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INTRODUCTION

Observed-to-expected (OE) analyses, together with
data mining algorithms'~” and pharmacoepidemiolo-
gical studies,® are part of the quantitative pharmaco-
vigilance toolkit for vaccines. While data mining
algorithms generate hypotheses about potential safety
concerns and pharmacoepidemiological studies test
specific hypotheses or measure associations, OE anal-
yses stand in between. The role of OE analyses is to
refine previously detected signals when there is not
enough information to determine whether further ac-
tion is necessary.

In this paper, the focus is on the OE analyses of
spontaneous reports, where the observed number of
cases is obtained from a spontaneous reporting system
and compared with the expected number of cases
calculated based on background incidence rates from
independent sources, such as epidemiological studies
or national statistics. Note that disproportionality data
mining algorithms estimate an “OE ratio” generated
based on expected and observed numbers of cases
from a single spontaneous reporting system.

The key requirements and statistical methods
recommended for OE analyses are described in
European guidelines.”!? Here, we discuss in more
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detail how to perform the analysis and deal with
uncertainties. Although described here in the context
of vaccines, the methodology and recommendations
are in principle also applicable for other medicinal
products, but additional complexities would then have
to be considered. We will not discuss the use of OE
analyses for sequential monitoring, which has been
described elsewhere.!!:!2

BASIC PRINCIPLE

Observe-to-expected analyses are generally used when
a safety concern has been raised from such sources as
literature reviews, medical reviews, disproportionate
reporting,'>7 or unexpected temporal relationship,*©
without clear knowledge about the causality or magni-
tude of the risk. OE analyses can help to monitor and
provide insight into specified events by integrating
medical evaluation and quantification of the unexpect-
edness of observing a given number of cases. Because
of their first pass screening nature, routine signal
detection methods developed for spontaneous report
data usually use an arbitrary level of the medical
dictionary* and apply routine stratification indepen-
dently of the specificities of the event or vaccine
considered, leading to a risk of over-stratifying.!? OE
analyses are complementary to routine signal detection
methods as they can combine spontaneously reported
events to match medical conditions and apply ad hoc
stratifications relevant to the event, vaccine, and/or
population as considered.

*Usually the Medical Dictionary for Regulatory Activities (MedDRA) and
the preferred term level
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In spontaneous reporting systems, adverse events
are reported spontaneously, based on suspicion, not
on actual causal association with the vaccine. Many
adverse events occur after vaccination by pure coinci-
dence, at a rate that would not be different if there had
been no vaccination. The core principle of OE
analyses is to estimate the expected number of these
coincidental cases, under the null hypothesis of no
association with the vaccine. Expected numbers are
then compared with the number of cases actually
reported.

CALCULATION OF THE EXPECTED NUMBER
OF CASES

The number of cases of a particular event expected to
occur by chance alone, within a particular risk period,
is estimated based on background incidence rates for
that event and total person-time at risk in the vacci-
nated population.

[Expected number within the risk period|
= [Background incidence rate]*|[Person-time at risk]

(D

Background incidence rate

The background incidence rate is the number of new
cases occurring naturally in the population, expressed
in person-time. Estimates of incidence rates for the
event of interest are selected through literature re-
views and/or database queries (e.g., observational or
national health statistics databases). The background
incidence rates should ideally be estimated from pop-
ulations that have not been exposed to the vaccine of
interest but that have similar demographic character-
istics to the vaccinated population. The background
(expected) incidence rates may need adjusting if the
exposed population differs from the unexposed popu-
lation from which the background incidence rate is
calculated.

Formula (1) estimates the expected number of cases
for an unstratified OE analysis using a reliable back-
ground incidence rate. When several incidence rates,
relevant for the population under study, are available,
the lowest estimated incidence rate can be used to im-
prove the sensitivity of the OE analysis. However, if
the lowest background incidence rate is considered
an outlier, it should be discarded. Meta-analysis
methods can be used to provide an overall weighted in-
cidence rate.
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Person-time at risk

The total person-time at risk reflects the cumulative
time for all persons exposed to the vaccine during a
risk period for which there is suspicion and/or medical
plausibility that there is a vaccine-associated increased
risk of experiencing the event.

In the simple case where the vaccine is adminis-
tered with only one dose, the total person-time at
risk is calculated by multiplying the number of per-
sons vaccinated by the risk period. For vaccines
scheduled with multiple doses, the calculations can
be more complex, it is then important to assess
whether there is a dose effect and whether the risk
periods overlap.

Indeed, if the risk period is shorter than the
average time window between two scheduled vaccine
doses, the risk periods following each dose do not
overlap. Assuming that the risk is identical after
each dose (no dose effect), each dose contributes
a fixed time at risk and can therefore be considered
independently. The total person-time at risk can
then be estimated by multiplying the risk period
after a dose by the number of doses administered.
In this case, no information about the compliance
to each dose of the vaccination schedule is needed.
In absence of other sources, the number of doses
administered can be approximated by totality or a
proportion of doses sold depending on the
percentage of doses that has already been used
(Box Example 1).

If the risk period is longer than the average time
window between two vaccine doses, the risk periods
overlap and the doses cannot be considered indepen-
dently as it would overestimate the total time at risk
by double counting. The risk period to consider for
the first and the second dose should be limited to the
average time between the two doses, while the risk
period would be complete post dose 2 (this reasoning
can be easily extended to three or more doses). To cal-
culate the total person-time at risk, one will need the
number of persons vaccinated and the average
proportion of the individuals who received dose 1
and dose 2 (Figure 1). If these data are not available,
some assumptions need to be chosen and documented;
for example, the doses could be assumed to have been
equally distributed, and this assumption may be very
good or average depending on the time the vaccine is
on the market and the compliance to the vaccination
schedule (Box Example 2).

If a dose effect is suspected, a dose-specific analysis
may be performed, where each dose is considered
separately.
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Risk period of 12 weeks: Overlap of risk periods

doses + 12 weeks*persons vaccinated with 1 dose

12 weeks

12 weeks s
Risk period of 4 weeks: No overlap of risk periods
| 4 weeks | 4 weeks |
| |
T T

1st dose 2nd dose
T0 TO + 4 weeks

Person-time at risk estimation when overlap of risk periods: (4 weeks+12 weeks)*persons vaccinated with 2

Person-time at risk estimation when no overlap of risk periods: 4 weeks*doses administered

Figure 1. Examples to illustrate how person-time at risk is estimated

STRATIFICATION OF THE EXPECTED NUMBER
OF CASES

The need for a stratified analysis may arise when
background incidence rates differ between genders, age
groups, geographical regions, or calendar time. As the
distribution of the vaccinated population among the strata
is rarely known, the demographic characteristics of the
spontaneous cases may be used as a proxy of the demo-
graphic characteristics of the vaccinated population.
However, this could lead to a biased demographic char-
acterization of the vaccinated population, resulting in an
overestimation of the expected number in strata charac-
terized by a high reporting rate and an underestimation
in strata characterized by a low reporting rate. As an alter-
native, stratified coverage data may be available from
health authorities (as explained in Assumption 1) or
may be estimated from observational databases when
these include vaccination data up to the brand name.

The expected number of cases for each stratum is
obtained by multiplying the incidence rate within the
stratum by the corresponding person-time at risk.
The overall expected number of cases is obtained by
summing the expected numbers of cases over all strata
(Formula (2)); however, it may be informative to look
at the observed versus expected number within each
stratum, as an excess risk might be specific to a partic-
ular stratum (Box Example 3).

[Expected number within the risk period]

= YV lIncidence rate],* [Person-time at risk within stratum s

2)

ESTIMATION OF THE NUMBER OF OBSERVED
CASES

The number of observed cases of a particular event
following exposure to a given vaccine is available
from spontaneous reporting systems. A thorough
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understanding of how the background incidence rates
were estimated is crucial. Indeed, the method used to
define cases for estimating the background incidence
rate must be consistent with the one used during the
medical assessment of spontaneous cases. This may
be difficult because of differences between the dictio-
naries used in observational databases (e.g., International
Classification of Diseases, Ninth Revision), from which
epidemiological studies generating background inci-
dence rates are increasingly performed, and MedDRA
generally used in spontaneous reporting systems.

The medical evaluation of spontaneous cases should
aim to classify the spontaneous cases into a confirmed
diagnosis, an incomplete diagnosis due to lack of infor-
mation or an alternative diagnosis. Only the “confirmed”
cases are included in a best-case scenario.’ For the un-
certainty analysis around the observed number of cases,
in addition to the “confirmed” cases, a proportion or the
totality of the “incomplete” cases can be added for a
mid-case or worst-case scenario,’ respectively. On the
other hand, cases should never be excluded based on
causality assessment as it would bias downwards the ob-
served count in contradiction with the null hypothesis.

Cases with a time-to-onset of the first symptoms of
the event falling within the risk period that is used to
calculate the expected number of cases are taken into
account in a best-case scenario.® Cases with missing
time-to-onset data may have occurred within the risk
period considered and, thus, should be additionally
used in an uncertainty analysis, in proportion to those
in the risk period of interest for a mid-case scenario,?
and in totality for a worst-case scenario.®

THE OBSERVED-TO-EXPECTED MEASURES

The OE analysis compares the observed and expected
numbers of cases. This may be expressed as the ratio

$Best-case scenario refers to a best-case scenario analysis for the safety profile of
the vaccine. The same logic applies for the mid-case and worst-case scenarios.
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of the observed over the expected. An OE ratio of one
means that the observed number of cases equals the
expected number of cases, as stated by the null
hypothesis. If the OE ratio is greater than one, then
the observed is higher than the expected signaling an
excess of risk.

The statistical uncertainty will often be driven by
the observed number of cases, which is often small
(rare events). To deal with this statistical uncertainty
around the total number of cases observed over the
risk period of interest, a 95% Poisson exact confi-
dence interval (95%CI) can be calculated.'* If the
95%CI lower limit is higher than the estimated
expected number, the observed number is considered
significantly higher than expected at a 95%CI. If the
observed value is higher than the expected, with the
95%CI lower limit lower than the estimated expected
value, the observed is considered higher than ex-
pected but not significantly at a 95% confidence level.
The same logic applies when we consider the OE
ratio: if the lower limit of the 95%CI of the OE ratio
is greater than one, the observed value is considered
significantly higher than expected.

ASSUMPTIONS

The OE analysis is based on a number of assumptions
which, when violated, may generate biased estimates.
We will first describe these assumptions and then de-
scribe a general method to address uncertainty gener-
ated by the deviations from assumptions.

Assumption 1: The number of doses administered to
the population is known.

In some contexts, the authorities may make cover-
age data available (e.g., human papilloma virus mass
vaccination data from Public Health England)."
Additionally, coverage data may be reported by demo-
graphic characteristics or dose schedule (only one,
two, or three doses), allowing more accurate calcula-
tions of the expected number of cases.

However, specific data on exposure are often lack-
ing, and sales data are used as a proxy. Generally,
not all doses sold are administered making sales data
unreliable. Additionally, there is a lag between the sale
and administration of a vaccine to the population.
Depending on vaccine type (seasonal, pandemic,
mass-vaccination, or routine) and the number of years
on the market, the percentage of doses sold that are
actually used may vary from less than 50% (as for
the HIN1 pandemic)!® to a theoretical value of
100%. The higher this percentage, the more sensitive

© 2015 The Authors. Pharmacoepidemiology and Drug Safety
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the OE analysis is when sales data are used as proxy
of the doses administered.

Assumption 2: All cases presenting the event of interest
after immunization are spontaneously reported.

Spontaneously reported events represent only a frac-
tion of the events actually occurring after immunization.
This so-called under-reporting'” is dependent on the risk
period considered, as discussed in Assumption 5.
Under-reporting is also dependent on the plausibility
of the event being causally associated with the
vaccination. Other factors, such as the severity of the
event, media coverage on the potential association
between the vaccine and the event, public awareness,
or the presence of the event in the label, also affect the
extent of under-reporting. Under-reporting in vaccines
spontaneous reporting systems varies and has been esti-
mated for serious events at between 19% and 50%,'8:1°
meaning that between 81% and 50% of the adverse
events occurring after vaccination are being reported.

Observed-to-expected analyses generally focus on
serious adverse events, often covered by the media
(e.g., Guillain-Barre syndrome, Intussusception, Sud-
den infant death) and for which a potential causal asso-
ciation has been discussed in the literature. These
events tend to be better reported particularly when
they occur within a short time period after immuniza-
tion. Nevertheless, the assumption that all cases are
reported tends to lower the sensitivity of most OE
analyses. Over-reporting (more cases reported than
the number of cases actually occurring in the
vaccinated population) may be observed following
extensive media coverage and public awareness, such
that an increased number of cases with similar symp-
toms are reported (over-diagnosing). Over-reporting
may also occur because of multiple reports of the same
case, where a lack of information makes it difficult to
detect and delete duplicates.

Assumption 3: The background incidence rate in the
vaccinated population is the same as the background
incidence rate in the population used to calculate the
expected.

The choice of the most relevant background inci-
dence rate from multiple sources in the literature, char-
acterized by different study designs and populations
with different demographic characteristics, is often
difficult but can dramatically impact the conclusions
of the OE analysis. For some events, estimated
background rates can differ by as much as a factor of
10 between literature sources, especially for rare
events where the level of uncertainty is high.?%-!
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In addition, the “healthy vaccinee effect” occurs
because of vaccinated individuals being on average
healthier than unvaccinated individuals.>> Using
background incidence rates measured from the overall
population could overestimate the background inci-
dence rate of the vaccinated population. Consequently,
it may lower the sensitivity of the OE analysis.

Assumption 4: The population on which the back-
ground incidence was measured is not exposed to
the vaccine of interest.

Background rates on unexposed individuals are
seldom available and often concern different geographi-
cal regions and/or time periods to those of the exposed
population, resulting in geographical and/or secular
trends. When the occurrence of vaccine exposure in the
population used for measuring background incidence is
non-negligible and when there is a non-negligible in-
creased risk of experiencing the event because of expo-
sure, the OF ratios may be biased towards one.3

Assumption 5: The risk period considered focuses
on the time period for which an excess of risk occurs
in case of causal association.

The risk period must correspond to the exact period of
increased vaccine-associated risk. Overestimation of the
risk period may dilute the excess of cases with the event
by including periods beyond and/or before the true risk
period, during which the vaccine did not generate extra

risk for the event. When the risk period is underestimated,
the sensitivity is also reduced because it is more difficult
to reach statistical significance. Additionally, events
occurring a long time after vaccination are less likely to
be spontaneously reported than events occurring shortly
after vaccination, especially if they are expected, com-
mon, or mild.!” Consequently, a long risk period may
include a period characterized by considerable under-
reporting of the event, reducing the sensitivity of the anal-
ysis. Where no clear risk period for the event of interest is
defined, the cumulative distribution of the OE ratio for
each day over the whole time window can be used. This
would allow potential sub-periods to be detected, where
the number of observed cases is higher than expected.

UNCERTAINTY ANALYSES

Providing a single OE ratio estimate is not likely to be
sufficient as the qualitative conclusion of the OE ratio
could be reversed depending on how violated the
above assumptions are. An uncertainty analysis should
determine how much uncertainty would be needed to
alter the qualitative conclusion.?*

Most uncertainty analyses for OE consider only a lim-
ited number of values when accounting for the main
sources of uncertainty (e.g., the lowest and highest pub-
lished incidence rates, and 0-25% for under-reporting).
These values remain arbitrary and may be subject to
criticism.

Ref 1 Ref 2

Ref. 3

0.9+

0.8+

0.7+

0.6 4

0.5

Reported fraction

0.4+

03+
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0.1+

77—

Conclusion
@ Significantly > expected
O > expected
[ < expected
L] Significantly < expected

— T T T
0 1 2 3 4 5 6 7 8 9 10 1
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13 14 15 16 17 18 19 20

Figure 2. Heat map of the observed-to-expected analysis conclusion in the parameter plane defined by the background incidence rate and the reported fraction.
Footnote. Figure 2, drawn from a theoretical example, shows that if Ref. 1 is the correct background incidence rate, the number of cases observed is lower than
the number expected only if more than 95% of the cases occurring in the time window at risk were reported. If we take the background incidence rates Ref. 2 or
Ref. 3, the number of cases observed is lower than expected only if, respectively, more than 62% or more than 18% of the cases occurring in the time window at
risk are reported. Depending on how plausible these values are, an independent reviewer may draw his own conclusions. In most cases, there is no reason to
consider that there is a protective effect of the vaccination, so having an observed reporting rate significantly lower than the expected may be an indicator of

the range of reported fraction
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Figure 3. Observed-to-expected (OE) analysis conclusions depending on
different scenarios for the reported fraction, the background incidence rate
and the case confirmation level.

Footnote. Figure 3 shows the different OE conclusions for the complete
range of reported fraction, a specific range of background incidence rate
and three scenarios of case confirmation levels. However, this could apply
to any other, or a combination of, uncertainty parameters considered as

As an example of how to better account for
uncertainties, we developed a visual framework that
determines whether the observed number of events is
(significantly) higher or lower than the expected
number for simulated values of two sources of uncer-
tainties around the expected. We illustrated this with an
example (Figure 2) considering background incidence
rates covering the range of estimates from the litera-
ture and under-reporting rates from 100% to 0%
(equivalent to a reported fraction of zero to one). This
visual framework enables independent reviewers such
as regulatory authorities to draw their conclusions by
making their own assumptions about two sources of
uncertainty.

When additional sources of uncertainties are
deemed to be important then the visualization can be
adapted to include these additional uncertainties as
illustrated in Figure 3 where the additional uncertainty
around case confirmation (i.e., around the observed
number of cases) was included in the visualization. This
illustrates how additional sources of uncertainties could

having a significant impact on the conclusion of the OE analysis be incorporated.

Box. Examples of calculation of the expected number of cases for a theoretical event of interest

Example 1: 3,000,000 doses of vaccine X sold worldwide.

Increased risk of event Y within 30 days post immunization, whatever the dose.

Recommended vaccination schedule is three doses at 2, 4, and 6 months of age.

Assumptions: there is no dose effect and all 3,000,000 doses have been administered.

The risk periods following each dose do not overlap.

The person-time at risk: 3,000,000 *30 [person-days] or 3,000,000 *30/365.2425 * 1/100,000=2.46
[100,000 person-years].

Background incidence rate for event Y is 4.8 cases per 100,000 person-years (measured on unvaccinated popu-
lation sharing similar demographic characteristics with the exposed population)

The expected number of cases of event Y: 2.46*4.8=11.8.

Example 2: Same vaccine X as example 1 but increased risk of event Y within 90 days.

Assumptions: 100% compliance to the vaccination schedule, there is no dose effect and all 3,000,000 doses have
been administered.

The risk periods overlap due to the vaccination schedule.

Risk periods to calculate the expected: 60days post dose 1 and dose 2 and 90 days post dose 3.

The person-time at risk is 1,000,000 * 60+1,000,000 * 60+1,000,000 *90 [person-days] or 210,000,000/
365.2425*%1/100,000=5.75 [100,000 person-years].

Same background incidence rate as for example 1: 4.8 cases per 100,000 person-years.

The expected number of cases would be 5.75*4.8=27.6.

Example 3: Same as Example 2 but only females between 10 and 40 years are exposed to vaccine X.

Age group Stratified background incidence rate for females and event Y ~ Coverage  Person-time at risk (100,000 Expected number of
(years) (per 100,000 person-years) person-years) cases of event Y
[10-25] 45 80% 5.75%0.8=4.6 4.5%4.6=20.7
[25-40] 2.3 20% 5.75%0.2=1.15 23%1.15=2.6

The total expected number of cases of event Y: 20.7+2.6=23.3.

© 2015 The Authors. Pharmacoepidemiology and Drug Safety
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CONCLUSION

OE analyses are useful to strengthen safety signals,
especially when rapid conclusions about the safety of
a vaccine are needed and when the event of interest
is short term and acute. However, these analyses rely
on a number of assumptions, and these assumptions
must be clearly described. Their impact on the qualita-
tive conclusion of the analysis should be investigated
through uncertainty analyses.
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KEY POINTS

® Observed-to-expected analyses are used to refine
safety signals, especially for vaccines and when
the event of interest is short-term and acute.

® In OE analyses, the observed is calculated from a
spontaneous reporting system and compared
with the expected calculated, based on back-
ground incidence rates from independent sources.

® The core principle is to estimate the expected
number of coincidental cases, under the null
hypothesis of no association with the vaccine,
and compare with the number of cases actually
reported.

® Conclusions of OE analyses are relying on a lot
of assumptions.

® Simulations can be conducted to estimate how
assumptions’ violations could affect the conclu-
sions of the OE analysis. These simulations can
be represented in a visual framework that enables
independent reviewers to draw their own conclu-
sions independently from original assumptions.
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