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Abstract. The occurrence and development of hypergly-
cemia-induced inflammation is associated with increased 
expression of receptor for advanced glycation end products 
(RAGE) and inflammatory factors, including IL‑1β, TnF-α 
and il-6. Previous studies have reported that the nucleo-
tide-binding oligomerization domain-like receptor protein 3 
(NLRP3) inflammasome interacts with thioredoxin‑interacting 
protein (TXNIP) and serves a crucial role in inflammation. 
FPS‑ZM1 has been identified as target inhibitor of RAGE and 
has been shown to exert an anti‑inflammatory effect in vitro. 
However, the underlying mechanism by which FPS‑ZM1 
impacts high glucose (HG)-induced inflammation in bone 
marrow mesenchymal stem cells (BMScs) remains unclear. 
The present study explored the regulatory effect of FPS‑ZM1 
on HG‑induced inflammation in BMSCs. Furthermore, the 
role of the TXNIP/NLRP3 inflammasome signaling pathway 
in the regulatory effects of FPS‑ZM1 on HG‑induced inflam-
mation was studied. cell viability was determined using 
cell counting Kit-8 and western blotting was used to assess 
the protein expression levels of raGe. eliSa was used to 
determine the levels of inflammatory markers. Reverse tran-
scription-quantitative Pcr and western blotting were used to 
measure the mrna and protein expression levels of TXniP, 
caspase‑1, thioredoxin (TRX), NLRP3 and apoptosis‑related 
speck-like protein containing card (aSc). The results 
revealed that in BMScs, raGe expression was stimulated by 
HG, an effect which was reversed by treatment with FPS‑ZM1. 
in addition, HG activated inflammatory factors, such as 
TnF-α, IL‑1β and il-6; however, their levels were suppressed 

when cells were treated with FPS‑ZM1 or the TXNIP/NLRP3 
pathway inhibitor, resveratrol (Res). Furthermore, FPS‑ZM1 
inhibited the mrna and protein expression levels of TXniP, 
caspase‑1, NLRP3 and ASC, and promoted TRX expres-
sion, which was consistent with the effects of res. These 
findings indicated that FPS‑ZM1 may attenuate HG‑induced 
inflammation in BMSCs. Furthermore, the TXNIP/NLRP3 
inflammasome signaling pathway mediated the molecular 
mechanism underlying this effect.

Introduction

diabetes mellitus is a disease associated with numerous 
complications (1). Hyperglycemia affects patients with 
diabetes by damaging macro- and microvessels, thus resulting 
in retinopathy, neuropathy and nephropathy, and cardiovas-
cular, cerebrovascular and other serious complications (2,3). 
although multiple mechanisms cause diabetic complications, 
growing evidence has suggested that immoderate aggregation 
of advanced glycation end products (aGes) may be a caus-
ative factor (4). excessive aGes activate and interact with the 
receptor for AGEs (RAGE), leading to the activation of inflam-
matory factors (5,6). FPS‑ZM1 is a specific and high‑affinity 
inhibitor of raGe (7). numerous studies have reported that 
FPS‑ZM1 exerts an anti‑inflammatory effect on various 
cells, and on human periodontal ligament fibroblasts and 
human gingival fibroblasts (8‑10). These findings suggested a 
promising application of FPS‑ZM1 in preventing periodontal 
diseases. However, further studies are required to explore its 
application and importance in the medical field.

it has been reported that expression of raGe is high in 
gingival fibroblasts, periodontal ligament fibroblasts and 
periodontal ligament stem cells in a high glucose (HG) 
environment (11). Under HG conditions, various inflamma-
tory factors, including but not limited to IL‑1β, high mobility 
group box‑1, IL‑6, intercellular adhesion molecule‑1 and 
TnF-α, can be activated through the combination of raGe 
and AGEs (12,13). These inflammatory cytokines have been 
demonstrated to cause inflammation in periodontal tissues, 
including the alveolar bone and surrounding soft tissues (14,15). 
As observed previously, IL‑6, IL‑1β and TnF-α largely accu-
mulate in the periodontal tissues of patients with diabetes (16). 
Bone marrow mesenchymal stem cells (BMScs) are present in 
the alveolar bone and possess multi-directional differentiation 
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potential; these cells have an essential role in bone forma-
tion (17). It has previously been reported that the release of 
inflammatory cytokines promotes the proliferation of BMSCs 
in a HG environment, thus suggesting its application in the 
pathological process of periodontal diseases (18). Therefore, 
this study aimed to assess how HG activates inflammatory 
cytokines in BMScs.

Several intracellular signaling pathways involved in the 
activation of inflammatory cytokines are currently being 
studied. notably, to the best of our knowledge, the infec-
tion-associated proinflammatory function of nF-κB is the 
most widely studied (19). The thioredoxin‑interacting protein 
(TXniP)/nucleotide-binding oligomerization domain-like 
receptor protein 3 (NLRP3) inflammasome pathway has been 
reported to be associated with diabetes‑associated inflamma-
tion (20). The NLRP3 inflammasome has been well studied 
and is comprised of three components: nlrP3 protein, apop-
tosis-related speck-like protein containing card (aSc) and 
caspase‑1 (21). The NLRP3 inflammasome can detect danger 
signals, known as danger-associated molecular patterns (22). 
NLRP3 agonists can activate caspase‑1, which in turn releases 
the proinflammatory cytokines IL‑18 and IL‑1β (23,24). The 
role of the nlrP3 inflammasome has been demonstrated 
in the pathogenic process of various diseases including, but 
not limited to, alzheimer's disease, osteoarthritis and type 2 
diabetes (25-27).

However, few studies have described the mechanism 
through which the nlrP3 inflammasome is activated. 
Functionally, TXniP dissociates from thioredoxin (TrX), 
combines directly with nlrP3 and activates it (28). in 
addition, recent studies have demonstrated that TXniP is 
upregulated in diabetes‑related inflammation (20,29). In 
patients with diabetes, hyperglycemia has been suggested to 
stimulate the expression of TXniP (30). Therefore, it may be 
hypothesized that HG activates the NLRP3 inflammasome by 
promoting TXniP expression.

The aim of the present study was to assess the expression of 
raGe in BMScs under HG stimulation, and to investigate the 
expression of related inflammatory cytokines and the potential 
molecular mechanisms in response to a raGe-specific 
inhibitor. consequently, the feasibility of using raGe as a 
target for drug therapy to prevent periodontal inflammation 
and promote the healing process of bone tissue injury in 
patients with diabetes was considered.

Materials and methods

Cell culture. Bena culture collection; Beijing Beina 
chunglian Biotechnology research institute provided the 
rat BMScs. cells were cultured under normal glucose (nG; 
5 mM) or HG (25 mM) conditions in dMeM (Hyclone; 
Cytiva) supplemented with 10% FBS (Gibco; Thermo Fisher 
Scientific, Inc.) and 1% penicillin‑streptomycin solution 
(Beyotime institute of Biotechnology). cells were cultured 
in a humidified atmosphere containing 5% CO2 at 37˚C. 
Through the cell viability assay, an optimal concentration 
of FPS‑ZM1 (500 nM; Beyotime Institute of Biotechnology) 
was selected to treat the cells, with or without HG stimulation 
for 48 h. The TXniP inhibitor resveratrol (res; 50 µmol/l; 
Beyotime institute of Biotechnology) was used to inhibit the 

TXniP/nlrP3 pathway. cells were stimulated with res for 
2 h at 37˚C in the dark and were then incubated under HG 
conditions for 48 h. BMScs were cultured to 4-7 generations 
for subsequent experiments.

Cell viability assay. cell viability was determined using 
the cell counting Kit (ccK)-8 assay (dojindo Molecular 
Technologies, Inc.). Firstly, cells were seeded in a 96‑well 
plate at a density of 5x103 cells/well. The cells were grown 
to ~90% confluence and were then co‑cultured with various 
concentrations of FPS‑ZM1 (0, 250, 500 or 750 nM) and HG 
(25 mM) at 37˚C. Subsequently, the viability of the cultured 
cells was detected after 24, 48 or 72 h. The original medium 
was removed and 100 µl serum‑free DMEM containing 10 µl 
ccK-8 solution was added to each well. cells were subse-
quently incubated for 2 h at 37˚C with 5% CO2. Finally, a 
Varioskan Flash microplate reader (Thermo Fisher Scientific, 
inc.) was used to detect the absorbance value at 450 nm. The 
mean absorbance values of the control group obtained from 
the three different time‑points were set as 100%. Experiments 
were conducted three times.

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR). The expression of specific genes (NLRP3, ASC, 
caspase‑1, TXNIP and TRX) were quantitatively assessed by 
rT-qPcr. rna was isolated from cultured BMScs using 
Trizol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.). 
Subsequently, rT of total rna into cdna was conducted 
using the Prime Script rT reagent kit (Takara Bio, inc.), 
according to the manufacturer's protocol. SYBr FaST qPcr 
Master Mix (Kapa Biosystems; roche diagnostics) and a 
CFX‑Connect 96 RT‑qPCR system (Bio‑Rad Laboratories, 
Inc.) were used to carry out the amplification of target genes. 
The PCR protocol was as follows: 95˚C for 3 min, followed 
by 40 cycles at 95˚C for 5 sec and 56˚C for 10 sec, and a final 
extension step at 72˚C for 25 sec. The mRNA levels of the 
specific genes were normalized to β-actin and expressed as a 
ratio to the internal reference. The primer sequences used for 
Pcr are listed in Table i. The relative mrna expression levels 
were calculated using the 2‑ΔΔCq method and are presented as 
calculated values (31).

ELISA. cell supernatants were obtained by centrifugation 
(1,000 x g; room temperature; 10 min) after treatment at 48 h 
and stored at ‑80˚C for follow‑up experiments. Activation 
of inflammatory factors was quantified using rat IL‑1β 
(cat. no. rlB00), TnF-α (cat. no. rTa00) and il-6 (cat. 
no. r6000B) eliSa kits (all r&d Systems, inc.), according 
to the manufacturer's protocols. experiments were carried out 
three times.

Protein isolation and western blot analysis. The expression 
levels of specific proteins (NLRP3, ASC, caspase‑1, TXNIP, 
TrX and raGe) were detected by western blotting. Proteins 
were extracted from cultured BMScs using riPa buffer 
(Thermo Fisher Scientific, Inc.) at 4˚C and total protein was 
boiled at 95˚C for 10 min and centrifuged at room temperature 
at 12,000 x g for 10 min. The bicinchoninic acid protein assay 
kit (Beijing Solarbio Science & Technology, co., ltd.) was 
used for protein quantification. Protein samples (20 µg) were 
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separated by 12% SDS‑PAGE (Sigma‑Aldrich; Merck KGaA) 
and were blotted onto polyvinylidene fluoride membranes 
(EMD Millipore). The membranes were then blocked in 5% 
skim milk in PBS‑0.05% Tween‑20 at room temperature for 
1 h. The membranes were then incubated with primary anti-
bodies against RAGE (rabbit; 1:1,000; cat. no. PAB32996), 
NLRP3 (rabbit; 1:2,000; cat. no. PAB37930), ASC (rabbit; 
1:1,000; cat. no. PAB30696), caspase‑1 (rabbit; 1:1,000; 
cat. no. PAB36756), TXNIP (rabbit; 1:1,000; cat. no. PAB43948), 
TRX (rabbit; 1:1,000; cat. no. PAB32168) and β-actin (rabbit; 
1:1,000; cat. no. PAB36265) (all Bioswamp) at 4˚C over-
night. β-actin was used as the loading control. Subsequently, 
membranes were incubated with horseradish peroxidase-conju-
gated goat anti‑rabbit antibodies (1:20,000; cat. no. SAB43714; 
Bioswamp) for 1 h at room temperature. An enhanced chemi-
luminescence kit (analytik Jena aG) was used to measure 
reactivity, and the target bands were detected, and protein 
expression was semi‑quantified using TANON GIS 4.2 software 
(Tanon Science & Technology co., ltd.). The detected protein 
expression levels were normalized to those of β-actin.

Statistical analysis. all data obtained from three experimental 
repeats are presented as the mean ± standard deviation, and 
statistical analyses were conducted using SPSS 19.0 software 
(iBM corp.). one-way analysis of variance was used for 
multiple group comparisons, and Tukey's post hoc test was 
used for intergroup comparisons. P<0.05 was considered to 
indicate a statistically significant difference.

Results

FPS‑ZM1 inhibits HG‑induced cell viability. To verify suitable 
time‑points and the optimal concentration of FPS‑ZM1 for 
follow‑up experiments, BMSCs were treated with FPS‑ZM1 
(0, 250, 500 and 750 nM) for 24, 48 and 72 h. alterations in 

BMSC viability are presented in Fig. 1. Compared with in the 
NG group, HG stimulation significantly enhanced the viability 
of BMScs at all selected time points (P<0.05). notably, no 
significant alterations in BMSc viability were detected 
following treatment with 250, 500 or 750 nM FPS‑ZM1 for 
24 h. Conversely, treatment with 500 and 750 nM FPS‑ZM1 
for 48 or 72 h significantly alleviated HG‑induced cell viability 
compared with the HG group (P<0.05). No significant differ-
ences in viability were observed between cells treated with 
500 or 750 nM FPS‑ZM1 for 48 and 72 h (P>0.05). These 
results indicated that HG may promote the viability of BMScs 
at 48 h, but this effect may gradually decrease as the culture 
time increases.

FPS‑ZM1 alleviates HG‑induced inflammatory factor acti‑
vation in BMSCs. eliSa kits were used to detect the levels 
of il-6, TnF-α and IL‑1β in BMScs under different treat-
ments. The impact of FPS‑ZM1 on HG‑induced intracellular 
inflammation was also assessed. As presented in Fig. 2, the 
concentrations of TnF-α, IL‑1β and il-6 were elevated under 
HG conditions compared with in the nG group (P<0.05). 
However, FPS‑ZM1 significantly reduced the effects of HG on 
inflammatory marker levels (P<0.05). Similarly, the concen-
trations of TnF-α, IL‑1β and il-6 were decreased in BMScs 
after pretreatment with res (P<0.05).

FPS‑ZM1 inhibits RAGE expression in HG‑induced BMSCs. 
To explore the impact of FPS‑ZM1 on RAGE expression in 
BMScs under HG conditions, western blotting was used to 
assess the protein expression of raGe. raGe expression was 
increased in BMScs under HG conditions, whereas treatment 
with FPS‑ZM1 inhibited the increase in RAGE expression in 
HG-induced BMScs (P<0.05) (Fig. 3).

FPS‑ZM1 inhibits HG‑induced TXNIP/NLRP3 inflamma‑
some activation. The present study aimed to determine 
whether FPS‑ZM1 inhibited inflammation through the 

Table i. Primer sequences used for reverse transcription-quan-
titative Pcr.

Gene Primer sequence (5'-3')

nlrP3 F-caTcTTaGTccTGccaa
 r-caacaGacGcTacaccc
aSc F-aGcaTccaGcaaacca
 r-GGaccccaTaGaccTca
Caspase‑1 F‑TTGAAGAGCAGAAAGCA
 r-caGTaGGaaacTccGaaG
TXniP F-caaGGTaaGTGTGccG
 r-GaTTcTGTGaaGGTGaTGa
TrX F-ccaaccTTTTGacccTTT
 r-cccTTcTTTcaTTcccTc
β-actin F-TaGGaGccaGGGcaGTa
 r-cGTTGacaTccGTaaaGac

F, forward; r, reverse; nlrP3, nucleotide-binding oligomerization 
domain-like receptor protein 3; aSc, apoptosis-related speck-like 
protein containing card; TXniP, thioredoxin-interacting protein; 
TrX, thioredoxin.
 

Figure 1. Effects of FZ (0, 250, 500 and 750 nM) on bone marrow mesen-
chymal stem cell viability at 24, 48 and 72 h. cell counting Kit-8 assay was 
performed after co‑culturing cells with FPS‑ZM1 and HG for 48 h. Data 
are presented as the mean ± standard deviation. *P<0.05 vs. the nG group; 
#P<0.05 vs. the HG group. FZ, FPS‑ZM1; HG, high glucose; NG, normal 
glucose.
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TXniP/TrX/nlrP3 inflammasome signaling pathway. 
as presented in Fig. 4, the mrna expression of TXniP, 
NLRP3, ASC and caspase‑1 were increased, whereas TRX 
expression levels were decreased in HG-induced cells 
(P<0.05). Treatment with FPS‑ZM1 or pretreatment with Res 
reduced the expression of TXNIP, caspase‑1, NLRP3 and 
aSc, and enhanced TrX expression (P<0.05). Similar results 
were determined by western blotting; TXniP, nlrP3, aSc 
and caspase‑1 levels were increased, whereas TRX expression 
was decreased in HG-induced BMScs (P<0.05). However, 
these effects were significantly reversed by FPS‑ZM1 or Res 
(P<0.05) (Fig. 5). These results indicated that FPS‑ZM1 may 
inhibit TXniP/nlrP3 activation under a HG environment.

Discussion

aGes have been reported to aggregate within the oral peri-
odontal tissues of patients with diabetes, contributing to 
the inflammatory process in the surrounding soft and hard 
tissues (32,33). Inflammation may be enhanced when AGEs 
bind to raGe, thus resulting in upregulation of various 
proinflammatory factors (34). IL‑1β is considered the most 
important cytokine, which serves a crucial role in the inflam-
matory process (35). IL‑6 is a proinflammatory cytokine that 
is closely related to periodontitis and rheumatoid arthritis (36). 
TnF-α promotes T cells by secreting various activated cyto-
kines, which are closely associated with autoimmune diseases, 
inflammation and diabetes (37).

raGe is highly expressed in numerous cell types 
in periodontal tissues under HG stimulation, including 
BMSCs (18,38). It is well known that BMSCs are characterized 
by multidirectional differentiation and low immunity, and the 
potential immune-regulating effect of BMScs has garnered 
increasing attention. BMScs are functional and pivotal cells 
that repair damaged tissues and organs, including bone tissue, 
cartilage and joint injury (39). However, the differentiation 
of BMScs into osteoblasts, lipoblasts or chondroblasts can 
be inhibited by inflammation, thus affecting the tissue repair 
process (40). BMSc inflammation has been reported to 
respond to HG; a previous study revealed that BMScs isolated 
from diabetic rats exhibited stronger expression of nF-κB 
and IL‑18 compared with normal rats (41). The present study 
assessed the inflammatory response of BMSCs induced by 
HG in vitro. Subsequently, the effects of FPS‑ZM1 on regu-
lating HG‑induced inflammation and the underlying potential 
mechanism were determined.

in the present study, the effects of HG were detected on 
raGe expression in BMScs; the results indicated that HG 
exposure stimulated the increased expression of raGe in 
BMSCs. However, FPS‑ZM1, a RAGE‑specific inhibitor, 
reversed the enhanced expression of raGe induced by HG. 
In addition, the effects of various concentrations of FPS‑ZM1 
(0, 250, 500 and 750 nM) for different durations on BMScs 
were examined. The viability of BMScs was enhanced under 
HG conditions. Conversely, FPS‑ZM1 alleviated HG‑induced 
viability. The present study identified significant differences 
between the nG group and the HG-treated groups regardless 

Figure 3. effects of FZ on raGe protein expression. Western blotting was 
performed after cells were co-cultured with FZ and HG for 48 h. β-actin was 
used as the loading control. (a) raGe protein was measured by western blot-
ting. (B) The raGe/β-actin ratio was calculated to perform densitometric 
analysis of band intensity. data are presented as the mean ± standard devia-
tion. *P<0.05 vs. the nG group; #P<0.05 vs. the HG group. FZ, FPS‑ZM1; 
raGe, receptor for advanced glycation end products; nG, normal glucose; 
HG, high glucose.

Figure 2. Effects of FZ treatment on the concentration of inflammatory factors in bone marrow mesenchymal stem cells. ELISA was performed after cells 
were pretreated with Res for 2 h or co‑cultured with FZ and HG for 48 h. Levels of (A) IL‑1β, (B) il-6 and (c) TnF-α were analyzed. data are presented as 
the mean ± standard deviation. *P<0.05 vs. the normal glucose group; #P<0.05 vs. the HG group. FZ, FPS‑ZM1; Res, resveratrol; HG, high glucose.
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of treatment duration. cell viability of the HG group was 
significantly increased compared with NG group, and peaked 
at 48 h; however, the cell viability began to decrease from 
72 h, which might be due to time-dependent HG aggravation 
of oxidative stress in BMScs (42,43). it has been reported 

that AGE expression can significantly inhibit the viability of 
cells, such as fibroblasts, in a time‑dependent manner (44). 
aGes may destroy stability of the internal environment by 
enhancing intracellular oxidative stress, thus inhibiting cell 
viability (45).

Figure 5. Effect of FZ on target protein expression levels, including ASC, TXNIP, NLRP3, caspase‑1 and TRX. Western blot analysis was performed after cells 
were pretreated with Res for 2 h or co‑cultured with FPS‑ZM1 and HG for 48 h. β-actin was used as a loading control. (a) Protein expression levels of nlrP3, 
caspase‑1, ASC, TXNIP and TRX were measured by western blotting. (B) NLRP3/β‑actin, caspase‑1/β-actin, aSc/β-actin, TXniP/β-actin and TrX/β-actin 
ratios were calculated to perform densitometric analysis of band intensity. data are presented as the mean ± standard deviation. *P<0.05 vs. the nG group. 
#P<0.05 vs. the HG group. FZ, FPS‑ZM1; ASC, apoptosis‑related speck‑like protein containing CARD; TXNIP, thioredoxin‑interacting protein; NLRP3, 
nucleotide-binding oligomerization domain-like receptor protein 3; TrX, thioredoxin; nG, normal glucose; HG, high glucose; res, resveratrol.

Figure 4. Effects of FZ on the mRNA expression levels of ASC, TXNIP, NLRP3, caspase‑1 and TRX. Reverse transcription‑quantitative PCR was performed 
after cells were pretreated with Res for 2 h or co‑cultured with FZ and HG for 48 h. (A) NLRP3, (B) ASC, (C) caspase‑1, (D) TXNIP and (E) TRX mRNA 
expression. data are presented as the mean ± standard deviation. *P<0.05 vs. the normal glucose group; #P<0.05 vs. the HG group. FZ, FPS‑ZM1; ASC, 
apoptosis-related speck-like protein containing card; TXniP, thioredoxin-interacting protein; nlrP3, nucleotide-binding oligomerization domain-like 
receptor protein 3; TrX, thioredoxin; HG, high glucose; res, resveratrol.
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The present study assessed the effects of FPS‑ZM1 on 
HG‑stimulated inflammation in BMSCs. It was previously 
observed that HG conditions promoted inflammatory factors 
and inflammatory cytokines, such as TNF‑α, IL‑1β and il-6, 
in periodontal tissues (46,47). The present study on BMScs 
presented similar findings; TNF‑α, IL‑1β and il-6 expression 
was enhanced after HG stimulation, whereas these effects 
were inhibited by FPS‑ZM1. FPS‑ZM1 exerted a protective 
effect against HG conditions in vitro; however, the mechanism 
underlying the anti‑inflammatory effects of FPS‑ZM1 has yet 
to be determined.

The present study indicated that the TXniP/nlrP3 
pathway may serve a role as the intracellular transduction 
pathway underlying the regulatory effects of FPS‑ZM1 on 
HG-induced inflammation. The nlrP3 inflammasome 
is a protein complex that regulates inflammation and cell 
death (48). Previous studies have reported that nlrP3 
can be overexpressed in epithelial cells or fibroblasts by 
glucose, oxidative stress and other types of stimulation, and 
it has been suggested to affect diabetes-related periodontal 
diseases (49,50). TXNIP has been recognized as an early 
mediator associated with diabetic inflammation (51). TXNIP 
binds to TrX and inhibits its activity; therefore, TXniP is 
also called the TrX-binding protein (52). Hyperglycemia may 
upregulate TXNIP by directly activating the NLRP3 inflamma-
some, followed by an enhancement of inflammation‑activated 
factors (53). In the present study, FPS‑ZM1 downregulated 
HG-induced expression of TXniP and nlrP3. Furthermore, 
the downregulation of TrX expression stimulated by HG was 
reversed by FPS‑ZM1. These findings confirmed the role of 
the TXNIP/NLRP3 inflammasome signaling pathway in the 
regulatory effects of FPS‑ZM1 on HG‑induced BMSC. This 
pathway was also inactivated by res.

A previous study reported that Res significantly inhibited 
the activity of the TXNIP/NLRP3 inflammasome pathway to 
achieve the pharmacological effect of inhibiting inflamma-
tion (54). in the present study, pretreatment with res disrupted 
the activity of the TXNIP/NLRP3 inflammasome pathway. 
Furthermore, res downregulated HG-induced expression 
of TnF-α, IL‑1β and IL‑6. These findings further support 
the hypothesis that the TXniP/nlrP3 inflammasome 
signaling pathway is involved in HG‑stimulated inflammation. 
Therefore, inhibition of the TXNIP/NLRP3 inflammasome 
signaling pathway may be considered one of the mechanisms 
underlying the anti‑inflammatory effects of FPS‑ZM1.

The present study also revealed that although the mrna 
and protein expression levels of inflammation-associated 
molecules, such as NLRP3, caspase‑1, ASC and TXNIP, 
were higher in the HG group than in the nG group, there 
was a marked difference between mrna and protein 
expression levels. There exists a linear correlation between 
mrna and protein expression, and the change ratio should 
be the same; however, the results of other experimental 
studies have demonstrated that the linear correlation is not 
very high (55,56). This phenomenon has been reported by 
numerous studies and may be explained as follows: Gene 
expression is regulated in numerous ways, not just by 
transcriptional regulation (e.g., histone modification, DNA 
methylation and transcription factor regulation), but also by 
post-transcriptional alterations, such as microrna targeting, 

RNA‑binding proteins or RNA modification (57‑59). In 
addition, various factors, including mrna degradation, 
protein degradation and protein folding may lead to differ-
ences between mRNA and protein expression levels (60,61). 
How the reasons for the differences observed between the 
mrna and protein expression remain unknown and should 
be further investigated in the future.

In conclusion, the regulatory effects of FPS‑ZM1 on 
HG-induced inflammation and nlrP3 accumulation in 
BMScs were investigated. HG stimulated raGe expression 
in BMSCs and mediated a series of inflammatory responses, 
whereas treatment with FPS‑ZM1, a RAGE‑specific inhibitor, 
protected BMScs by exerting anti-inflammatory effects, 
specifically reducing HG-induced cell viability, inflamma-
tory factor production and TXniP/nlrP3 inflammasome 
signaling pathway activation. in addition, inactivation of the 
TXNIP/NLRP3 inflammasome by Res exhibited similar effects 
as FPS‑ZM1, which indicated that the molecular mechanism 
underlying the anti‑inflammatory effect of FPS‑ZM1 may be 
associated with the TXNIP/NLRP3 inflammasome signaling 
pathway. Based on the anti‑inflammatory effects, the results of 
the present study provided a novel therapeutic approach and 
target drug therapy for patients with diabetes with acceler-
ated occurrence and development of periodontal diseases. 
nonetheless, these studies were limited to in vitro experiments 
on BMSCs. Further studies regarding the role of FPS‑ZM1 on 
peri-implantitis or periodontal tissues in animal models are 
required, as the human microenvironment is more complicated, 
and an assessment of the response in vivo is necessary.
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