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tRNA molecules are post-transcriptionally modified by tRNA modification

enzymes. Although composed of different chemistries, more than 40 types

of human tRNA modifications play pivotal roles in protein synthesis by reg-

ulating tRNA structure and stability as well as decoding genetic informa-

tion on mRNA. Many tRNA modifications are conserved among all three

kingdoms of life, and aberrations in various human tRNA modification

enzymes cause life-threatening diseases. Here, we describe the class of dis-

eases and disorders caused by aberrations in tRNA modifications as ‘tRNA

modopathies’. Aberrations in over 50 tRNA modification enzymes are asso-

ciated with tRNA modopathies, which most frequently manifest as dysfunc-

tions of the brain and/or kidney, mitochondrial diseases, and cancer.

However, the molecular mechanisms that link aberrant tRNA modifications

to human diseases are largely unknown. In this review, we provide a com-

prehensive compilation of human tRNA modification functions, tRNA

modification enzyme genes, and tRNA modopathies, and we summarize the

elucidated pathogenic mechanisms underlying several tRNA modopathies.

We will also discuss important questions that need to be addressed in order

to understand the molecular pathogenesis of tRNA modopathies.

Introduction and definition of ‘tRNA modopathy’

The precise and efficient translation of genetic informa-

tion into proteins is essential for life. tRNA molecules

function as adaptor molecules that translate transcribed

genetic information in the form of mRNA into 20

amino acids that form proteins [1,2]. Protein synthesis

occurs in the cytoplasm using hundreds of human cyto-

plasmic tRNA species, which are transcribed from more

than 400 tRNA genes encoded in the nuclear

chromosomes [3]. Protein synthesis also takes place

within mitochondria, where 13 oxidative phosphoryla-

tion (OXPHOS) complex proteins are translated using

22 tRNAs transcribed from mitochondrial DNA [4].

tRNA molecules are composed of a highly conserved

cloverleaf secondary structure, which consists of an

acceptor stem, dihydrouridine (D) loop, D arm, anti-

codon loop, anticodon arm, variable loop, TΨC (T)
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loop, and T arm (Fig. 1A,B). tRNA molecules form an

L-shaped tertiary structure via multiple hydrogen bonds

between loops and helices. In addition to the character-

istic L-shape, another structural feature of tRNAs is

their chemically modified nucleosides (Fig. 1C). tRNA

modifications are post-transcriptionally added to tRNA

by specific modifying enzymes. By counting one chemi-

cal structure as one modification (e.g., pseudouridines at

various positions incorporated by different enzymes are

counted as one modification), we counted 43 types of

known stable tRNA modifications that exist in humans.

These modifications are incorporated by at least 73

human enzymes and partner proteins (including con-

firmed proteins and widely accepted candidates). Due to

their importance in protein synthesis, the dysfunction

and aberrant expression of more than 50 tRNA modifi-

cation enzymes are known to be associated with human

diseases. The diseases caused by aberrations in RNA

modification were collectively named ‘RNA mod-

opathies’ by the Tsutomu Suzuki group and our group

[5]. Although several RNA modopathies occur due to

aberrations in mRNA or rRNA modifications, in this

review, we will focus on ‘tRNA modopathies’, which

are the diseases and disorders caused by aberrations in

tRNA modifications.

In this review, we provide a comprehensive compila-

tion of human tRNA modification functions, tRNA

modification enzymes, and tRNA modopathies and

discuss the important questions that need to be

addressed to elucidate the pathogenic molecular mech-

anisms underlying tRNA modopathies. To understand

how tRNA modopathies are caused, it is essential to

understand the chemical properties and molecular

functions of tRNA modifications. The most important

functions of tRNA modifications are tRNA stability

regulation and codon recognition. Therefore, we will

start by considering these two functions. In this

review, we introduce insights that were derived mostly

from the study of mammalian cells and animals. Many

tRNA modifications, however, are conserved or some-

times functionally converged across the three domains

of life. Please refer to other excellent reviews for gen-

eral information on the codon table [6], anticodon

modifications [7], modification-mediated tRNA stabi-

lization [8], methylation [9], pseudouridine [10], and

modification pathways [11].

Function of tRNA modifications:
regulation of the physical and
biochemical stability of tRNA

tRNA modifications regulate the stability of the tRNA

structure in three ways: (a) stabilization of overall

tRNA structure, (b) regulation of tRNA local struc-

ture, and (c) inhibition of RNase-mediated tRNA

degradation.

Stabilization of overall tRNA structure

The overall tRNA structure can be compromised upon

a loss of human tRNA modification, such as 1-methy-

ladenosine (m1A) at position 9 (m1A9) and N2,N2-

dimethylguanosine (m2
2G) at position 26 (m2

2G26).

m1A and m2
2G possess methyl groups in their Watson-

Crick faces (Fig. 1C). Thus, m1A9 and m2
2G26 prevent

the Watson-Crick base pairing of A–U and G–C,
respectively. A classic example is human mitochondrial

(mt) tRNALys. An unmodified in vitro transcript of

tRNALys forms a rod-like structure by making an aber-

rant A9-U64 base pair. The introduction of m1A9, a

single methyl group, leads to the disruption of the A9-

U64 pair and enables the formation of a functional

tRNA structure [12]. The correct tRNA structure is fur-

ther stabilized by m2G10, although m2G10 alone cannot

correct the tRNA structure [13]. The TRMT10C and

HSD17B10 proteins cooperatively incorporate mt

tRNA m1A9 [14], and a mutation in either protein can

result in mitochondrial dysfunction-associated disease

that sometimes results in infantile death [15,16]. Many

cytoplasmic tRNAs have m1G and not m1A at position

9. As the methyl group of m1G also disrupts the G-C

base pair, m1G9 may also be involved in maintaining

the tRNA structure, and experimental studies of this

possibility are required.

Another example of a tRNA modification that stabi-

lizes the overall tRNA structure is m2
2G26 of the

human cytoplasmic tRNAAsn. Without m2
2G26, an

aberrant G26-C11 base pair forms in tRNAAsn and

disrupts the tRNA structure. m2
2G26 prevents the for-

mation of that abnormal base pair and instead forms

a hydrogen bond with A44 to stabilize the tRNA

structure (Fig. 1A,B) [17]. m2
2G26 is incorporated by

tRNA methyltransferase 1 (TRMT1) [18,19], and

mutations in TRMT1 result in microcephaly and intel-

lectual disability [20].

A network of hydrogen bonds collectively contributes

to maintaining the L-shaped tRNA tertiary structure

(dotted lines in Fig. 1A,B). In the model case of yeast

tRNAPhe, such tertiary interactions include G18-Ψ55,
G19-C56, and T(m5U)54-m1A58 interactions. In addi-

tion, the tRNA structure is stabilized by base triplets, in

which a canonical Watson-Crick base pair further inter-

acts with a third base using the space in the major groove

of the helix. Base triplets form between bases 25–10–45,
9–12–23, and 13–22–46 (Fig. 1B) [21]. Among these

interactions, tRNA modifications of m1A58 and m7G46
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contribute by increasing the binding energies of T54-

m1A58 and 13–22–m7G46 interactions [22].

Regulation of tRNA local structure

In addition to the stabilization of the overall tRNA

structure, tRNA modifications regulate the local tRNA

structure in two main ways: (a) strengthening/weakening

the rigidity of the RNA helical structure and (b) shaping

the ‘U-turn’ anticodon loop structure.

Four types of tRNA modifications are known to

affect RNA helix structural rigidity: (a) 20-O-methyla-

tion (Nm, N = any bases), (b) 2-thiolation of xm5s2U

derivatives [5-methoxycarbonylmethyl-2-thiouridine

(mcm5s2U), or sm5s2U in humans], (c) pseudouridine,

and (d) dihydrouridine. The ribose ring can form two

conformations, namely the C20-endo conformation and

C30-endo conformation (Fig. 1D) [23]. When the

ribose is in the C20-endo form, the base and the 20-hy-
droxyl group are in proximity (Fig. 1D). In the pres-

ence of Nm or 2-thiolation of xm5s2U derivatives, the

C30-endo form is predominant due to the increased

steric repulsion between the even enlarged 20 hydroxyl
moiety and the base [23,24].

Pseudouridine (Ψ) is a C–C glycosidic isomer of uri-

dine (Fig. 1C). This isomerization exposes the N1 hydro-

gen, which can bridge with the phosphate backbone via a

water molecule. Pseudouridylation improves base stack-

ing in a helical environment, favoring the ribose C30-
endo conformation [25,26]. These Ψ-mediated structural

stabilizations are the likely cause of the tRNA thermal

stabilization observed in the presence of Ψ27, Ψ39, or
Ψ50 [27–29]. Together, Nm, the 2-thiolation of xm5s2U

derivatives, and Ψ can stabilize the RNA helical structure

in the tRNA arm or codon–anticodon minihelix. Many

of these modifications are essential for health. For

instance, mutations in the genes of the enzymes responsi-

ble for 2-thiolation of xm5s2U derivatives, Gm34, or Ψ39
result in microcephaly and/or intellectual disability and/

or nephropathy [30–32].

In contrast to Nm, 2-thiolation, and Ψ that stabilize

the RNA helical structure, dihydrouridine (D) destabi-

lizes the helical structure. Indeed, D is observed only

within loops, namely at D loop positions 16, 17, 20,

20a, and variable loop position 47 (Fig. 2). D is

formed by the addition of two hydrogens to the

C5=C6 bond (Fig. 1C), which break the planar struc-

ture of the uridine base, resulting in a predominance

of the ribose C20-endo conformation over the C30-endo
conformation [33].

Another important structural role of tRNA modifica-

tions is the shaping of a defined 7-nt anticodon loop

structure, called the ‘U-turn’. Different tRNAs have dif-

ferent anticodon loop sequences. However, every anti-

codon loop entering the ribosomal A-site must have a

similar conformation to allow for efficient protein syn-

thesis. This is accomplished by making the tRNA anti-

codon loops of all tRNAs adopt a highly similar U-turn

structure with the help of tRNA modifications, especially

at positions 34 and 37, which are heavily modified. Posi-

tion 34 has complex modifications, such as mcm5s2U, 5-

taurinomethyluridine (sm5U), or Q, and position 37 also

often possesses complex modifications, including i6A,

t6A, 2-methylthio-N6-threonyl carbamoyladenosine

(ms2t6A), and hydroxywybutosine (OHyW; Figs 1C–3).
tRNA modifications at positions 34 and 37, such as

mcm5U, mcm5s2U, Q, N6-isopentenyladenosine (i6A),

t6A, and m1G, increase the stacking interactions of bases

and restrict movement of the anticodon loop [34]. In

addition, many modifications in the anticodon loop pre-

vent unwanted intraloop base pairing that would disrupt

the U-turn structure [35]. Another very important func-

tion of tRNA modification at positions 34 and 37 is to

enable precise and efficient decoding, which will be dis-

cussed in a later section.

Inhibition of RNase-mediated degradation

In response to stress-inducing stimuli, human cytoplas-

mic tRNAs are frequently cleaved within the

Fig. 1. tRNA structure and tRNA modifications. (A) tRNA secondary structure depicted in a cloverleaf form. Nucleoside positions are

numbered following conventional guidelines [223]. Red-lettered tRNA modifications affect tRNA structure in at least some tRNA species.

Gray circle, unmodified nucleoside; blue circle, nucleoside known to be modified in at least one tRNA species; straight line between bases,

Watson-Crick base pairs; dotted line between bases, hydrogen bond observed in yeast tRNAPhe tertiary structure [21]. (B) tRNA secondary

structure depicted in the L-shape, based on the yeast tRNAPhe crystal structure [21,22]. Note that in the actual tertiary structure, a base-

paired stem forms a helix. (C) Chemical structures of various tRNA modifications. (D) Ribose ring C20-endo conformation and C30-endo
conformation. Note that in the C20-endo form, the base and the 20hydroxyl group are in close proximity, and Nm or xm5s2U modifications

induce steric repulsion between the base and 20hydroxyl group to favor the C30-endo form. 1-methyladenosine (m1A), ms2t6A (2-methylthio-

N6-threonyl carbamoyladenosine), i6A (N6-isopentenyladenosine), I (inosine), Cm (2’-O-methylcytidine), f5C (5-formylcytidine), m2
2G (N2,N2-

dimethylguanosine), OHyW (hydroxywybutosine), sm5U (5-taurinomethyluridine), mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine), D

(dihydrouridine), Ψ (pseudouridine), m7G (7-methylguanosine), Q (queuosine), and X (various modifications).
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anticodon loop by angiogenin, an endoribonuclease

belonging to the RNaseA family [36]. Several anti-

codon tRNA modifications, namely Cm34 and Q34,

are known to prevent angiogenin-mediated cleavage

[37,38]. Cm34 in tRNAeMet is incorporated by the Fib-

rillarin/snoRNA machinery and inhibits angiogenin-
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Fig. 2. Mammalian cytoplasmic tRNA modifications and modification enzymes. The name of the modification enzyme, the reaction the enzyme

is responsible for (in brackets), and the reference (in parentheses) is written next to the species of tRNA modification. Insights are derived

mostly from human studies and in part from other mammalian species studies. Note that the strength of evidence varies between different

studies, ranging from checking only that the protein is necessary for modification to completely confirming that the protein is both necessary

and sufficient for the modification. For the structures of modifications not depicted in Fig. 1, please refer to the RNA Modification Database

(https://mods.rna.albany.edu). Abbreviations not described in Fig. 1: G0 (Guanosine added post-transcriptionally), Um (20-O-methyluridine), m2G

(N2-methylguanosine), m1G (1-methylguanosine), ac4C (N4-acetylcytidine), Gm (20-O-methylguanosine), m3C (3-methylcytidine), acp3U (3-(3-

amino-3-carboxypropyl)uridine), Ψm (20-O-methylpseudouridine), m5C (5-methylcytidine), hm5Cm (5-hydroxymethyl-20-O-methylcytidine), f5Cm

(5-formyl-20-O-methylcytidine), GalQ (galactosyl-queuosine), ManQ (mannosyl-queuosine), ncm5U (5-carbamoylmethyluridine), mcm5U (5-

methoxycarbonylmethyluridine), mchm5U (5-(carboxyhydroxymethyl)uridine methyl ester), mcm5Um (5-methoxycarbonylmethyl-20-O-

methyluridine), m1I (1-methylinosine), m6t6A (N6-methyl-N6-threonylcarbamoyladenosine), o2yW (peroxywybutosine), m1Ψ (1-

methylpseudouridine), m5U (5-methyluridine), and m5Um (5,20-O-dimethyluridine).
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mediated cleavage [37]. This protection is provided

presumably because 20-O-methylation precludes the

deprotonation of the ribose 20 OH, which is a process

needed for RNases such as angiogenin to cut the phos-

phate backbone. The mechanism of how Q34 prevents

angiogenin-mediated cleavage remains unelucidated. In

addition, NOP1/NOP2/Sun domain family member 2

(NSUN2)-mediated m5C formation inhibits angio-

genin-mediated tRNA cleavage. This protection from

angiogenin is likely due to reduced angiogenin-binding

affinity in the presence of m5C [39], although it is not

yet clear which of the m5C modifications at positions

34, 48, 49, and 50 inhibits angiogenin. Mutations in

the NSUN2 gene cause microcephaly, intellectual dis-

ability, and growth retardation [40,41]; m5C-mediated

tRNA protection from angiogenin is important for

health, as cellular stresses in the brain caused by m5C

deficiency can be rescued by inhibiting angiogenin [39].

Compared to the endonucleolytic tRNA cleavage

mechanism, the exonucleolytic tRNA decay

mechanism is poorly characterized in humans. In

yeast, when tRNAiMet lacks m1A58, the tRNA is sub-

jected to 30–50 decay by the TRAMP complex [42], and

tRNAVal
AAC lacking both m7G46 and m5C (at posi-

tions 34, 40, 48, and/or 49) is subjected to 50–30 decay
by the rapid tRNA degradation (RTD) pathway [43].

In humans, although such exonucleolytic pathways

have not been formally characterized, the existence of

similar pathways has been suggested [44]. The molecu-

lar characterization of human exonuclease-mediated

decay pathways for hypomodified tRNA is awaited.

Function of tRNA modifications:
decoding

The 20 universal amino acids are encoded by 61

codons (43 = 64 codons, minus three stop codons).

Most of these codons are organized in codon family

boxes, in which synonymous codons code for the same

amino acid. In the decoding process, the codon triplet
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5049
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m2G : TRMT1 [methylation] (18)

m22G : TRMT1 [methylation] (18)
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m3C : Unknown

: Unknown

m5U : MTO1, GTPBP3  [taurinomethylation]
(5,100)

m5s2U : same as m5U + MTU1 [thiolation]
(119), + unknown sulfur carriers?

f5C : NSUN3 [methylation], ALKBH1
[oxidization] (118, 143, 167)

Q : QTRT1, QTRT2 [G to Q base swapping]
(52)

: Unknown
m5C : NSUN2 [methylation] (107)

: Unknown

m1A : TRMT61B [methylation] (62)

: Unknown

m5U : TRMT2B [methylation] (63)

m5C : NSUN2 [methylation] (107)

: Unknown

m1G : TRMT5 [methylation] (153)

t6A : YRDC, OSGEPL1 [threonyl-
carbamoylation] (168)

i6A : TRIT1 [isopentenylation] (169)
ms2i6A : TRIT1, CDK5RAP1 [methyl-

thiolation] (170)

: RPUSD4 [ ation] (171)

0m2G : Unknown

16

m1A : Unknown

66

35
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33
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m1G : TRMT10C, HSD17B1 [methylation] (14)
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′
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Fig. 3. Human mitochondrial (mt) tRNA modifications and modification enzymes. The name of the modification enzyme, the reaction the

enzyme is responsible for (in brackets), and the reference (in parentheses) is written next to the species of tRNA modification [52]. Note

that the strength of evidence varies between different studies, ranging from checking only that the protein is necessary for modification to

fully confirming that the protein is both necessary and sufficient for the modification. For the structures of modifications not depicted in

Fig. 1C, please refer to the RNA Modification Database (https://mods.rna.albany.edu). The secondary structures of many mt tRNAs are

different from the canonical cloverleaf structure in three ways [13,46,224–227]: (a) mt tRNASer(AGY) lacks the entire D loop, (b) mt tRNASer

(UCN) lacks U8 and has a small D loop, a small variable loop, and an extended anticodon stem, and (c) several mt tRNAs do not have

canonical D loop/T loop interactions and instead have alternative interactions. Abbreviations not described in Figs. 1 and 2: sm5s2U (5-

taurinomethyl-2-thiouridine) and ms2i6A (2-methylthio-N6-isopentenyladenosine).
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(codon positions 1, 2, and 3) base pairs with the three

anticodon bases of the tRNA in positions 36, 35, and

34, respectively (Fig. 1A). Codon positions 1 and 2

base pair with tRNA positions 36 and 35 in normal

Watson-Crick base pairs (A–U, G–C). In contrast, the

formation of a nonstandard base pair between the 3rd

base of the codon and tRNA position 34 (the so-called

wobble base pair) is permitted [45]. Consequently, one

tRNA molecule can often decode several synonymous

codons. For example, human mitochondrial tRNA

with an unmodified U at position 34 (U34) decodes

four synonymous codons in a four-codon box (e.g.,

one tRNAGly decodes GGA, GGU, GGG, and GGC

codons to incorporate glycine) [46].

The modification at tRNA position 34 ensures

restricted or, sometimes, relaxed codon recognition by

the tRNA anticodon [11,47]. An xm5s2U modification

at position 34, such as human mcm5s2U (Fig. 1C) or

sm5s2U, largely fixes its ribose in the C30-endo form

and leads to preferential base pairing with A- or G-

ending codons and not to U- or C-ending codons

[46,48,49]. Queuosine (Q, Fig. 1C) and its sugar-added

derivatives (ManQ, GalQ) are present at position 34

of cytoplasmic tRNATyr, tRNAHis, tRNAAsn, and

tRNAAsp; these base pair with U- or C-ending codons

and not A- or G-ending codons. Q prevents

frameshifting and promotes efficient translation of

these codons, although the precise mechanism is

unknown [50,51]. Q34 is also present in mitochondrial

tRNAs and likely promotes translation of tyrosine in

mitochondria [52]. Inosine (I, Fig. 1C) is synthesized

by the post-transcriptional deamination of adenosine

(A), and I at position 34 (I34) expands tRNA decod-

ing capacity. I34 facilitates tRNA base pairing not

only with U-ending codons but also with C- and A-

ending codons [45]. Similarly, 5-formylcytidine (f5C,

Fig. 1C) and 5-hydroxymethylcytidine (hm5C) also

expand tRNA decoding capacity. Although an

unmodified C34 can only decode G-ending codons,

f5C or hm5C can decode both A- and G-ending

codons [53].

tRNA position 37, located at the 30 side of the anti-

codon, often possesses a bulky modification, such as

OHyW or ms2t6A (Figs 1–3). These position 37 modi-

fications play a critical role in the stabilization of

codon–anticodon pairing and maintain the reading

frame by increasing base-stacking interactions and/or

preventing unwanted base pairing within the anticodon

loop [34,50,54–56]. Aberration of tRNA modifications

in anticodon positions 34 and 37 induces various

tRNA modopathies, including brain disorders, mito-

chondrial diseases, diabetes, and cancer (Table 1),

which will each be discussed in detail in later sections.

Other functions of tRNA modifications
and modifying enzymes

In addition to tRNA stabilization and decoding, some

tRNA modifications and tRNA modifying enzymes

perform additional functions. Such functions should

not be disregarded, as a disease mutation in a tRNA

modification enzyme gene may disrupt these additional

functions and drive pathogenesis.

First, a tRNA modification can serve as the recogni-

tion determinant for another tRNA modification

enzyme. For example, Cm32 modification of cytoplas-

mic tRNAPhe promotes the formation of OHyW [31].

In yeast, Cm32 and m1G37 are required for Gm34 for-

mation, and Gm34 is required for yW37 formation

[57]. The same recognition mechanisms might also

work in the human OHyW37 formation. In addition,

the Q34 modification of cytoplasmic tRNAAsp pro-

motes the efficient modification of m5C38 [51].

Second, a tRNA modification enzyme can function

not only as a tRNA modification enzyme but also as a

modification enzyme for different RNA species. For

example, NAT10, a cytoplasmic tRNA acetyltrans-

ferase, also acetylates 18S rRNA and various mRNAs

[58–60]. Mitochondrial (mt) tRNA methylases

TRMT2B and TRMT61B also methylate mt 12S

rRNA and mt 16S rRNA, respectively [61–63]. In

addition, methyltransferase-like 1 (METTL1), a cyto-

plasmic tRNA m7G46 methylase, also methylates the

precursor of let-7 microRNA [64,65].

Third, a tRNA modification enzyme can sometimes

perform two functions, and one function can be com-

pletely different from tRNA modification. A promi-

nent example is TRMT10C, a mt tRNA m1A9/m1G9

methylase that also functions as an essential compo-

nent of mt RNaseP, an endoribonuclease complex that

cleaves the 50 end of a tRNA from the precursor RNA

[14,66]. Additionally, TRUB1, a cytoplasmic tRNA

pseudouridylase for Ψ54, Ψ55, and Ψ72, binds to the

let-7 microRNA precursor but does not modify it.

Instead, TRUB1 promotes cleavage of the let-7 micro-

RNA precursor by enhancing the interaction between

the let-7 microRNA precursor and an endoribonucle-

ase complex [67,68]. In yeast, Trm2 functions not only

as a tRNA m5U54 methylase but also as a tRNA

chaperone [69]. Whether the human homologs of

Trm2, namely, TRMT2A and TRMT2B, have similar

tRNA chaperone activity is still unknown.

Fourth, a tRNA modification can affect immune

responses. Transfection of human total tRNA deficient

in Gm18 induces innate immune responses by stimulating

Toll-like receptors TLR7/8, whereas total tRNA of wild-

type cells does not stimulate immune responses [70]. In
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Table 1. tRNA modopathies. The tRNA modopathy genes are ordered by the nucleoside position of the tRNA modification that the gene

product incorporates. Note that the strength of evidence varies between different studies, ranging from simply correlation studies to

thorough investigation studies using both human patient cells and mouse disease models. The severity of disorders may vary between

patients with mutations in the same gene. In the ‘Modification’ column, an ‘m’ is added to the position number of mitochondrial tRNA

modifications. tRNA modifications for which modifying enzymes have not been formally investigated in humans but are commonly predicted

by researchers in the field are indicated with a question mark. For cancers in the ‘tRNA modopathy’ column, a note is written in parenthesis

to indicate the status of the modification enzyme in the cancer tissue. In the ‘B’, ‘K’, ‘S’, ‘M’, and ‘C’ columns, these letters indicate the

occurrence of most frequently occurring tRNA modopathies or symptoms in the forms of brain-related disorders (B), kidney-related diseases

(K), short stature (S), mitochondrial diseases (M), and cancer (C). Abbreviations: autism spectrum disorder (ASD), intellectual disability (ID),

amyotrophic lateral sclerosis (ALS).

Gene

Modification

(position) Enzymatic activity tRNA modopathy B K S M C Ref

THG1L G (0) Extra G addition Microcephaly, cerebellar ataxia, ID,

nephropathy, short stature

B K S [172–174]

PUS7 Ψ (8, 13) Pseudouridylation Microcephaly, ID, ASD, aggressive

behavior, short stature

B S [137,175,176]

TRMT10A m1G (9) Methylation Microcephaly, ID, diabetes, short

stature

B S [134]

TRMT10C m1G, m1A (9m) Methylation Lactic acidosis, hypotonia,

polymicrogyria, deafness, early

death

B M [15]

HSD17B10 m1G, m1A (9m) Partner protein of

TRMT10C

Neurodegeneration,

cardiomyopathy, early death

B M [16]

NAT10 ac4C (12) Acetylation Colon cancer (mislocalized), liver

cancer (high expression)

C [177,178]

THUMPD1 ac4C (12) Partner protein of NAT10 Breast cancer (mislocalized, high

expression)

C [179]

TARBP1 Gm (18) Methylation Liver/skin cancers (high expression) C [180,181]

DUS2L D (20) Hydrogen addition to U Lung cancer (high expression) C [182]

TRMT1 m2
2G (26, 26m)

m2G (26?, 26m)

Methylation Microcephaly, ID B [20]

PUS1 Ψ (27, 28, 30, 27m,

28m)

Pseudouridylation Mitochondrial myopathy,

sideroblastic anemia (MLASA)

M [140,183]

METTL6 m3C (32) Methylation Breast cancer (gene amplification) C [184]

THADA Nm (32) Partner protein of FTSJ1 Diabetes [185]

FTSJ1 Nm (32, 34) Methylation ID B [31,186]

NSUN2 m5C (34, 48, 49,

50, 48m, 49m,

50m)

Methylation ID, Dubowitz-like syndrome, short

stature, breast cancer (high

expression)

B S C [40,41,187]

ADAT3 I (34) A to I editing ID, strabismus B [188]

QTRT1 Q (34, 34m) G to Q base swapping Colon cancer (absence) C [78,80]

ELP1 ncm5U (34) U to ncm5U (as a component

of catalytic ELPS complex)

Familial dysautonomia, male

infertility, skin cancer (high

expression)

C [77,148,189]

ELP2 ncm5U? (34) U to ncm5U modification ID, ASD B [190,191]

ELP3 ncm5U (34) U to ncm5U modification ALS, skin/breast cancers (high

expression)

C [77,192,193]

ELP4 ncm5U? (34) U to ncm5U modification ID, ASD B [194]

ELP5 ncm5U? (34) U to ncm5U modification Diabetes [195]

ALKBH8 mcm5U (34),

mchm5U (34)

cm5U to mcm5U, then to

mchm5U modification

ID, bladder cancer (high

expression)

B C [196,197]

CTU1 mcm5s2U (34) 2-thiolation (with CTU2) Skin/breast cancers (high

expression)

C [77,192]

CTU2 mcm5s2U (34) 2-thiolation (with CTU1) Microcephaly, ID, nephropathy,

ambiguous genitalia, short stature,

skin/breast cancers (high

expression), early death

B K S C [32,77,192]
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Table 1. (Continued).

Gene

Modification

(position) Enzymatic activity tRNA modopathy B K S M C Ref

MTO1 sm5U (34m) Taurinomethylation (with

GTPBP3)

Hypertrophic cardiomyopathy, lactic

acidosis, ID, short stature, early

death

B S M [98,198]

GTPBP3 sm5U (34m) Taurinomethylation MELAS, ID, hearing loss, short

stature, early death

B S M [99]

MTU1 sm5s2U (34m) Thiolation Hepatopathy, lactic acidosis, Leigh

syndrome, hearing loss, early

death

B M [199–203]

NSUN3 f5C (34m) Methylation (followed by

oxidization by ALKBH1)

Microcephaly, seizure, lactic

acidosis, muscle weakness, short

stature, 5-AZA-resistant leukemia

(high expression)

B S M C [117,118,204]

ALKBH1 hm5Cm (34), f5Cm

(34), f5C (34m)

Oxidization (m5C to f5C,

m5Cm to hm5Cm to f5Cm)

Gastric cancer (low expression) C [205]

ADAT1 I (37) A to I editing Coronary artery disease [206]

TRMT5 m1G (37, 37m),

OHyW? (37)

Methylation Cardiomyopathy, lactic acidosis,

demyelinating neuropathy, renal

tubulopathy, cirrhosis, short

stature

B K S M [207]

TRMT12 OHyW (37) imG-14 to yW-86 Colon cancer (low expression) C [54]

TYW3 OHyW? (37) yW-86 to yW-72? ALS [208]

LCMT2 OHyW? (37) OHyW-72 to OHyW? Colon cancer (frameshift) C [111]

YRDC t6A (37, 37m) Threonylcarbamoylation of A Microcephaly, nephropathy, short

stature, liver cancer (high

expression), early death

B K S C [155,209]

OSGEP t6A (37) Threonylcarbamoylation of A Microcephaly, nephropathy, short

stature, early death

B K S [156]

TP53RK t6A? (37) Threonylcarbamoylation? Microcephaly, nephropathy, short

stature, early death

B K S [156]

TPRKB t6A (37) Threonylcarbamoylation of A Microcephaly, nephropathy, short

stature, early death

B K S [156]

LAGE3 t6A? (37) Threonylcarbamoylation? Microcephaly, nephropathy, short

stature, early death

B K S [156]

GON7 t6A? (37) Threonylcarbamoylation? Microcephaly, nephropathy B K [155]

CDKAL1 ms2t6A (37) Methylthiolation of t6A Diabetes [104]

TRIT1 i6A (37, 37m) Isopentenylation of A Microcephaly, ID, cardiomyopathy,

lung cancer (low expression),

short stature

B S M C [81,210]

CDK5RAP1 ms2i6A (37m) Methylthiolation of i6A Glioma (high ms2i6A) C [211]

TRDMT1 m5C (38) Methylation Gastric cancer (SNP association) C [212]

PUS3 Ψ (38, 39) Pseudouridylation Microcephaly, ID, nephropathy,

short stature

B K S [30,162,213]

TRMT44 Um? (44?) Methylation Partial epilepsy with pericentral

spikes

B [214]

METTL1 m7G (46) Methylation Multiple sclerosis [215]

WDR4 m7G (46) Methylation Microcephaly, ID, nephropathy,

short stature

B K S [216,217]

TRMT2A m5U (54) Methylation Breast cancer (high expression) C [218]

PUS10 Ψ (54, 55) Pseudouridylation Crohn’s disease, celiac disease [219]

TRMT6 m1A (58) Partner protein of TRMT61A Colon cancer (frameshift), liver

cancer (high expression)

C [111,220]

TRMT61A m1A (58) Methylation Bladder cancer (high expression) C [221]

TRMT61B m1A (58m) Methylation Breast cancer (High expression) C [222]
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addition, whereas bacterial tRNA usually induces inter-

feron-a secretion from human peripheral blood mononu-

clear cells, bacterial tRNATyr is not immunostimulatory

because bacterial tRNATyr has a Gm18 modification that

functions as an antagonist of TLR7 [71,72].

Fifth, tRNA modifications affect precursor tRNA

splicing in some eukaryotes. In several precursor

tRNAs, an intron in the anticodon stem-loop is post-

transcriptionally removed by tRNA splicing. In Try-

panosoma brucei, unusual RNA modifications, namely

G–A editing and A–U editing, within the intron of

pre-tRNATyr
GUA promote intron removal from pre-

tRNATyr
GUA [73]. Conversely, tRNA splicing can

affect tRNA modification. The intron in human pre-

tRNALeu
CAA needs to be removed for NSUN2-medi-

ated m5C34 formation [74]. Thus, aberration of vari-

ous tRNA-related pathways should not be overlooked

as a potential cause of tRNA modopathies.

tRNA modification enzyme genes

To understand how tRNA modopathies are caused by

aberrations in tRNA modification, identification of

modification enzymes is essential, as tRNA mod-

opathies are often caused by mutations in tRNA mod-

ification enzyme genes. To the best of our knowledge,

43 different types of tRNA modifications are incorpo-

rated into human tRNA molecules by at least 73

enzymes and their partner proteins. Mammalian cyto-

plasmic tRNA modifications and their modification

enzymes are shown in Fig. 2, and human mitochon-

drial tRNA modifications and their responsible

enzymes are shown in Fig. 3.

tRNA modopathies

Mutations or expression changes in 54 tRNA modifi-

cation enzymes and their partner proteins are known

as the direct, or strong, candidate causes of various

tRNA modopathies. In addition to a previous study

that compiled human tRNA modifications and mod-

opathies [75], we added many of the latest insights and

provided more detailed information to the list of

tRNA modopathies (Table 1). This number represents

72% of the 75 modification proteins (73 confirmed

proteins or strong candidates, plus two weak candi-

dates) and demonstrates the biological importance of

tRNA modifications. The organ that is most fre-

quently affected by tRNA modification deficiencies is

the brain. Of the 54 tRNA modopathy-associated pro-

teins, dysfunction of 28 proteins can cause or are asso-

ciated with brain disorders (Table 1). Relatively severe

brain disorders, such as microcephaly, are usually

associated with intellectual disability and often associ-

ated with kidney disorders and/or short stature

(Table 1). Relatively moderate brain disorders, such as

intellectual disability or autism spectrum disorder,

often occur without other apparent symptoms.

Our compilation shows that aberrations of 24 tRNA

modification enzymes cause or are associated with cancer

(Table 1). Cancer is often associated with a high rate of

tRNA modification or high expression of tRNA modifi-

cation enzymes. For example, mcm5s2U34 is necessary for

the efficient translation of the AAA, GAA, and CAA

codons, and high mcm5s2U34 is required for melanoma

cells to survive [76]. The hypoxia-inducible factor 1-alpha

(HIF1a) protein, which is enriched with these codons,

requires the mcm5s2U34 modification enzymes ELP3,

cytoplasmic tRNA 2-thiolation proteins 1, and 2 (CTU1

and CTU2) to be efficiently translated and to exert

HIF1a-dependent metabolic reprogramming in mela-

noma [77]. In contrast, in several cases, a lower modifica-

tion rate, including modifications such as i6A, OHyW, or

Q (Table 1), is associated with or sometimes directly pro-

motes cancer formation [54,78–81]. The mechanism by

which OHyW hypomodification causes colon cancer is

described in a later section [54]. Compared to other tRNA

modopathies in which mutations are usually inherited

from parent(s), cancer-causing aberrations usually occur

after birth, making it more difficult to distinguish a can-

cer-causing aberration from a mere cancer-associated

aberration. To formally show that the aberration of a

tRNA modification enzyme gene (upregulation, downreg-

ulation, or mutation) causes cancer, it is necessary to

show at least two things: (a) The aberration of the gene is

associated with poor survival in cancer patients, and (b)

the aberration of the gene in a cell line increases virulence

(e.g., cell proliferation, metastasis, or drug resistance).

Mitochondrial aberrations cause dysfunction in high-

energy demand organs such as the brain and heart, and

these diseases are collectively called ‘mitochondrial dis-

eases’. Dysfunction of at least 9 mitochondrial tRNA

modification enzymes causes mitochondrial diseases,

comprising a major group of tRNA modopathies

(Table 1) [82]. In addition to mutations in mitochon-

drial tRNA modification enzymes, numerous mt tRNA

mutations result in mt tRNA modification deficiencies

and mitochondrial diseases (MITOMAP, https://www.

mitomap.org/MITOMAP).

Codon-specific translational
aberration in tRNA modopathies

In contrast to the diseases caused by mutations in gen-

eral translation factors such as eukaryotic initiation

factor 2 subunit alpha (eIF2a) and eukaryotic
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elongation factor 1 alpha-2, which decrease the overall

translation rate, one feature of tRNA modopathies is

their codon-specific pathogenic mechanisms. For

example, the pathogenic mitochondrial (mt) DNA

A3243G mutation (mt tRNALeu(UUR) mutation) specif-

ically causes the hypomodification of the sm5U34

modification of mt tRNALeu(UUR), which specifically

reduces the translation of the UUG codon, resulting in

mitochondrial disease [83]. The lack of the mt tRNA-
Leu(UUR) sm5U34 modification, and not the tRNA

mutation itself, is responsible for translational defi-

ciency [84]. Of the 13 proteins translated in mitochon-

dria, the translation of ND6 mRNA is specifically and

markedly reduced in A3243G mutant cells [85], likely

due to the enrichment of the UUG codon in ND6

mRNAs [84].

Anticodon modifications at positions 34 and 37

directly regulate decoding, and mutations in the modi-

fication enzymes affect translation in a codon-specific

manner and cause various diseases, such as diabetes,

neurodegenerative diseases, and mitochondrial diseases

(Table 1). In yeast and nematodes, the loss of cyto-

plasmic tRNA mcm5s2U34 slowed translation specifi-

cally at the AAA, CAA, or GAA codons, inducing

protein aggregation. The codon translation rates and

protein homeostasis were restored in yeast by overex-

pressing mcm5s2U-less tRNA, showing that the opti-

mal codon translation rate is critical for maintaining

proteome integrity [86]. In mammals, as described in a

previous section, melanoma cells require cytoplasmic

tRNA mcm5s2U34 for the efficient translation of the

AAA, GAA, and CAA codons to enable efficient

translation of NAA codon-rich HIF1a and HIF1a-de-
pendent metabolic reprogramming [77].

As another example of codon-specific translational

aberration in tRNA modopathy, a loss of the tRNALy-

s
UUU-specific ms2t6A37 modification decreased the

translation of lysine codons, causing unfolded-protein

responses and inducing the onset of type 2 diabetes [87].

In yeast, several tRNA modifications are required

for cell survival under stressed conditions [88]. For

example, in response to H2O2 exposure, an increased

m5C34 level of tRNALeu
CAA, which decodes the UUG

codon, is observed; among the 38 UUG-enriched

mRNAs in yeast, the m5C-dependent translation of

ribosomal protein Rpl22a was especially required for

the cells to survive under stress [89]. In another case,

certain DNA damage response genes in yeast are

enriched with codons that are decoded by tRNAs con-

taining mcm5U34 or mcm5s2U34; Trm9, an enzyme

required for these modifications, is essential for yeast

cells to survive through DNA damage [90]. If similar

tRNA modification-dependent stress-response mecha-

nisms are identified in mammals, it would expand our

understanding of the role of tRNA modifications in

health and disease.

Of the many tRNA modopathies, pathogenic mecha-

nisms have been thoroughly elucidated in only a few. The

next sections will describe the pathogenic mechanisms of

four relatively well-understood tRNAmodopathies.

Μitochondrial (mt) diseases caused by
a deficiency in mt tRNA taurine
modification at position 34

The first identified tRNA modopathies were mitochon-

drial (mt) diseases caused by deficiencies in taurine

modifications. In healthy individuals, two taurine-con-

taining modifications are present at position 34 in five

mt tRNAs: sm5U (Fig. 1C) in tRNALeu(UUR) and

tRNATrp and 5-taurinomethyl-2-thiouridine (sm5s2U)

in tRNAGlu, tRNALys, and tRNAGln [91]. These tau-

rine modifications promote accurate mitochondrial

translation of A- and G-ending codons and prevent

misreading of C- or U-ending codons [46].

Mitochondrial myopathy, encephalopathy, lactic aci-

dosis, and stroke-like episodes (MELAS) and myoclo-

nus epilepsy associated with ragged red fibers

(MERRF) are severe mitochondrial diseases with vari-

ous symptoms, including muscle weakness and epilepsy

[92,93]. A majority of MELAS patients carry an

A3243G mutation in the mt tRNALeu(UUR) gene on

mtDNA [83], and many MERRF patients carry an

A8344G mutation in the mt tRNALys gene on mtDNA

[94]. mt tRNALeu(UUR) with that MELAS mutation

and mt tRNALys with that MERRF mutation lack

taurine modifications and show deficiencies in recog-

nizing their cognate codons [95–97]. Moreover, the

lack of a sm5U modification, and not the tRNA muta-

tion itself, is responsible for disruption of translation

[84]. MELAS- or MERRF-associated pathogenic

tRNA mutations are presumed to prevent tRNA

recognition by taurine modification enzymes, but for-

mal studies have not been conducted.

In addition to mutations in mt tRNA genes, various

mutations in taurine modification enzyme genes,

namely the MTO1 and GTPBP3 genes, are observed

in mitochondrial disease patients [98,99]. The mito-

chondrial translation optimization protein 1 homolog

(MTO1)-GTP-binding protein 3 (GTPBP3) complex

uses 5,10-methylenetetrahydrofolate and taurine as

metabolic substrates for sm5U formation [5]. Patients

with MTO1 or GTPBP3 mutations show diverse

symptoms starting in infancy or early childhood,
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including optic neuropathy and cognitive disability,

with cardiomyopathy being the most frequent symp-

tom. To understand the role of the taurine modifica-

tion in vivo and to recapitulate the pathogenesis of

mitochondrial disease, animal models have been gener-

ated [100] (Fig. 4A).

Whole-body Mto1 knockout in mice was embry-

onic lethal at an early developmental stage (approxi-

mately E9.0). Mto1 KO embryonic stem cells showed

a > 80% reduction in mitochondrial protein synthe-

sis, poor assembly and activity of mitochondrial res-

piratory complexes, increased lactate levels, and

increased NADH/NAD+ ratios. Interestingly, the

total ATP level in KO cells was only slightly

decreased compared with that in WT cells due to

increased cytoplasmic ATP production by glycolysis,

as evidenced by increased lactate levels and NADH/

NAD+ ratios. Heart-specific Mto1 knockout mice

developed normally during the embryonic stage but

could not survive more than 24 h after birth and

showed elevated expression of the heart failure mar-

ker genes Anp and Bnp.

Mto1 knockout cells underwent not only metabolic

changes but also protein homeostasis changes [100]

(Fig. 4A). In healthy cells, more than 1000 nucleus-en-

coded proteins are translated in the cytoplasm by cyto-

plasmic ribosomes and then efficiently transported into

mitochondria from the cytoplasm [101]. In Mto1 knock-

out cells, the transport of mitochondria-targeted proteins

across the inner membrane was defective. The defective

mitochondrial transport of proteins from the cytoplasm

may be due to decreased mitochondrial inner membrane

integrity and/or decreased mitochondrial ATP generation

that may decrease ATP-driven transmembrane protein

transport by mitochondrial Hsp70 proteins; these possi-

bilities, however, need to be investigated further. As a

consequence of decreased mitochondrial transport from

the cytoplasm, mitochondria-targeted proteins formed

cytoplasmic protein aggregates and induced a cytotoxic

unfolded-protein response.

Intriguingly, tauroursodeoxycholic acid (TUDCA),

a chemical chaperone that improves protein folding

and prevents protein aggregation, suppresses protein

aggregation and moderately improves respiratory

activity in both cell cultures and tissue-specific Mto1

knockout mice [100]. The safety of TUDCA has been

proven in humans, and the effect of TUDCA has

been tested in clinical trials for diseases such as dia-

betes and amyloidosis [102,103]. As a symptomatic

therapy, future clinical assessments need to be per-

formed in mitochondrial disease patients to investi-

gate whether TUDCA can mitigate the symptoms of

mitochondrial diseases.

Type 2 diabetes caused by a
deficiency in CDKAL1-mediated
thiomethylation of cytoplasmic
tRNALys

UUU at position 37

Cdkal1 is a mammalian methylthiotransferase that syn-

thesizes 2-methylthio-N6-threonylacarbamoyladenosine

(ms2t6A, Fig. 1C) at position 37 of cytoplasmic tRNALy-

s
UUU [87]. The ms2 modification of t6A37 stabilizes the

interaction between tRNALys
UUU and its cognate codon

AAG as well as AAA and increases the translation rate of

these codons (Fig. 4B) [87]. Whole-genome association

studies identified a number of genes associated with type

2 diabetes (T2D). Among these risk genes, CDKAL1 is

one of the most common genes across different ethnicities

[104]. Among the various tRNA modifications, T2D

caused by CDKAL1 single nucleotide polymorphisms

(SNPs) may affect the largest human population, as sug-

gested by genome-wide association studies. Various SNPs

in the CDKAL1 gene influence the risk of T2D, and

CDKAL1 SNPs are associated with decreased insulin

secretion but not peripheral insulin sensitivity [105].

To understand the pathophysiology and pathogene-

sis of T2D, pancreatic b-cell-specific Cdkal1 KO mice

were studied [87] (Fig. 4B). In b-cell-specific Cdkal1

KO mice, a deficiency in ms2t6A caused the mistransla-

tion of proinsulin Lys codons, one of which is present

at the proinsulin processing site, resulting in improper

proinsulin processing. The mice showed pancreatic islet

hypertrophy, decreased insulin secretion, and impaired

blood glucose control. Mistranslation was associated

with the endoplasmic reticulum (ER) stress response,

and the mice were hypersensitive to high-fat diet-in-

duced ER stress. Consistent with this model, human

proinsulin conversion was decreased in homozygous

carriers of CDKAL1 risk SNPs [106].

Neurodevelopmental disorder caused
by a deficiency in Nsun2-mediated
m5C modification

Autosomal recessive mutations in the human NSUN2

gene were found to cause intellectual disability, micro-

cephaly, behavioral deficits, speech delay, unusual

facies, and growth retardation [40,41]. NSUN2 is a 5-

methylcytidine (m5C) modification enzyme for m5C at

cytoplasmic tRNA positions 34, 48, 49, 50, and at

mitochondrial tRNA positions 48, 49, and 50

[107,108]. Nsun2 knockout mouse models and human

cells obtained from Dubowitz-like syndrome individu-

als were studied as disease models in order to under-

stand the pathophysiology and pathogenesis [39]

(Fig. 4C). In human cells and mouse tissues without
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functional NSUN2, an accumulation of 50 tRNA frag-

ments (tRFs) was observed. In the Nsun2 KO mice,

angiogenin-mediated tRNA cleavage resulted in 50 tRF

accumulation. The accumulation of 50 tRFs reduced

protein synthesis rates and activated stress responses

and was accompanied by increased apoptosis of corti-

cal, hippocampal, and striatal neurons. Importantly,

the increased sensitivity of Nsun2-deficient brains to

oxidative stress could be rescued by inhibiting angio-

genin. To the best of our knowledge, this is the first

case of detailed (although not complete) elucidation of

the molecular pathogenesis of a brain tRNA modopa-

thy. Further studies are needed to understand why the

phenotypes of a whole-body Nsun2 KO manifest

mainly in the brain and not in other tissues.

Colon cancer caused by epigenetic
loss of TRMT12 (TYW2)-mediated
OHyW modification of tRNAPhe at
position 37

Human tRNAPhe contains a tRNAPhe-specific, bulky

tRNA modification at position 37, called OHyW

(Fig. 1C), or an oxidized derivative, peroxywybutosine

(o2yW). Similar to the well-characterized yeast wybu-

tosine synthesis pathway, human wybutosine deriva-

tives are presumed to be synthesized by six enzymes,

namely TRMT5, TYW1, TRMT12 (TYW2), TYW3,

LCMT2 (TYW4), and TYW5 [109,110]. A comprehen-

sive analysis of the Cancer Genome Atlas revealed that

the TRMT12 promoter CpG island was methylated in

many primary colorectal carcinoma cases, and

TRMT12 epigenetic inactivation was correlated with

poor overall survival in patients with early-stage col-

orectal cancer [54]. In human cell lines, the TRMT12

knockout induced the hypomodification of OHyW and

increased �1 ribosome frameshifts at certain Phe

codons. Those ribosome frameshifts created premature

termination codons, resulting in transcript degradation

via nonsense-mediated mRNA decay (Fig. 4D).

Increased nonsense-mediated mRNA decay caused

imbalances in the transcriptome, including in the

mRNA levels of cell mobility-related genes, conferring

migration properties and epithelial-to-mesenchymal

features to TRMT12-deficient cells [54]. Interestingly,

a frameshift mutation in the LCMT2 (TYW4) gene,

which encodes another enzyme presumed to be

required to synthesize OHyW, is also found in colon

cancers [111]. Thus, loss of OHyW derivatives might

generally be involved in the formation of a subset of

colon cancers.

Important questions to be addressed
in order to understand the molecular
pathogenesis of tRNA modopathies

Other than the four tRNA modopathies described

above, the pathogenic mechanisms of most tRNA

modopathies are poorly understood, especially in dis-

eases caused by aberrant cytoplasmic tRNA modifica-

tions. In the next sections, we will raise and discuss

four questions and problems that need to be addressed

to elucidate the pathogenic mechanisms of various

tRNA modopathies.

Mapping all human tRNA
modifications

Due to accumulating knowledge regarding tRNA

modification enzymes, we know which specific tRNA

modification enzyme modifies specific positions of rep-

resentative tRNA species. However, we do not have a

complete understanding of which tRNA species are

modified by each enzyme because we do not have a

complete map of all the tRNA modifications of all

tRNAs. Without knowing all the tRNA species that

each enzyme modifies, it is difficult to understand the

consequences of a specific modification enzyme dys-

function. A milestone study in this field is the complete

identification of all mitochondrial tRNA modifications

Fig. 4. Pathogenic molecular mechanisms of tRNA modopathies. (A) Μitochondrial (mt) diseases caused by deficiencies of mt tRNA taurine

modifications at position 34. The GTPBP3–MTO1 complex incorporates sm5U34 modification into five mt tRNAs. Without the taurine

modification, the translation rate of OXPHOS complex proteins declines, causing a metabolic shift as well as a proteostasis shift, especially

affecting energy-demanding organs such as the brain and muscle. (B) Type 2 diabetes caused by a deficiency of CDKAL1-mediated

thiomethylation of cytoplasmic tRNALys
UUU at position 37. Cdkal1 incorporates the ms2 modification to t6A37 of tRNALys

UUU and promotes

translation of lysine from the AAA and AAG codons. Cdkal1 is especially important in pancreatic b cells, in which lysine-containing proinsulin

is rapidly and massively translated upon glucose stimulus. (C) Neurodevelopmental disorder caused by a deficiency of NSUN2-mediated

m5C modifications. NSUN2 incorporates m5C into several sites within tRNAs and inhibits angiogenin-mediated tRNA cleavage. NSUN2

deficiency induces the accumulation of 50 tRFs, which evokes reduced translation rates and activated stress responses and is the cause of

brain disorders, including microcephaly and intellectual disability. (D) Colon cancer caused by epigenetic loss of TRMT12-mediated OHyW

modification of tRNAPhe at position 37. Epigenetic silencing of TYW2 is a cause of colon cancer via the loss of the OHyW37 modification,

inducing a �1 ribosome frameshift to downregulate various mRNAs, conferring enhanced migration properties and epithelial-to-

mesenchymal features to the cells.
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in all 22 human mitochondrial tRNAs [52]. This work

serves as an important foundation for understanding

the molecular pathogenesis of mitochondrial tRNA

modopathies. In contrast, the tRNA modifications of

hundreds of cytoplasmic tRNA species transcribed in

the nucleus are yet to be completely identified.

Although the identification of all the modifications of

all human cytoplasmic tRNA species requires tremen-

dous work, such insight would greatly contribute to

our understanding of the molecular pathogenesis of

cytoplasmic tRNA modopathies.

Elucidation of the unidentified tRNA
modification enzymes

Approximately 40 tRNA modification sites are modified

by unknown enzymes (Figs 2 and 3). A fraction of these

tRNA modifications are associated with strong candi-

date modification enzymes. This is because many of

these modifications are located in the same positions as

in yeast tRNAs, and the corresponding yeast tRNA

modification enzymes have already been identified. In

comparison with those in yeast, many additional tRNA

modification enzymes exist in humans, many of which

are likely generated by gene duplications from yeast

homologs. Diversified human enzymes usually target

different cytoplasmic tRNA species or different cellular

compartments. For example, whereas only a single

m3C32 methylase, Trm140, exists in Saccha-

romyces cerevisiae, Saccharomyces pombe has two

homologs, and humans have three homologs, namely

METTL2, METTL6, and METTL8 [112,113]. The

three human homologs are functionally differentiated.

METTL2 synthesizes m3C32 of cytoplasmic tRNAThr

and tRNAArg [114]. METTL6 synthesizes m3C32 of

cytoplasmic tRNASer [115]. METTL8 localizes in mito-

chondria [116] and awaits investigation of whether it is

responsible for m3C32 of mitochondrial tRNAThr and

tRNASer [52]. m3C32 is not present in tRNAArg of

S. cerevisiae but is present in human tRNAArg. Gene

duplication and divergence expanded the substrate

tRNA species. Even if a human tRNA modification is

not conserved from yeast, it is still important to identify

the responsible enzyme. Indeed, mt tRNA modifications

such as sm5U34 and f5C34 are not present in yeast, but

mutations in the responsible human enzymes cause sev-

ere mitochondrial diseases [98,99,117,118]. The cyto-

plasmic tRNA ms2t6A37 is also not present in yeast, but

the dysfunction of the responsible human enzyme

causes type 2 diabetes and affects a large human popu-

lation [87,104].

tRNA modifications, such as GalQ34, ManQ34, and

Nm39, are not associated with clear candidate

enzymes. In addition, which pseudouridylases are

responsible for Ψ at various positions remains uniden-

tified.

Even for the tRNA modifications that are mediated

by identified enzymes, it is possible that these enzymes

may need additional partner proteins or upstream pro-

teins to function. For instance, although the 2-thiola-

tion of mitochondrial sm5s2U34 is catalyzed by MTU1

[119], how sulfur is carried to MTU1 is unknown.

Analogous to the S. cerevisiae or Escherichia coli 2-thi-

olation pathways [120,121], it is likely that specific

mitochondrial proteins relay sulfur from cysteine

desulfurase to MTU1. Elps complex proteins (ELP1–
6) and ALKBH8 are essential for forming cytoplasmic

tRNA mcm5U34 modification, but additional enzyme

(s) are expected to form an intermediate cm5U and

remain unidentified [75].

Identifying how each tRNA
modification affects mRNA translation
and other steps of gene expression

To understand how a tRNA modopathy is caused, it

is necessary to understand how translation is affected

by the loss of tRNA modification. Although specific

enzymes can modify various tRNAs, tRNA modifica-

tions often critically affect the translation of only a

fraction of modified tRNAs. If tRNA modification

deficiency affects anticodon:codon interactions or criti-

cally affects tRNA in other ways, tRNA modification

deficiency would decrease the ribosome transition rate

at the corresponding codon. Thus, techniques such as

ribosome profiling would be useful for elucidating how

the translation of a specific codon is affected following

the loss of a tRNA modification enzyme. For instance,

ribosome profiling revealed the codons at which ribo-

somes slow down upon loss of Wdr4, a protein

required for m7G46 modification [122]. Ribosome pro-

filing can also identify which tRNAs are less fre-

quently bound by ribosomes following the loss of

specific species of tRNA modifications [123].

When the loss of a tRNA modification enzyme

results in the decreased translation of an mRNA

codon, one possibility is that the corresponding tRNA

may degrade more easily without the modification. To

investigate the effect of a tRNA modification on the

tRNA steady-state level in an unbiased manner, quan-

tification of the tRNA transcriptome is useful. As

tRNAs are difficult to reverse-transcribe due to the

presence of base pair-inhibitory modifications such as

m1A58, m1G37, m3C32, m2
2G26, and m1G9, it is help-

ful to use techniques such as demethylation via AlkB

demethylase [124].
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Recently, tRFs have become recognized to affect

various steps of gene expression [125]. The generation

of tRFs is affected by tRNA modifications such as Ψ,
m1G, Q, and m5C [38,39,126,127]. Thus, we should

not forget the possibility that some tRNA mod-

opathies might be caused not only by dysfunctional

tRNA but also by increased tRFs.

What causes the tissue specificity of
tRNA modopathies?

Aberrations in various tRNA modification enzymes

affect our body, often in tissue-specific or tissue-prefer-

ential ways (Table 1). The effects of mutations in

important mitochondrial tRNA modification enzymes

appear mostly in high-energy demand organs such as

the heart and brain. This makes sense given that mito-

chondrial tRNA modification contributes to the trans-

lation of mitochondrial respiratory complex proteins

used for ATP production.

Mutations in cytoplasmic tRNA modification

enzymes most frequently affect the brain (Table 1); the

mutations that affect brain development also often

affect kidney development and overall body develop-

ment (Table 1). We currently do not know why the

brain is the most strongly affected organ. One clue

may be that mutations in various other general trans-

lation regulatory proteins such as eIF2a cause neuro-

logical diseases, such as microcephaly, while having

little effect to other tissues [128,129], and this is a

highly similar phenotype seen in many tRNA mod-

opathies. Perhaps neurons are extremely sensitive to

relatively small changes in translational competency

because these polarized cells require rapid and local

protein synthesis for synaptic plasticity [128,129]. Neu-

rons have long axons, and protein synthesis occurs not

only in the cell body but also near synapses, which can

be located at the end of long axons far from the cell

body [130]. tRNA stability and translational efficiency

may be especially important for translating proteins at

such synaptic terminals, where tRNAs and ribosomes

may not be transported from the cell body in abun-

dance. Such possibilities merit investigation in order to

understand the brain-biased phenotypes of various

tRNA modopathies.

Although mutations in many cytoplasmic tRNA

modification enzymes affect the brain, there are many

exceptions. For example, CDKAL1 SNPs are mainly

correlated with type 2 diabetes, and CDK5 regulatory

subunit-associated protein 1-like 1 (CDKAL1) dys-

function is not known to affect the brain, except for

the role it plays in hormone biosynthesis in pituitary

adenomas [131]. Why CDKAL1 mainly affects insulin

biogenesis in pancreatic b-cells and not in other tissues

is not fully understood. Dysfunction of b-cells in the

context of CDKAL1 dysfunction, however, may at

least in part be attributed to the heavy demand for the

translation of proinsulin in b-cells. In a bacterial lysine

translation reporter model, upon knockout of the bac-

terial CDKAL1-homolog, an increased translation rate

led to decreased lysine translation fidelity [87]. As the

translation of proinsulin comprises nearly 50% of total

protein production upon glucose stimulation, and

lysine is located at an important site within the proin-

sulin protein, it may be logical that b-cells are more

affected by CDKAL1 deficiency than other tissues.

To understand the tissue specificity of tRNA mod-

opathies, a global intertissue comparison of protein

synthesis and tRNA status is essential. Some tissues

may have a higher demand for the translation of speci-

fic mRNA codons, and some tissues may have a lim-

ited supply of tRNAs that translate those amino acids.

The absence of a tRNA modification may greatly alter

tRNA stability in different tissues, due to, for example,

different expression levels of angiogenin (which can

cleave the hypomodified tRNA anticodon loop) and

its inhibitor RNH1 [39,132]. Therefore, to understand

the tissue specificity of tRNA modifications, it would

be useful to generate animal disease models and per-

form intertissue comparisons of the transcriptome (via

RNA-seq) as well as protein synthesis (e.g., via ribo-

some profiling) between wild-type and disease model

animals.

Concluding remarks

In recent decades, the identities and functions of many

human tRNA modifications and the enzymes that

cause these modifications have been elucidated. More-

over, tRNA modopathies resulting from aberrations in

more than 50 tRNA modification enzyme genes have

been discovered. Presently, the molecular pathogenesis

of most tRNA modopathies remains unelucidated. In

the next decade, the identification of all the tRNA

modifications and modifying enzymes, as well as the

intertissue comparison of protein synthesis in animal

models, would elucidate these pathogenic mechanisms

and provide evidence to support the development of

treatments for these diseases.
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