr. Cells were then inoculated with SARS-CoV-2 at MOI 5 or LPS 1µg/mL for 8 and 24 hr. (B) Percentage of infected cells
were determined at 8 and 24 hpi by flowcytometry. (C) Gene expression of E-selectin, VCAM-1, ICAM-1, IL-6, and IL-8 was determined by qPCR at 8 hpi. Results
are expressed as the mean ± SD of 2-4 individual experiments done with duplicate technical replicates (D, E) Cells were analyzed for protein expression of E-
selectin, VCAM-1 and ICAM-1 at 8 (D) and 24 hpi (E) by flowcytometry. Data are represented as MFI fold-change to mock and represented as mean ± SD of at
least three independent experiments. Each symbol represents data from a single independent experiment. Student T test was used to evaluate statistical differences
and a p value ≤ 0.05 was considered significant with *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. In the absence of ‘*’ the data is non-significant. Figure 3A was created
with Biorender.com.
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FIGURE 4 | Plasma from severe COVID-19 patients does not activate HLMVEC. (A) schematic overview of the experimental set-up. HLMVEC were incubated with
30% plasma from critically ill COVID-19 patients or stimulated with LPS 1 µg/mL for 24 hr. (B) The mRNA levels of E-selectin, VCAM-1, ICAM-1, and IL-6 were
determined by RT-qPCR. Results are expressed as the mean ± SD of 4 individual experiments with duplicate technical replicates (C) Protein levels of E-selectin,
VCAM-1 and ICAM-1 were determined by flowcytometry, data is represented as MFI fold-change to mock and represented as mean ± SD of at least three
independent experiments. (D) HUVECs were incubated with critically ill COVID-19 patient plasma containing high leptin concentrations n=3 donors (average 77,3 ng/
mL) or low leptin concentrations n=2 donors (average 2,3 ng/mL) and supplemented with or without LPS 1 ug/mL for 4 hr. Protein levels of E-selectin, VCAM-1 and
ICAM-1 were determined by flow cytometry, data is represented as the MFI fold-change to mock and represented as mean ± SD. Dotted line indicates fold change
to mock of only LPS stimulated cells for 4 hr. Each symbol represents data from a single independent experiment. Student T test was used to evaluate statistical
differences and a p value ≤ 0.05 was considered significant with *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. In the absence of ‘*’ the data is non-significant. Figure 4A
was created with Biorender.com.
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adipokines did not promote infection or replication of SARS-
CoV-2 in endothelial cells. These findings are likely related to the
low endothelial expression of ACE2 and TMPRSS2, which
remained undetectable when cells were cultured in the
presence of high concentrations of leptin. Notably, the also
unaltered by the presence of leptin, expression of BSG and
NRP1 receptors described to mediate SARS-CoV-2 entry (30,
31), did not confer susceptibility of the endothelial cells to the
virus. This is in line with recent reports, suggesting that ACE2
and TMPRSS2 expression might be prerequisite for BSG and
NRP1 to exert their infection-potentiating activity (32)
Interestingly, previous studies have shown that ACE2
expression is regulated by IFNa and IFNg signalling (33).
Moreover, an in vitro study by Klouda et al. found that IFNa
increased the expression of ACE2 in primary pulmonary
endothelial cells (34). Surprisingly, despite a potent induction
of ACE2 expression, IFNa treatment resulted only in an
extremely low frequency of infected endothelial cells with on
average 1 and 3% at the MOI of 1 and 5 respectively. For
comparison, infection of ACE2 expressing primary nasal
epithelial cells, MOI of 0.1 results in the infection of
approximately 40% of cells (35). Taken together, the relatively
low infection frequency in IFNa-treated endothelial cells suggest
that although susceptible to SARS-CoV-2, they are not
permissive to infection.

Interestingly, the spike protein of SARS-CoV-2 alone was
shown to activate endothelial cells which was dependent on
integrin a5b1 signaling (36). However, we found that endothelial
exposure of the virus did not activate endothelial cells, suggesting
limited ability of pattern recognition receptors expressed on
endothelial cells to sense SARS-COV-2 in vitro. Previous in
vivo studies have shown that obesity induced endothelial
dysfunction and promotes acute lung injury (37, 38), however,
these reports have recently been retracted due to issues regarding
the validity of the results. Our results show that the presence of
leptin either in physiological or high levels, did not induce
endothelial inflammatory activation responses, nor did it prime
the SARS-CoV-2-mediated endothelial activation. In addition to
our observations, recent findings suggest that leptin in fact exerts
beneficial effects protecting against endothelial activation and
inflammation (39).

Klouda et al., also elegantly showed that when IFNa treatment
was combined with other cytokines, mimicking COVID-19-
induced systemic inflammation in vivo, the influence of IFNa
on ACE2 expression in endothelial cells was lost (34). In line with
these findings, we found that incubation of endothelial cells with
COVID-19 patient plasma containing a mixture of cytokines
including IFNa, adipokines and other mediators did not alter
ACE2 expression and also not result in endothelial activation. In
contrast to our findings, a recent study by Shi et al. using serum
from a large cohort of COVID-19 patients found that the surface
expression of E-selectin, VCAM-1 and ICAM-1 were around 2, 4
and 3-fold increase in HUVEC compared to control serum (40).
However, the response of the serum on endothelial cells was very
heterogenic with a large sub-population of patient samples not
inducing endothelial activation. We used plasma and flow
Frontiers in Immunology | www.frontiersin.org 9
cytometry to determine the surface expression of the endothelial
activation markers, whereas Shi et al., used serum and quantified
the expression of surface endothelial markers using in-cell ELISA
(40). These distinct techniques may account for the differences
found between these studies. Together, our in vitro findings
suggest that altered systemic leptin or other plasma adipokine
levels might not be driving endothelial dysfunction associated with
the severe organ manifestations in obese COVID-19 patients
admitted to the ICU.

Although our results and those of others (17, 18) suggest
that endothelial cells are unlikely to be infected with SARS-
CoV-2 in vivo. We cannot exclude the possibility that
endothelial cells within the organs of critically ill COVID-19
patients become infected with SARS-CoV-2. The results from
autopsy studies are controversial and show viral particles in the
close vicinity of the microvasculature (41, 42), but often it is
unclear if specifically, the endothelium is infected. Having said
that Liu et al., recently used multiple tools to demonstrate
SARS-CoV-2 infection of the endothelium in vivo (16), whereas
other recent studies report no infection of the endothelium
(18). Whether endothelial cell infection of SARS-CoV-2 occurs
in vivo remains a topic of debate. However, until now most
studies conclude that the endothelium might become infected,
but that it is not likely to be the primary or main site of SARS-
CoV-2 infection in COVID-19 patients (18, 43). Alternatively,
endothelial dysfunction can also be induced indirectly by
immune hyperinflammatory responses or epithelial-
endothelial cross talk after SARS-CoV-2 infection (44).
Importantly, endothelial cell functions are to a certain extent
dependent on the surrounding microenvironment such as the
interactions with adjacent specialized cells (i.e., pericytes,
podocytes, epithelial cells) and blood flow dynamics (45, 46).
Endothelial cell gene signatures are rapidly lost when they are
removed from their in vivo microenvironment and put into
culture which may explain the lack of SARS-CoV-2 infection in
vitro (45). We found the expression of endothelial cell ACE2
remained undetectable in cells which were cultured under flow-
conditions (data not shown), and SARS-CoV-2 did not infect
endothelial cells in 3D vessels under flow conditions (18). In
this respect, perhaps future studies investigating endothelial
responses in COVID-19 should move towards in vivo
models, or by investigating post-mortem organs immediately
after death ensuring intact viral RNA and pathology (47). Our
research group has previously shown that laser microdissection
of organ microvascular compartments is possible in murine
models and human organ tissue (48, 49). This would allow us to
identify if endothelial cells are indeed infected by SARS-CoV-2
in patients with COVID-19 and will allow transcriptomic
analysis to investigate the dysregulated endothelial responses
in severe COVID-19 patients giving an insight into the
mechanisms involved.

Increased inflammation, endothelial activation and vascular
permeability due to (in)direct endothelial infection of SARS-CoV-
2 may cause edema, hemorrhage, and microvascular thrombosis,
affecting gas exchange in the infected lungs as well as causing
injury and functional defects in other organs such as the kidney
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(50). Analysis of longitudinal plasma samples have shown that
soluble endothelial markers increase during the course of COVID-
19 and sVCAM-1 specifically is associated with non-survival (51).
This study and others illustrate the importance of endothelial
responses in driving severe disease (43, 52, 53) as well as post-
COVID-19 persistent lung damage (54).

Together our in vitro results suggest that aberrant
inflammatory endothelial responses are not mounted by direct
endothelial infection of SARS-CoV-2 even in the presence of
leptin and other mediators of obesity. Further studies are
required to investigate the mechanisms regulating endothelial
dysfunction in COVID-19 and the mechanisms driving severe
disease in obese individuals.
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