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Cerebral autosomal recessive arteriopathy with subcortical infarcts and

leukoencephalopathy (CARASIL) is clinically characterized by early-onset dementia,

stroke, spondylosis deformans, and alopecia. In CARASIL cases, brain magnetic

resonance imaging reveals severe white matter hyperintensities (WMHs), lacunar

infarctions, and microbleeds. CARASIL is caused by a homozygous mutation in

high-temperature requirement A serine peptidase 1 (HTRA1). Recently, it was reported

that several heterozygous mutations in HTRA1 also cause cerebral small vessel disease

(CSVD). Although patients with heterozygous HTRA1-related CSVD (symptomatic

carriers) are reported to have a milder form of CARASIL, little is known about the clinical

and genetic differences between the two diseases. Given this gap in the literature, we

collected clinical information on HTRA1-related CSVD from a review of the literature

to help clarify the differences between symptomatic carriers and CARASIL and the

features of both diseases. Forty-six symptomatic carriers and 28 patients with CARASIL

were investigated. Twenty-eight mutations in symptomatic carriers and 22 mutations

in CARASIL were identified. Missense mutations in symptomatic carriers are more

frequently identified in the linker or loop 3 (L3)/loop D (LD) domains, which are critical

sites in activating protease activity. The ages at onset of neurological symptoms/signs

were significantly higher in symptomatic carriers than in CARASIL, and the frequency

of characteristic extraneurological findings and confluent WMHs were significantly

higher in CARASIL than in symptomatic carriers. As previously reported, heterozygous

HTRA1-related CSVD has a milder clinical presentation of CARASIL. It seems that
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haploinsufficiency can cause CSVD among symptomatic carriers according to the

several patients with heterozygous nonsense/frameshift mutations. However, the differing

locations of mutations found in the two diseases indicate that distinct molecular

mechanisms influence the development of CSVD in patients with HTRA1-related CSVD.

These findings further support continued careful examination of the pathogenicity of

mutations located outside the linker or LD/L3 domain in symptomatic carriers.

Keywords: heritability, vascular dementia, HTRA1, carriers, CARASIL

INTRODUCTION

Cerebral autosomal recessive arteriopathy with subcortical
infarcts and leukoencephalopathy (CARASIL, OMIM 600142)
is a hereditary cerebral small vessel disease (CSVD) caused
by biallelic loss-of-function mutations in high-temperature
requirement A serine peptidase 1 (HTRA1), which upregulates the
transforming growth factor β1 (TGF-β1) signal (1). CARASIL
is characterized by dementia, stroke, alopecia, and lumbago or
spondylosis deformans. On brain magnetic resonance imaging
(MRI), severe leukoencephalopathy with multiple lacunar
infarctions (LIs), microbleeds (MBs), and brain atrophy are
common. Although CARASIL patients were initially reported
in Japan, after identification of HTRA1 as a causative gene,
more than 25 CARASIL patients were subsequently identified
in other countries, including China, Italy, India, and the
United States (2–5).

At present, more than 50 symptomatic carriers of HTRA1
mutations have been reported (6–10). However, most parents
of CARASIL patients are asymptomatic (1, 3, 5, 11–17). It
thus remains unclear why certain mutations cause CSVD in
HTRA1 carriers. Previously, we reported that either a deficiency
in trimerization or an amino-acid mutation located in the loop
D (LD) or loop 3 (L3) domain was common in missense HTRA1
proteins identified in symptomatic carriers (18). We speculated
that these mutations in the HTRA1 gene may inhibit wild-type
(WT) protease activity (7). However, not all the mutations have
been proofed to fulfill the pathogenicity. In the present study,
we reviewed the literature that describes symptomatic carriers
and CARASIL to clarify the molecular and clinical features of
HTRA1-related CSVD.

MATERIALS AND METHODS

Summary of Mutations in Patients With
HTRA1-Related CSVD
This study was approved by the ethical board of Niigata
University. We reviewed PubMed and Google Scholar databases
for reports of HTRA1-related CSVD using the search terms
“HTRA1 mutation” and “CARASIL.” Only reports published
prior to September 2019 were included. After reviewing the
literature, mutations identified among patients with HTRA1-
related CSVD were summarized. Reports of a total of 82 patients
with HTRA1-related CSVD in 31 articles were identified (1–
17, 19–32). Twenty-eight of those patients were CARASIL,
and the other 54 were heterozygous HTRA1-related CSVD
symptomatic carriers.

Each mutation was classified by location, affected domain of
HTRA1, which includes the insulin-like growth factor binding
protein (IGFBP), Kazal-like, protease, and PDZ-like domains.
Furthermore, the protease domain was divided into three groups:
LD, L3, and not L3 or LD. LD and L3 are essential domains
required for the protease activities of HTRA1 via intermolecular
communication (33, 34). In the present study, LD was defined as
the amino acid positions between 283 and 291. L3 was defined as
the position of amino acids between 301 and 314 (7). We added
one more region, the “linker region,” which was located between
the Kazal-like and protease domains (9). We further searched for
the minor allele frequencies of each mutation in HTRA1 using
ExAC (Exome Aggregation Consortium) web browser1.

To determine the pathogenicity of missense HTRA1mutants,
in silico analyses using PolyPhen-2 (35), SIFT (36), PANTHER
(37), and PROVEAN (38) software from the variation effect
on protein structure and function platform for drug discovery,
informatics, and structural life science (VaProS-PDIS) website2

were performed. Pathogenic mutations were defined using the
following criteria: (1) three or more in silico analysis showed the
following result: probably damaging (PolyPhen-2) or deleterious
(SIFT, PANTHER, and PROVEAN) or (2) previous in vitro
assessment ofHTRA1mutation that indicated decreased protease
activity. These rules satisfied the criteria of “likely pathogenic”
as stated by the guidelines of the American College of Medical
Genetics and Genomics (39). Mutations without pathogenicity
were excluded from further analyses. Then, to investigate the
difference between the distribution of mutations in symptomatic
carriers and CARASIL, we compared the locations of mutations
between groups.

Finally, a 3D model of HTRA1 (PDB ID: 3NZI) was
obtained from the RCSB (Research Collaboratory for Structural
Bioinformatics) protein data bank3. This model was to create
images that demonstrated the locations of missense mutations
specific to each group using PyMOL software, version 2.3.0
(Schrodinger, LLC, New York, NY, USA)4.

Clinical Assessments of Symptomatic
Carriers and CARASIL
Clinical information, such as neurological symptoms and signs,
family history, and risk factors, was obtained from the literature
and an in-house clinical data set. Patients with CSVD can present

1http://exac.broadinstitute.org/
2http://pford.info/vapros/
3http://www.rcsb.org/pdb/home/home.do
4https://github.com/schrodinger/pymol-open-source
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with various neurological symptoms and signs. However, we
selectively searched for those with a history of stroke, cognitive
impairment, and gait disturbance in the present study, which
are the cardinal features of CSVD (other clinical symptoms
such as vertigo are less specific to CSVD). We further reviewed
the literature for patients with a clinical history of migraine,
lumbago/spondylosis deformans, and alopecia of younger onset.
Alopecia of younger onset was defined as the age at onset
of alopecia in individuals aged ≤40 years, according to the
Japanese diagnostic criteria of CARASIL5. Family history was
defined as the positive history of cognitive impairment, stroke,
or leukoencephalopathy. We additionally investigated examined
patient brain MRIs to detect the severity of white matter
hyperintensities (WMHs) and the presence of LIs. If available, the
information of T2∗-weighted image or susceptibility-weighted
image, the presence of MBs was also investigated. White
matter hyperintensity severity was classified as confluent or not
according to the description of imaging findings, figures of
brain MRIs published in the literature, or direct observation of
brain MRIs by the first author (MU). We further investigated
the pathological findings associated with HTRA1-related CSVD.
Patients were sorted into two groups (symptomatic carriers vs.
CARASIL), and the clinical features and findings associated with
each were compared.

Statistical Analyses
Statistical analyses were performed using MATLAB R2018a
software (9.4.0813654) (MathWorks, Inc., Natick, MA, USA).
Continuous variables such as age at diagnosis were compared
using Wilcoxon rank sum tests because of their non-normal
distribution and non-equal variance. The Fisher exact test was
used to compare the frequencies of variables such as vascular risk
factors or neurological symptoms/signs. Statistical significance
was defined as p < 0.05. If the information was not available, we
excluded those data to perform statistical analysis.

RESULTS

HTRA1 Mutations in Symptomatic Carriers
and CARASIL
HTRA1 mutations identified are summarized in Table 1. Five
mutations in symptomatic carriers (S121R, A123S, R133G,
S284G, and D450H) had normal protease activity in vitro
(18), and two mutations, S136G and Q151K, were non-
pathogenic according to several in silico analyses. Given this,
we excluded these seven mutations from further analyses
(Supplementary Table 1). Forty-six patients were heterozygous
symptomatic carriers of HTRA1-related CSVD, and the other 28
patients had CARASIL.

Overall, 30 missense, seven nonsense, six frameshift, and
two splicing site mutations were enrolled. Twenty-one missense
and seven truncated mutations (five nonsense, one frameshift,
and one splicing site mutations) were identified in symptomatic
carriers, whereas 12 missense and 10 truncated mutations (four
nonsense, five frameshift, and one splicing site mutations)
were identified in CARASIL. In symptomatic carriers, multiple
independent families were reported in three mutations (R166C,

P285L, and R302Q). Five mutations were identified both in
CARASIL and symptomatic carriers (R166C, P285L, G295R,
R302X, and R370X). Thus, among those mutations identified
in symptomatic carriers and CARASIL, 70.0% of missense
mutations and 46.7% of truncated mutations were identified in
symptomatic carriers.

Clustering Pathogenic HTRA1 Mutations in
Linker and Protease Domains
The locations of mutations only in symptomatic carriers or in
CARASIL are summarized in Table 2. Figures 1, 2 show the
location of mutations identified in each group. All missense
mutations were located in linker or protease domains except
for G120D, which located at Kazal-like domain. In symptomatic
carriers, ∼50% of the missense mutations were concentrated in
two regions: from 166 to 179 (the linker region, including key
residues necessary for the trimerization ofHTRA1) and from 283
to 286 (the LD loop, which is important for HTRA1 activation)
(Table 1, Figure 1). In CARASIL, only one missense mutation
was located within 166–179, and no mutations were located on
the LD/L3 loop (Figure 1, Table 2). Eight of the nine missense
mutations were dispersed throughout the protease domain. In
both symptomatic carriers and CARASIL, nonsense or frameshift
mutations were also predominantly located on linker or protease
domains. In CARASIL, two frameshift mutations were located
in the IGFBP domain. Nonsense/frameshift mutations were less
frequent in symptomatic carriers than in patients with CARASIL
(Table 2).

Comparison of Symptomatic Carrier and
CARASIL Clinical Features
Clinical and imaging findings from the included patients are
summarized in Table 3. Twenty-eight mutations in 46 patients
and 22 mutations in 28 patients were identified in symptomatic
carriers and CARASIL, respectively.

The frequency of family history of first or second relatives
was similar between groups (symptomatic carriers 88.9% vs.
CARASIL 74.1%, p = 0.112). Five parents of CARASIL patients
with R274Q, P285L, V297M, and R302X mutations had a history
of stroke (1, 2, 11, 40–42). Furthermore, two parents of CARASIL
patients who were carriers of E42fs (4) and G295Rmutations (20)
had leukoencephalopathy. Detailed family history of the parents
of seven symptomatic carriers was not available (6, 26).

The frequency of male patients was significantly higher among
the symptomatic carriers (76.1%) compared to the CARASIL
patients (42.9%) (p < 0.01). The frequency of hypertension was
also significantly higher in symptomatic carriers (45.5%) than
CARASIL patients (0%) (p < 0.01).

Age at onset of neurological symptoms/signs was determined
in 40 symptomatic carriers and 24 patients with CARASIL. The
age at onset of neurological symptoms/signs was significantly
higher in symptomatic carriers (54.0 ± 11.4 years) than in
CARASIL patients (29.5± 5.5 years) (p < 0.01).

The youngest and oldest reported ages at onset of neurological
symptoms/signs among symptomatic carriers were 29 (25) and
77 (30), respectively, and the youngest and oldest ages at onset
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TABLE 1 | Summary of mutations identified in patients with HTRA1-related CSVD.

No. cDNA Amino acids Domain Trimerization Protease

activity

Patients Independent

families

Allele

frequency of

ExAC

PolyPhen2 SIFT PROVEAN PANTHER References

Symptomatic carriers

1 359G>A G120D Kazal-like NA Decreased 1 1 NA Probably

damaging

Tolerated Deleterious Deleterious (26)

2 451C>T Q151X Kazal-like NFM NFM 1 1 NA (25)

3 497G>T R166L Linker Defective Decreased 3 1 NA Probably

damaging

Deleterious Deleterious Deleterious (6)

4 517G>C A173P Linker Defective Decreased 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (6)

5 523G>A V175M Linker NA NA 2 1 0.000008236 Probably

damaging

Deleterious Deleterious Deleterious (9)

6 527T>C V176A Linker NA NA 1 1 NA Probably

damaging

Tolerated Deleterious Deleterious (30)

7 536T>A I179N Linker NA Decreased 2 1 NA Probably

damaging

Deleterious Deleterious Deleterious (26)

8 543delT A182fs Linker NFM NFM 1 1 NA (26)

9 589C>T R197X Linker NFM NFM 1 1 NA (30)

10 NA G206E Not L3/LD NA NA 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (9)

11 646G>A V216M Not L3/LD NA NA 1 1 0.00001647 Probably

damaging

Deleterious Deleterious neutral (28)

12 767T>C I256T Not L3/LD NA Decreased 1 1 0.000008301 Probably

damaging

Deleterious Deleterious Deleterious (26)

13 827G>C G276A Not L3/LD NA Decreased 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (26)

14 848G>A G283E LD Defective Decreased 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (7)

15 851G>A S284N LD NA NA 1 1 NA Probably

damaging

Tolerated Deleterious Deleterious (28)

16 852C>A S284R LD Trimer Decreased 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (6)

17 854C>A P285Q LD Trimer Decreased 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (6)

18 856T>G F286V LD Trimer Decreased 1 1 NA Probably

damaging

Deleterious Deleterious neutral (6)

19 865C>T Q289X LD NFM NFM 2 1 NA (26)

20 905G>A R302Q L3 Trimer Decreased 5 3 NA Probably

damaging

Deleterious Deleterious Deleterious (7, 27)

21 956C>T T319I Not L3/LD Defective Decreased 1 1 NA Probably

damaging

Tolerated Deleterious Deleterious (7)

22 971A>C N324T Not L3/LD NA NA 1 1 NA Probably

damaging

Tolerated Deleterious Deleterious (26)

(Continued)
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TABLE 1 | Continued

No. cDNA Amino acids Domain Trimerization Protease

activity

Patients Independent

families

Allele

frequency of

ExAC

PolyPhen2 SIFT PROVEAN PANTHER References

23 973-1G>A - Not L3/LD Splice site

abnormalities

Splice site

abnormalities

1 1 NA (6)

CARASIL

1 126delG E42fs IGFBP NFM NFM 1 1 NA (4)

2 161_162insAG G56fs IGFBP NFM NFM 1 1 NA (14)

3 502A>T K168X Linker NFM NFM 1 1 NA (3)

4 517G>A A173T Linker Defective Decreased 1 1 0.000008236 Probably

damaging

Deleterious Deleterious Deleterious (15)

5 616G>A G206R Not L3/LD NA NA 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (5)

6 739delG E247fs Not L3/LD NFM NFM 1 1 NA (3)

7 754G>A A252T Not L3/LD Trimer Decreased 1 1 0.000008258 Probably

damaging

Deleterious Deleterious Deleterious (1)

8 805insG S270fs Not L3/LD NFM NFM 3 1 NA (17)

9 821G>A R274Q Not L3/LD Defective Decreased 2 1 0.000008266 Probably

damaging

Tolerated Deleterious Deleterious (11, 40)

10 830_831delAG E277fs Not L3/LD NFM NFM 1 1 NA (3)

11 889G>A V297M Not L3/LD Trimer Decreased 2 2 NA Probably

damaging

Deleterious Deleterious Deleterious (1)

12 958G>A D320N Not L3/LD NA NA 1 1 0.00002493 Probably

damaging

Deleterious Deleterious Deleterious (16)

13 961G>A A321T Not L3/LD Trimer Decreased 1 1 0.00003327 Probably

damaging

Deleterious Deleterious Deleterious (4)

14 983C>A S328X Not L3/LD NFM NFM 1 1 NA (32)

15 1005+1G>T - Not L3/LD Splice site

abnormalities

Splice site

abnormalities

1 1 NA (29)

16 1021G>A G341R Not L3/LD NA NA 1 1 NA Probably

damaging

Deleterious Deleterious Deleterious (16)

17 1091T>C L364P Not L3/LD Trimer Decreased 2 1 NA Probably

damaging

Deleterious Deleterious Deleterious (23)

Both

1 496C>T R166C Linker Defective Decreased 8 4 NA Probably

damaging

Deleterious Deleterious Deleterious (10, 13, 19,

21)

2 854C>T P285L LD Trimer Decreased 3 3 NA Probably

damaging

Deleterious Deleterious Deleterious (2, 7)

3 883G>A G295R Not L3/LD Defective Decreased 5 2 0.000008258 Probably

damaging

Deleterious Deleterious Deleterious (9, 20)

4 904C>T R302X L3 NFM NFM 3 3 NA (1, 8)

5 1108C>T R370X PDZ NMD NMD 3 3 0.000008243 (1, 12, 24)

Symptomatic carriers, heterozygous HTRA1-related CSVD; CARASIL, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; NFM, nonsense/frameshift mutation; NMD, nonsense mediated decay;

NA, not available; ExAC, Exome Aggregation Consortium; IGFBP, insulin-like growth factor binding domain; LD, loop D; L3, loop 3. The protease activity and trimerization represented in this table were referenced previously (7, 18, 26).
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TABLE 2 | Summary of HTRA1 mutations identified in only one group.

Items Symptomatic carriers CARASIL p

Total mutations 23 17

Missense mutations 18 (78.3) 9 (52.9) 0.17

Kazal-like (99–157) 1 (4.3) 0 1.0

Linker region(158–203) 5 (21.7) 1 (5.9) 0.22

LD (283–291)/L3 (301–314) 6 (26.1) 0 0.03

Not L3/LD (204–364) 6 (26.1) 8 (47.1) 0.20

Nonsense/frameshift mutations 4 (17.4) 7 (41.2) 0.15

IGFBP (33–98) 0 2 (11.8) 0.17

Kazal-like (99–157) 1 (4.3) 0 1.0

Linker region(158–203) 2 (8.7) 1 (5.9) 1.0

LD (283–291)/L3 (301–314) 1 (4.3) 0 1.0

Not L3/LD (204–364) 0 4 (23.5) 0.03

Mutations in the splice site 1 (4.3) 1 (5.9) 1.0

Symptomatic carriers, heterozygous HTRA1-related CSVD; CARASIL, cerebral autosomal

recessive arteriopathy with subcortical infarcts and leukoencephalopathy.

FIGURE 1 | Location and frequency of mutations found in HTRA1 genes.

Distribution of HTRA1 mutations. The number of mutations per 10 amino acids

is shown. The upper bar graph indicates the mutations observed only in

symptomatic carriers. The lower bar graph indicates the mutations observed in

CARASIL patients alone. The horizontal axis shows the number of amino acids

(AAs) in HTRA1 protein. The residues, which are important for trimerization, are

indicated by the red line. Each colored box represents a functional domain,

which are colored as follows: gray [N-terminus (1–98 AA)], brown [Kazal-like

domain (99–157AA)], yellow [linker region(158–203 AA)], green [protease

domain (204–364 AA)], light green [LD loop (283–291 AA), dark green [L3 loop

(301–314 AA)], and navy blue [PDZ region (365–467 AA)]. The blue bar

represents nonsense or frameshift mutations and the orange bar represents

missense mutations.

of neurological symptoms/signs in CARASIL were 20 (29) and
40 (16), respectively. Patient age at diagnosis was significantly
higher among symptomatic carriers (59.8 ± 10.5 years) than in
CARASIL (35.7± 8.8 years) (p < 0.01).

There were also several differences in neurological
symptoms/signs between the two groups. While the frequency

of episode of stroke was more higher in symptomatic carriers
(63.0%) than CARASIL (40.7%) (p = 0.089), gait disturbance
was significantly less frequent in symptomatic carriers (67.4%)
than CARASIL (92.6%) (p = 0.019). Notably, five symptomatic
carriers did not exhibit neurological symptoms/signs at the time
of diagnosis (6, 9, 24). The frequency both of alopecia of younger
onset and lumbago/spondylosis deformans was significantly
higher in CARASIL than symptomatic carriers (alopecia of
younger onset: CARASIL 85.7% vs. symptomatic carriers 13.2%,
p < 0.01; lumbago/spondylosis deformans: CARASIL 100% vs.
symptomatic carriers 60.0%, p < 0.01). Other clinical findings,
including recurrent rhinitis, have been reported in three patients
with CARASIL (17). On brain MRIs, the frequency of confluent
WMHs was significantly higher in CARASIL patients than
symptomatic carriers (CARASIL 100% vs. symptomatic carriers
81.3%, p = 0.011). Frequency of LIs and MBs was similar
between the two groups.

Pathological Findings
Pathological findings for patients with HTRA1-related CSVD
(two symptomatic carriers and four with CARASIL) are
summarized in Table 4 (1, 7, 15, 31, 43–46). All patients,
besides one Pakistani patient, were Japanese (15). Cardinal
pathological features included extensive loss of medial smooth
muscle cells, intimal proliferation, and splitting of the internal
elastic lamina in the pial arteries, perforating arteries, and
arterioles. Accumulation of TGF-β1 in the media was found
in one symptomatic carrier and one CARASIL patient via
immunohistochemistry (1, 44). In addition, fibronectin or
extradomain A fibronectin, versican, and hyaluron were also
positive (1, 46). In contrast, immunostaining for collagen types I,
III, and IV was reduced in the adventitia (44). In four cases with
CARASIL, the skin arteries had similar pathological findings,
which included intimal proliferation or loss of smooth muscle
cells in the small arteries (14, 23, 25, 41).

Although there was no granular osmophilic material
found in HTRA1-related CSVD samples, a characteristic
findings of autosomal dominant cerebral arteriopathy with
subcortical infarcts and leukoencephalopathy (CADASIL),
electron microscopy did reveal some deposits in one
CARASIL patient and in one symptomatic carrier (31, 43).
Electron-dense deposits were also found in the cytoplasm
of smooth muscles cells in CARASIL patients (31) and
in the outer layer of the elastic lamina in symptomatic
carriers (43).

DISCUSSION

In the present review, we have reconfirmed that symptomatic
carriers have milder phenotypes than CARASIL patients.
The symptomatic carriers show the elderly onset, lower
frequency of extraneurological complications, and milder
WMHs compared to those in CARASIL. Furthermore, even
in cases with five mutations (R166C, P285L, G295R, R302X,
and R370X), in which both CARASIL and symptomatic
carriers have been reported, the symptomatic carriers
showed a milder clinical phenotype. These results indicate
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FIGURE 2 | Color map of missense mutations identified in one group only. Three-dimensional HTRA1 monomer structures generated by PyMol are depicted. HTRA1

monomers are shown as green ribbons. The HTRA1 structure reference data set from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data

Bank (PDB ID: 3NZI) was used. Mutations in the linker region, protease domain (excluding the L3/LD loop), LD loop (amino acids 283 to 291), and L3 domain (amino

acids 301 to 314) are highlighted in red, pink, yellow, and orange, respectively. The upper panel (A) and lower panel (B) show the missense mutations that were

identified only in symptomatic carriers or CARASIL, respectively. On the left side are images from the front view and x + 90◦, y + 90◦, and z + 90◦ indicate the degree

of rotation along the x, y, and z axes, respectively.

that residual protease activity of HTRA1 is associated with
clinical phenotype.

For the molecular mechanism of symptomatic carriers,
we can speculate that the reducing residual HTRA1 activity
may increase the risk of CSVD. First, we will discuss
the mechanism of haploinsufficiency for the molecular
pathogenesis of symptomatic carriers. Although initially no
symptomatic carriers were demonstrated to have nonsense
or frameshift mutations, five nonsense mutations (Q151X,
R197X, Q289X, R302X, and R370X) and one frameshift
mutation (A182fs) were identified in symptomatic carriers.
Mutant HTRA1 protein expressed by some of these
mutant alleles might exert a dominant-negative effect
(26). However, in many cases, HTRA1 from the mutant
alleles loses its activity because of the lack of an active
site. Alternatively, HTRA1 protein expression from the
mutant allele is reduced in quantity because of nonsense-
mediated degradation of mRNA or unstable protein (1, 17).
Therefore, we consider the haploinsufficiency theory as the
underlying molecular mechanism in symptomatic carriers due
to these mutations.

On the other hand, with respect to missense mutations,
some mutations are found in the symptomatic carriers, and
others are not. We have shown that the mutant HTRA1s,
which are found in symptomatic carriers, are characterized

by either an inability to form a trimer or a mutation in the
L3/LD domain (18). HTRA1 activity is regulated by an allosteric
mechanism in which monomers relay an activation signal to
each other. Peptide binding serves as the allosteric activation
signal, which is transmitted to the protease domain via the
L3 sensor loop. L3 then transmits this signal to the activation
domain of the neighboring subunit through an interaction with
LD (33, 34). Thus, trimerization capacity and the L3 and LD
loops both play an essential role in HTRA1 activation. In
symptomatic carriers with missense mutations, failure of the
HTRA1 activation cascade results in a lack of normal activation
of WT HTRA1; that is, a dominant negative effect is elicited
(Figure 3) (7).

Indeed, we found that the missense mutations observed
in symptomatic carriers are concentrated around Y169 and
F171 in the linker region or on the LD loop. Ring stacking
interactions between Y169, F171, and F278 stabilize the
HTRA1 trimer (34, 47). Therefore, mutations in this region
disturb the formation of the trimer and decrease HTRA1
protease activity (7, 18). Moreover, we have revealed that
some mutations such as G283E, which occur outside the
ring-stacking region, result in trimerization failure, which
consequently decrease WT protease activity (7, 18). In addition,
none of the mutations observed only in CARASIL patients
were located on the LD/L3 loop (Table 2). Differences in the
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TABLE 3 | Summary of clinical and imaging information for patients with

HTRA1-related CSVD.

Symptomatic

carriers

CARASIL p

Patients 46 28

Age at the diagnosis

Means ± SD, years, (not

reported)

59.8 ± 10.5,

(0)

35.7 ± 8.8, (1) <0.01

Range, years 31–78 24–53

Male (%) 35 (76.1) 12 (42.9) <0.01

Family history

First or second relatives (%), (not

reported)

40 (88.9), (1) 20 (74.1), (1) 0.112

Family history of parents (%), (not

reported)

30 (75.0), (6) 7 (25.9), (1) <0.01

-Cognitive impairments 9 0

-Stroke 19 5

-Leukoencephalopathy 4 2

Consanguinity marriage of

parents (%), (not reported)

0, (1) 21 (77.8), (1) <0.01

Risk factors

Hypertension (%), (not reported) 20 (45.5), (2) 0, (7) <0.01

Diabetes mellitus (%), (not

reported)

0, (13) 0, (9) 1.000

Dyslipidemia (%), (not reported) 7 (19.4), (10) 0, (11) 0.082

Alcohol (%), (not reported) 3 (9.7), (15) 1 (5.9), (11) 1.000

Smoking (%), (not reported) 8 (22.9), (11) 4 (23.5), (11) 1.000

Age at the onset of neurological symptoms/signs

Means ± SD, years, (not

reported)

54.1 ± 11.4,

(6)

29.5 ± 5.5, (4) <0.01

Range, years 29–77 20–40

Neurological symptoms/signs

Cognitive impairments (%), (not

reported)

35 (77.8), (1) 22 (88.0), (3) 0.353

Gait disturbance (%), (not

reported)

29 (67.4), (3) 25 (92.6), (1) 0.019

Episode of Stroke (%), (not

reported)

29 (63.0), (0) 11 (40.7), (1) 0.089

-Ischemic stroke (%), (not

reported)

28 (60.9), (0) 9 (34.6), (2) 0.049

-Hemorrhagic stroke (%), (not

reported)

6 (15), (6) 1 (3.7), (1) 0.228

Any of cognitive impairments,

gait disturbance and stroke (%)

41 (89.1) 28 (100.0) 0.150

Migraine (%), (not reported) 6 (35.3), (29) 2 (12.5), (12) 0.225

Extraneurological symptoms/signs

Alopecia of younger onset (%),

(not reported)

5 (13.2), (8) 24 (85.7), (0) <0.01

Lumbago/spondylosis

deformans (%), (not reported)

21 (60.0), (11) 30 (100.0), (0) <0.01

MRI findings

Confluent WMHs (%) 37 (81.3) 28 (100.0) 0.011

LIs (%), (not reported) 39 (97.5), (6) 24 (100.0), (4) 1.000

MBs (%), (not reported) 19 (73.1), (20) 11 (84.6), (15) 0.689

Symptomatic carriers, heterozygous HTRA1-related CSVD; CARASIL, cerebral autosomal

recessive arteriopathy with subcortical infarcts and leukoencephalopathy; WMHs, white

matter hyperintensities; LIs, lacunar infarctions; MBs, microbleeds.

distribution and properties of missense mutations between
symptomatic carriers and CARASIL may explain why most
parents of CARASIL patients did not exhibit symptoms/signs
of CSVD.

We discuss the association between gene mutations and
prevalent carriers. No symptomatic carriers have been reported
in approximately half of the nonsense or frameshift mutations.
Many of the prevalent carriers with missense mutations are
also sporadic. In addition, the age at onset and severity of the
disease are extremely divergent, even for the same mutation.
The age at onset of neurological symptoms/signs in symptomatic
carriers was widely distributed. Four symptomatic carriers
exhibited neurological symptoms/signs before the age of 40
years (7, 10, 25, 27), whereas the oldest age at onset was
77 years (30). Furthermore, one symptomatic carrier did not
present with any apparent neurological symptoms/signs despite
being older than 70 years (24). In addition, heterogeneity of
age and severity at onset have previously been reported in
patients from the same family (19, 21). These indicate that
mutations alone cannot explain the age at onset or the severity
of the disease.

Thus, other factors may be involved in the onset and
severity of CSVD in symptomatic carriers. We have reported
that symptomatic carriers are more common in males and
have vascular risk factors more frequently than CARASIL
patients (7). The results suggest that gender and environmental
factors may be involved in the development of CSVD, whereas
strict control of vascular risk factors may intervene in the
development of CSVD among patients with heterozygous
mutations in HTRA1.

Limitations of the present study were as follows. First,
the pathogenicity of several missense mutations has been
undetermined.We excluded sevenmissensemutations according
to the results of protease activity or in silico analysis. These
mutations were assumed to be incidentally identified among
carriers because of the preserved function. However, recent
studies have shown that some missense mutations possibly
influence the stability of mutant HTRA1 proteins (6, 48).
This effect of the mutant protein might influence the residual
protease activity. Second, our data primarily comprised the
information and the description in each reported article.
Especially, for symptomatic carriers, there is a possibility that
some clinical information was underreported. Thus, some
clinical features or imaging data in the present study have a
lower frequency than those of the real clinical data. Third,
we could not analyze the detailed distribution of WMHs
in brain MRIs because of the lack of detailed descriptions
or figures in several articles. Several characteristic findings
of brain MRI have been reported in CARASIL such as
anterior temporal lesions or arc sign (49), however, the
frequencies of these findings remained to be unknown both
in CARASIL and symptomatic carriers to date. Further
research is required to clarify the specific findings in HTRA1-
related CSVD. Fourth, no comparative study has assessed the
pathological findings between the two groups. Hence, several
significant problems remain unresolved, such as the severity
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TABLE 4 | Summary of pathological findings in HTRA1-related cerebral small vessel disease cases.

Symptomatic carriers Symptomatic carriers CARASIL CARASIL CARASIL CARASIL

Amino acids p.G283E p.R302Q p.A173T p.A252T p.R302X p.R302X

Sex Male Male Female Female Male Female

Age at pathological analysis 56 61 35 51 54 46

Affected intracranial arteries

Large artery NA NA NA NA + +

Meningeal to leptomeningeal artery NA + NA + + +

Arterioles + + + + + +

Minimum diameter of arterioles (µm) ∼40 <100 NA NA 45 NA

Capillaries NA NA NA NA NA NA

Pathological findings of affected intracranial arteries

Myointimal thickening + + + + + +

Multilayered elastic laminae + + + + + +

Hyalinosis + + NA + + NA

Loss of medial smooth muscle cell (SMC) NA + + + + +

Narrowing of vascular lumens NA + NA + NA +

Positive findings with immunohistochemistry

Transforming growth factor NA + NA NA NA +

Phosphorylated Smad2 NA NA NA NA NA +

Latency-associated peptide NA NA NA NA NA +

Extradomain A fibronectin NA NA NA NA NA +

Fibronectin NA NA NA + NA NA

Versican NA NA NA NA NA +

Hyaluronan NA NA NA NA NA +

Collagen type I NA NA NA Weak NA NA

Collagen type III NA NA NA Weak NA NA

Collagen type IV NA NA NA Weak NA NA

Electron microscopy NA + NA + NA NA

Findings Dense deposit Lysosome-like body

Lipofuscin-like body

References (7) (43) (15) (31, 44, 45) (44) (1, 44, 46)

Symptomatic carriers, heterozygous HTRA1-related CSVD; CARASIL, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; NA, not available.

and distribution of the diseased vessels in symptomatic carriers
as compared with those in patients with CARASIL. Additional
research is required in the future to analyze the difference of
pathological features between symptomatic carriers and patients
with CARASIL.

The results described here support careful counseling of
HTRA1 mutation carriers by genetic counselors, who should
consider the differential pathogenicity of the various HTRA1
variants identified here. Eighteen of the twenty-eight mutations
found in symptomatic carriers have only been reported in
a single case each. This reinforces the notion that mutation
carriers do not always develop CSVD; rather, these mutations
appear to serve as a risk factor for CSVD. CADASIL type 2
(OMIM 616779) has been proposed as a name for symptomatic
HTRA1 mutation carriers. However, the penetrance of many
of the mutations identified in symptomatic carriers appears
to be low. Therefore, it may not be suitable to include
“dominant” in any name for this condition. Instead, HTRA1-
related CSVD, which includes both symptomatic carriers and

CARASIL patients, may serve as an appropriate name for
this condition. Further research is required to elucidate the
pathogenicity of each HTRA1 mutation in the development
of CSVD.

CONCLUSION

In the present article, we conducted a literature review
of HTRA1-related CSVD. We found that the clinical
symptoms/signs of symptomatic carriers were milder than
those of CARASIL patients, a result that was supported by
prior work. The locations of mutations found in symptomatic
carriers also differed from those found in CARASIL patients.
Missense mutations in symptomatic carriers were frequently
located in the linker region or L3/LD domain, whereas missense
mutations in CARASIL patients were more frequently located
in the protease domain and rarely in the L3/LD domain.
Both the linker region and L3/LD domain are critical sites for
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FIGURE 3 | Diagram representing HTRA1 protein activation status. The

wild-type (WT) HTRA1 protein physiologically forms a trimer and activates the

neighborhood HTRA1 protein through LD and the L3 domain (upper panel).

Yellow arrows indicate activation of the neighboring HTRA1s through LD and

the L3 domain. In carriers with CARASIL mutations, WT HTRA1, and mutant

HTRA1 form a trimer and activate neighboring WT HTRA1 (middle panel). In

symptomatic carriers, mutant HTRA1 interferes with the activation cascade of

the trimer, which results in decreased WT HTRA1 protease activity (lower

panel). Brown dashed arrows indicate failed activation of neighboring HTRA1s.

It is still remained unknown whether WT protein can activate neighboring WT

protein even in the trimeric state with dominant-negative mutant protein (yellow

dashed line).

HTRA1 protein activation via intermolecular communication
mechanisms. Mutations in the linker region or L3/LD domain
will interfere with this activation, which has a dominant
negative effect, whereas heterozygous HTRA1 mutations, which
are located outside the linker or L3/LD domain, require a
careful evaluation of pathogenicity. The findings presented
here will improve genetic counseling for both the relatives
of CARASIL patients and carriers of HTRA1 variants with
sporadic CSVD.
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