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Bootstrapping quantum process tomography via
a perturbative ansatz
L.C.G. Govia 1✉, G.J. Ribeill1, D. Ristè 1, M. Ware1 & H. Krovi 1

Quantum process tomography has become increasingly critical as the need grows for robust

verification and validation of candidate quantum processors, since it plays a key role in both

performance assessment and debugging. However, as these processors grow in size, stan-

dard process tomography becomes an almost impossible task. Here, we present an approach

for efficient quantum process tomography that uses a physically motivated ansatz for an

unknown quantum process. Our ansatz bootstraps to an effective description for an unknown

process on a multi-qubit processor from pairwise two-qubit tomographic data. Further, our

approach can inherit insensitivity to system preparation and measurement error from the

two-qubit tomography scheme. We benchmark our approach using numerical simulation of

noisy three-qubit gates, and show that it produces highly accurate characterizations of

quantum processes. Further, we demonstrate our approach experimentally on a super-

conducting quantum processor, building three-qubit gate reconstructions from two-qubit

tomographic data.
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Recent years have seen remarkable progress in quantum
information processing, with rapid advancement towards
high-fidelity multi-qubit systems1–3, some of which are

now publicly available4,5. This has enabled significant achieve-
ments in many aspects of quantum computation, such as first
demonstrations of the building blocks for error correction and
fault-tolerance, e.g., refs. 6–12. Concurrently, demonstrations of
noisy-intermediate-scale quantum algorithms13 that do not
require full fault-tolerance, e.g., refs. 14–18, make real world
applications of quantum information processing a near-term
possibility.

In light of these achievements, the need for robust, accurate
and efficient validation, and verification of quantum processors
becomes ever more pressing. This is the natural domain of
quantum state tomography (QST) and quantum process
tomography (QPT). Respectively, QST and QPT seek to char-
acterize the state of a quantum processor or the dynamical map
of its evolution19. Unfortunately, naive implementations of
both QST and QPT require an experimental effort that scales
exponentially with the number of qubits. For practical pur-
poses, this scaling has limited full QST and QPT to small sys-
tem sizes, e.g., refs. 20,21, though this can be improved using
approximate characterizations22,23, or in situations with large
amounts of symmetry24,25.

Further compounding QPT, the most error-prone operations
are often system preparation and measurement (SPAM), which
can overwhelm the intrinsic error in high-fidelity quantum pro-
cesses and hinder their characterization. Several SPAM-
insensitive metrics exist, such as the widely successful rando-
mized benchmarking26–29 and its variants30–36, as well as gate set
tomography (GST)37–39. Randomized benchmarking has the
additional benefit of overcoming the exponential scaling of
standard QPT, but at the cost of returning only a single number
characterizing the quantum process.

In this work, we present an approach to efficient QPT that
reduces the exponential scaling to quadratic scaling, while still
returning a full process matrix describing the quantum process.
We propose the Pairwise Perturbative Ansatz (PAPA), which
describes the unknown quantum process as sequential two-qubit
processes on all qubit pairs. We show how to fit the free para-
meters of our ansatz to data obtained from QPT of two-qubit
subsets of the full system. When this data is provided by SPAM-
insensitive tomography, such as GST, our approach becomes
SPAM-insensitive as well as efficient.

Results
Ansatz for process tomography. A generic N-qubit quantum
process, which we label as E, has 16N−4N free parameters, and
determining this exponentially scaling number of free parameters
is what makes naive QPT an exponentially hard problem. We
propose to restrict the unknown process a priori by assuming an
ansatz for its form, which in turn restricts the number of free
parameters in the unknown process, allowing for efficient QPT.

Process tomography can be rephrased as state tomography of
the Choi dual-state (via the Choi-Jamiołkowski isomorphism),
which is the state formed when the unknown process acts on one
half of a maximally entangled state in a Hilbert space of
dimension 22N, given by

ρE ¼ 1
2N
X
μν

jψμihψν j � E jψμihψν j
� �

; ð1Þ

where fjψμig is an orthonormal basis for N-qubit Hilbert space.
Thus, one can use efficient state tomography methods for

process tomography, such as compressed sensing22,40,41 and

matrix-product-state (MPS) parameterizations23,42–44. Unfortu-
nately, the matrix completion algorithms that underlie these
approaches can themselves be inefficient in run-time. This issue
can be circumvented using constrained approaches, as in
refs. 23,43, which restrict to pure state descriptions of the
unknown quantum state.

Both compressed sensing and MPS parameterizations
implicitly assume an ansatz for the unknown quantum process,
that it is either low rank, or has a matrix product structure (and
thus short-range correlations), respectively. Our pairwise
perturbative ansatz assumes a different physical constraint on
the unknown process: that it is intrinsically built from two-
qubit processes on all pairs of qubits. Like the MPS approach,
this implies that few-body QPT is sufficient to find a PAPA
characterization of the unknown process. Unlike an MPS,
PAPA has no locality constraint on correlations, and allows for
long-range correlations. Further, we will see that the PAPA
constraint is physically motivated, unlike the low rank
restriction of compressed sensing.

Pairwise perturbative ansatz. We will assume an ansatz where
the unknown N-qubit process is written as a composition of two-
qubit processes, consisting of quantum processes for each qubit
pair in the system. This is most easily expressed in terms of the
super-operator matrix representation Ê of the quantum process E,
as the series composition becomes a product of matrices. This has
the general form

Ê ¼
YN�1;N�k

k¼1;n¼1

Êk;nþk; ð2Þ

where Ek;nþk is an arbitrary two-qubit process on qubits k and
(n + k) with no restrictions.

The product runs over all pairs of qubits, of which there are
(N2−N)∕2. Each of the unknown two-qubit processes can be
written as

Ek;nþk ¼
X16
ik;n;jk;n

χ
jk;n
ik;n
ðI�k�1 �AðkÞ

ik;n
� I�n�1

�AðkþnÞ
jk;n

� I�N�k�nÞ;
ð3Þ

where fAðkÞ
ik;n
g is a complete basis for single-qubit processes and I

is the identity process. χ
jk;n
ik;n

is an element of the χ-matrix

describing the two-qubit process, and the summation variables
ik,n and jk,n are subscripted to emphasize that they correspond to a
particular qubit pair.

There are many possible ansatze for an unknown quantum
process22,23,40–44, but the form we have chosen is particularly well
motivated physically. As it is the composition of two-qubit
processes in sequence, it captures the natural two-body quantum
operations that occur in a gate-based quantum computation. It
can completely specify any ideal gate operation (single-layer
quantum circuit built from one and two-qubit gates), and will
contain both single-qubit errors and correlated two-qubit errors
as independent free parameters. It also describes processes that
involve more than two qubits, but as combinations of two-qubit
processes performed in sequence. Thus, it describes general
processes in a perturbative fashion, built from one- and two-qubit
processes.

While each arbitrary two-qubit process described by Eq. (3) is
parameterized in terms of a basis with 162 elements, its χ-matrix has
only 162− 42= 240 free parameters. There are N

2

� � ¼ ðN2 � NÞ=2
two-qubit subsets, and so the total number of free parameters in our
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ansatz is 120(N2−N). As this scales quadratically with qubit
number, PAPA is an efficient approach to QPT. The order of the
pairwise processes in PAPA can be chosen arbitrarily, but the best
results will be found using the order of two-qubit gates in the
shallow-depth circuit being characterized.

QPT with PAPA consists of determining the χ-matrix for each
two-qubit process in the product in Eq. (2). Inspired by the local
tomography in refs. 23,43, we use the tomographic characteriza-
tion of two-qubit processes on all pairs of qubits to determine
these free parameters. In essence, from characterization of two-
body processes, we bootstrap to a multi-qubit process of
PAPA form.

To compare the PAPA ansatz to two-qubit tomographic data,
we must determine a notion of a two-qubit reduction of a process
E. This is most easily done in terms of the Choi state ρE . For the
two-qubit subset S ¼ fm; pg this takes the form

ρS ¼ 1
2N
X
μν

Tr=S jψμihψν j
h i

� Tr=S E jψμihψν j
� �h i

; ð4Þ

where by Tr=S½ρ� we mean the partial trace of all qubits other than
those in the set S, and it is important to note that the partial trace
is applied to both “parts” of the Choi state. Using the
orthogonality of the N-qubit basis, we see that

Tr=S jψμihψν j
h i

¼ δμ=S ;ν=S jψμS
ihψνS

j; ð5Þ
where the indices μS (μ=S) are the subset of indices in μ that
correspond to the qubits inside (outside) of the subset S. Thus,
the reduced Choi state of the unknown process can be written as

ρS ¼ 1
22
X
μSνS

jψμS
ihψνS

j � Tr=S E jψμS
ihψνS

j � IN�2

2N�2

� �� 	� �
;

ð6Þ
where IN�2 is the identity matrix of dimension 2N−2.

To determine the free parameters in the PAPA ansatz, for
each pair of qubits we compare ρS , the two-qubit reduced Choi
states described by Eq. (6) with PAPA free parameters, to the
corresponding experimentally characterized two-qubit Choi
state, which we label σS . This experimentally characterized
state is the result of two-qubit QPT performed on the qubit
pair S for the application of the global unknown process E, as
depicted in Fig. 1a). We equate this to our reduced Choi state
for the unknown process, ρS , to determine the free parameters
in the PAPA. In other words, we simultaneously solve the
equations

ρS ¼ σS; ð7Þ
for every pair of qubits.

To do this, we perform a non-linear least-squares minimization
of the cost function

C1 χ!
 � ¼X
S

X
k;n

ρSð χ!Þ
 �
k;n � σS½ �k;n

��� ���2; ð8Þ

as a function of the free parameters of PAPA, i.e., the χ-matrix
elements of Eq. (3). This is the element-wise difference between
the experimentally characterized two-qubit Choi state σS , and
the PAPA reconstruction two-qubit reduced Choi state ρS ,
summed over all qubit pairs. Calculation of ρS becomes
inefficient at large N for Schrödinger-style evaluation of Eq.
(4). In future work, we hope to improve performance via
parallelization of this calculation using Feynman path integral
approaches45,46. Further details and pseudocode can be found
in Supplementary Notes 2 and 6.

The total experimental requirement for PAPA is two-qubit
QPT on the (N2−N) ∕2 pairs of qubits. Each of the pairwise
characterized two-qubit processes is described by 162− 42= 240
complex numbers, which gives a total of 120(N2−N) total
complex numbers describing the characterization of all qubit
pairs. Thus, we have exactly as many constraints (coming from
experimental characterization) as there are free parameters in
PAPA. This further motivates our choice of ansatz, as we have
made use of all available data from two-qubit characterizations of
the unknown multi-qubit process.

Note that each ρS depends on the χ-matrix elements for all
qubit pairs, i.e., those in all Ek;nþk, not just the qubit pair of the
subset S. Thus, each two-qubit process characterization σS
constrains the global process, not just the component of the
ansatz on the qubits in S.

PAPA and gate set tomography. The PAPA tomography
approach described so far works well to obtain a bootstrapped
description of an N-qubit process from characterization of the
effective processes on all qubit pairs. However, often the problem
at hand is not to characterize a completely unknown process, but
to determine the actual process, G, that occurs when we aim to
implement a unitary gate, Ĝ, (from here on we use calligraphic
text for processes and latin text for unitary gates).

Extending this to an entire gate set via gate set tomography
(GST), we obtain a set of processes fGig corresponding to the
experimental implementation of an ideal gate set fĜig. GST has
the further benefit of excluding state-preparation and measure-
ment (SPAM) errors from the processes fGig38. Note that for
clarity we will use "gate set” to refer to the processes fGig, and
“ideal gate set” to refer to the unitary gates fĜig.

Combining PAPA with GST, we can perform GST on all qubit
pairs to obtain a characterized gate set for each pair, and then use
PAPA to bootstrap to descriptions of N-qubit processes. To see
why this is useful, consider the three-qubit gate X̂ � Ŷ � X̂.
Given characterized gate sets with the relevant two-qubit gates,
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Fig. 1 Schematic of the pairwise perturbative ansatz. a Pairwise
perturbative ansatz (PAPA) tomography: for all qubit pairs, characterize the
effective two-qubit process (Choi state σS) when the unknown N-qubit
process E occurs, and all other qubits start in the maximally mixed state.
b Three-qubit PAPA+GST: characterized two-qubit gate sets are
bootstrapped to a three-qubit gate set via PAPA.
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one way to describe the three-qubit process would be

X̂ � Ŷ � X̂ρX̂ � Ŷ � X̂ ! GX1Y2
GI2X3

ρð Þ
� �

ð9Þ

where GAB is the experimental process when we try to implement
the gate Â� B̂. However, there is ambiguity in the correct
decomposition of the three-qubit gate, and GX1X3

ðGY2I3
ðρÞÞ would

be an equally valid description of the process. An issue arises as it
is unlikely that the constructed three-qubit processes from all
possible two-qubit decompositions will agree with one another.

Using PAPA avoids this issue, as it finds the three-qubit
process of PAPA form that best agrees with the pairwise
characterized processes, i.e., with GX1Y2

, GY2X3
, and GX1X3

. As
such it captures context dependence between gate operations,
such as when the effect on qubit 1 is different for the processes
GX1Y2

and GX1X3
. As an added benefit, one never has to implement

the full N-qubit process, as one does when using PAPA without
GST (as described in the previous section). Instead, from the
characterized gate sets on all qubit pairs, we can bootstrap to
PAPA characterizations of the processes in an N-qubit gate set (as
represented in Fig. 1b).

While PAPA can return a characterization of any N-qubit
gate, when we restrict the pairwise two-qubit QPT to GST, the
PAPA+GST combination can only characterize a limited set
of N-qubit gates. Which N-qubit gates can be characterized
with PAPA+GST is gate set dependent, and detailed further
in Supplementary Note 3. The general requirement is that
each two-qubit reduced process of the ideal N-qubit gate must
be an incoherent mixture of two-qubit gates built from the
ideal gate set. For example, if the ideal gate is a controlled-not
gate on qubit pair 1-2, CNOT12 � Î, then the ideal gates Ẑ � Î
and Î� Î need to be in the characterized gate set for qubit
pair 1–3.

Decomposing an N-qubit gate this way implicitly assumes the
errors that make the implemented process G distinct from the
ideal gate Ĝ are not strongly specific to the implementation of G.
This is easily satisfied if the errors are gate-independent, but some
kinds of gate-dependent error are tolerable, such as context
dependence in simultaneous single-qubit gates. For the
CNOT12 � Î gate considered previously, an example of a
tolerable gate-dependent error would be a coherent error that
occurs on qubit 1 both for an actual Ẑ-gate or an effective Ẑ-gate
(as occurs in the reduced process on qubit pair 13 for the
CNOT12 gate).

It is important to emphasize that neither of these issues are
limitations of PAPA, which can characterize any N-qubit
process using pairwise two-qubit QPT, but of the two-qubit
characterizations supplied to PAPA by GST. Nevertheless, there
are many situations where PAPA+GST may be applicable, i.e.,
the ideal-gate decomposition is possible and the errors can be
assumed to be captured by PAPA+GST. In the following
sections we explore such a situation in both experiment and
theory. For situations where PAPA+GST is not possible, PAPA
can inherit SPAM-insensitivity from other SPAM-insensitive
process tomography such as that using randomized bench-
marking47–49.

A further subtlety of using PAPA with GST is the intrinsic
gauge freedom38 in GST-derived gate sets. This gauge freedom
arises from characterizing the gates, preparation, and measure-
ments simultaneously, and results in a continuous family of gate
sets that are consistent with experimental data (see Methods for
more details). This becomes an issue in PAPA when the pairwise
gate sets are not in the “same” gauge. For instance, the same gate

on one qubit may have different descriptions in different pairwise
gate sets, with the descriptions related by a gauge transformation.

Many relevant quantities derived from the process matrix
description of gates (such as the trace distance used later)
are gauge variant. To minimize the error introduced by gauge
freedom, GST can perform a gauge optimization of the
characterized gate set to the target (ideal) gate set. We find
that this is sufficient to ensure that the pairwise gate sets used
for PAPA are approximately gauge consistent. Our attempts to
further improve the results by additional gauge optimization
are detailed in the Methods and Supplementary Note 4.

Experimental reconstructions. We demonstrate the PAPA+GST
approach experimentally using an IBM five-qubit device similar
to that of ref. 9. For this demonstration, we focus on a three-qubit
subset of the chip with the goal of reconstructing three-body
operations. Device parameters, and coherence times can be found
in Supplementary Note 1. To begin, as described in the Methods,
two-qubit GST is performed on all three pairs of qubits in the
subset, as is depicted in Fig. 1b). We choose the gate set

fX̂90; Ŷ90; Îg
�2

composed of simultaneous 90∘ rotations around
the X and Y axes, with the idle gate on both qubits (all 80 ns
long). This set is chosen to allow the bootstrapping of non-trivial
three-body operations and to avoid the issues discussed in
the previous section. We use the GST software package pyGSTi50

and its std2Q_XXYYII gate set to build experimental gate
strings, and to numerically reconstruct the two-qubit gate set
characterizations.

Figure 2 shows the Nσ standard deviations from GST’s implicit
qubit model as a function of germ power L for the three data sets
(solid lines). The goodness-of-fit parameter on the right axes is
supplied by pyGSTi as a rough gauge for how well the model
captures the dynamics in the data. It is clear from the figure there
are significant deviations at higher germ powers. We attribute this
to a combination of drift in system parameters, and leakage into
higher excited states.

The final output of the GST algorithm yields three distinct
gauge-optimized gate set characterizations, which are used by
PAPA to reconstruct the larger three-qubit processes. Each of the
27 three-qubit gates in the gate set are reconstructed using a

GST model viaolation
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Fig. 2 GST (solid lines) and PAPA reconstruction (dashed-lines) Nσ vs.
germ power L for each of the three experimental data sets. Nσ quantifies
the deviation from a Markovian qubit model. The goodness-of-fit parameter
is provided by pyGSTi and ranges from single blackstar to five black stars,
indicating how well the data fits the implicit model. Larger values of L
correspond to increased sensitivity to gate error and to longer circuits.
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Julia51 implementation of the PAPA algorithm. Details of the
non-linear least-squares bootstrapping can be found in Supple-
mentary Note 6.

The main experimental result is plotted in Fig. 3. For each

three-qubit gate in the reconstructed gate set fX̂90; Ŷ90; Îg
�3
, we

compare the GST characterizations of the effective two-qubit
gates on each pair of qubits (σS), to either the ideal reduced two-
qubit gate, or the reduced two-qubit process obtained from the
PAPA three-qubit reconstruction (ρS). We quantify the distance
between processes using the trace distance

TraceDist: ¼ 1
2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρS � σS
� �y

ρS � σS
� �q� 	

; ð10Þ

and the average of the three trace distances (one for each reduced
two-qubit process) is what is plotted in Fig. 3.

In all cases, PAPA produces an estimate of the process closer to
the experimental data (GST characterizations) than the ideal gate.
Thus, from two-qubit tomography our PAPA+GST bootstrap-
ping technique has produced a characterization of the three-qubit
gate set that is both consistent with the tomography data (small
trace distance in Fig. 3), and consistent across pairs of qubits (by
nature of the ansatz).

As another comparison to experimental data, we use the model
violation metrics from pyGSTi to directly compare how well
reduced two-qubit gate sets obtained from the PAPA recon-
structed three-qubit gates fit the experimental data. We create a
PAPA reduced two-qubit gate set by tracing out the third qubit
when the intended gate was identity. As shown in Fig. 2, while the
PAPA reconstructions (dashed-lines) have increased model
violation, the increase is not extreme.

One may ask if PAPA is producing a characterization that
could be explained with a simple model, such as single-qubit
decoherence. However, a search over all possible values of T1 and
T2 found no values that would make the data consistent with a
simple decoherence model, and in fact such models did worse
than the ideal gate.

Simulation tests of the ansatz. We test the PAPA approach in
simulation by examining coherent error in a cross-resonance

(CR) implementation of a CNOT gate52–54, with the ideal gate
taking the form CNOT12 � Î. Referred to as a CR-CNOT, this
ideal gate consists of the ideal CR-gate followed by single-qubit
gates. We consider noisy implementations where the CR-gate has
coherent error due to unwanted coherent interactions (see
Methods).

The error model we consider for CR-CNOT is strongly gate-
dependent, since it is intrinsic to the CR interaction itself.
However, the reduced two-qubit gate decomposition of the
CNOT (see Supplementary Note 3) used in PAPA+GST contains
gates that do not involve the CR interaction. These gates will be
insensitive to the CR error, and as a result PAPA+GST is not
applicable in this situation. Instead we apply standard PAPA, and
simulate QPT on the effective process for each pair of qubits
during the implemented CR-CNOT. For this we assume no
SPAM error, and in practice similar results can be achieved by
applying other SPAM-insensitive process tomography approaches
to the CR-CNOT47–49.

We compare the PAPA reconstruction for a noisy CR-CNOT
to the actual simulated noisy CR-CNOT by calculating the trace
distance between the Choi state of the three-qubit PAPA
reconstruction, ρE , and that of the actual process, ρactE . The
results of our simulations and reconstructions (both done in
MATLAB55) are shown in Fig. 4. As can be seen, for all values of
the coherent error tested the PAPA reconstruction is approxi-
mately an order of magnitude closer to the noisy gate than the
ideal gate (used as the initial guess). Further numerical simulation
tests can be found in Supplementary Note 5.

Continuous time evolution. PAPA is intended to characterize
short depth circuits made from discrete gates, following the cir-
cuit model of quantum computation, or digital quantum simu-
lation. However, a natural question is how it could be used to
characterize continuous evolution of a two-local Hamiltonian (or
more generally a Lindbladian) with unknown parameters. While
such a model contains the same number of free parameters as the
PAPA ansatz, we do not believe they describe equivalent subsets
of completely positive trace-preserving (CPTP) maps.

However, PAPA can be used to characterize short-time
evolution of the two-local Hamiltonian, as the first order
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Zassenhaus formula approximation to such evolution

e�itĤ2�local �
YN�1;N�j

j;k

expf�itĤj � Ĥjþkg; ð11Þ

is exactly of PAPA form (each element of the product on the
right-hand side is a two-body process Ej;jþk). Then, using the Lie-
Trotter product formula, evolution for an arbitrary time can be
simulated using the PAPA characterized short-time process.

Discussion
Our physically motivated pairwise perturbative ansatz is an
efficient and SPAM-insensitive approach to quantum process
tomography that relies on fitting tomographic data to a con-
strained ansatz for the unknown quantum process. It requires
only two-qubit process tomography on all pairs of qubits, such
that the total number of free parameters scales only quad-
ratically with qubit number. Further, our ansatz inherits
SPAM-insensitivity from SPAM-insensitive two-qubit tomo-
graphy, such as gate set tomography39 or RB gate tomo-
graphy47–49.

The experimental demonstration of PAPA shows a significant
improvement in the accuracy of reconstructed two-qubit pro-
cesses calculated from the bootstrapped three-qubit process.
Testing via numerical simulations validates the usefulness of our
tomographic approach on the experimentally relevant CR-CNOT.
In typical cases, the resulting description of the unknown quan-
tum process found by our ansatz is an order of magnitude more
accurate than the naïve initial guess. The accuracy of the PAPA
reconstructions is set by the specifics of the classical numerical
algorithm implemented (see Supplementary Note 6). In the
future, we hope to improve the efficiency and accuracy of
the classical algorithm underlying the PAPA reconstruction
method56,57.

It is worth noting that while we have chosen to build our ansatz
for an N-qubit process from two-qubit processes, similar ansatz
can be created from K-qubit processes for any K <N. These have
experimental resource requirements that scale as a polynomial of
order K, and are therefore still asymptotically efficient. We focus
on case K= 2 in this work as two-qubit process tomography is
within current experimental capabilities. For larger system sizes,
there will be an optimal K > 2 that reduces the number of K-qubit
subsets, and maintains a small enough K to be experimentally
feasible.

Finally, we comment briefly on the situations where PAPA
may fail. Numerical reasons aside, PAPA reconstruction fails
when the process being estimated is an operation that is not
factorable to 2-body, or when non-Markovian noise is present.
As such, PAPA reconstruction can be used as a form of model
testing for error processes that entangle >2 qubits, or non-
Markovian noise sources such as slow parameter drift. Simi-
larly, PAPA+GST puts greater restrictions on the gate and
context independence of the noise sources, and can be used as
a model testing procedure for these error sources. This high-
lights the usefulness of ansatz-based approaches to QPT: even
when they fail they provide useful information about the
system.

Methods
Characterizing the two-qubit processes. In the most general version of QPT,
there is a completely unknown quantum process, which one wishes to determine.
Applying PAPA to this problem, the required two-qubit QPT is derived from the
form of Eq. (6). For a pair of qubits defined by the subset S we perform two-qubit
QPT to characterize the effective process the qubits in S experience when the
unknown process E is implemented on all N qubits (with all other qubits initialized
in the maximally mixed state), as depicted in Fig. 1a).

To see that Eq. (6) describes a valid two-qubit process, we describe the
unknown N-qubit process in a basis of N-qubit processes as

E ¼
X
i

ϵi�
N

k
Λik

; ð12Þ

where ∑ϵi = 1. Substituting this expression into the partial trace in Eq. (6), we
obtain (recall S ¼ fm; pg)

Tr=S E jψμS
ihψνS

j � IN�2

� �h i
¼ 2N�2

X
i

ϵiΛim
� Λip

jψμS
ihψνS

j
� �

Tr �N
k
Λik

I
2

� �� 	

¼ 2N�2
X
i

ϵiΛim
� Λip

jψμS
ihψνS

j
� �

� 2N�2ΛS jψμS
ihψνS

j
� �

;

ð13Þ

where we have defined ΛS ¼Pi ϵiΛim
� Λip

. The reduced Choi state can then be

written as

ρS ¼ 1
22
X
μSνS

jψμS
ihψνS

j � ΛS jψμS
ihψνS

j
� �

; ð14Þ

and it is clear that ΛS must describe a valid quantum process. We have labeled the
reduced two-qubit processes as ΛS to distinguish them from the two-qubit
processes that construct the PAPA, Ek;nþk in Eq. (2), as ΛS depend on the free
parameters from all Ek;nþk , not just those in the qubit subset S.

In Eq. (6) we see that the qubits outside the qubit pair of interest (the spectator
qubits) must be prepared in the maximally mixed state. If this is experimentally
challenging, one can instead randomly sample spectator qubit preparations from
the uniform distribution of the set of spectator qubit logical states. With sufficient
sampling to generate accurate statistics, the normalized sum of the randomly
sampled preparation states approaches the maximally mixed state for the spectator
qubits. Thus, performing two-qubit QPT on the qubit pair of interest with
spectator qubits prepared in a random logical state will characterize the desired
effective process in Eq. (6).

Experimental procedure. Gatestrings are generated with pyGSTi50, transpiled
into our QGL58 language and finally compiled to a hardware specific format for
our custom APS2 arbitrary waveform generators59. To insure each GST
experiment (across all three pairs) is subject to the same environmental noise on
average, and as consistent as possible with other experiments, gatestrings from
the three sets are interleaved on a shot-by-shot basis before being executed. This
prevents long term drift from changing system conditions across gatestrings, or
pairs of qubits. Additionally, to mimic the preparation of the spectator in the
maximally mixed state (see Fig. 1a)), each two-qubit GST experiment is repeated
an equal number of times with the third qubit starting in either 0j i or 1j i. The
results are then combined and analyzed irrespective of the state of the spectator.

Experimental data is passed back to pyGSTi for reconstruction. Details of the
reconstruction process can be found in refs. 39 and 50. To ensure viability of the
PAPA process, the CPTP constraint is enforced at every iteration L as new data
is added. This guarantees a physical and consistent gate set is reconstructed. The
downside with this requirement is a considerable increase in runtime and RAM
necessary for GST to converge. To make this process tractable and time efficient,
we used a Google Cloud instance60 with 40 vCPUs and 961 GB of RAM, which
allows all three GST data sets to be analyzed simultaneously. The upper bound of
961 GB is not tight and was chosen out of an abundance of caution to ensure
convergence.

The 27 three-qubit gates were reconstructed using the Julia implementation
of PAPA on a 24 vCPU workstation with 32 GB of RAM. The reconstruction
took an average of 8 h for each three-qubit gate, using three cores and on the
order of a GB of RAM. The reconstructions were run in parallel to reduce overall
runtime.

Qubit control and readout are performed through dedicated coplanar
waveguide (CPW) resonators, one coupled to each qubit9. Q1 is equipped with a
Josephson parametric amplifier from UC Berkeley61 and Q3 with a Josephson
parametric converter from IBM62 for improved readout fidelity. All the pulses
are generated using the BBN pulse generators introduced in ref. 59. Readout
signals are acquired and processed using two Innovative Integration X6-1000
digitizers programmed with the BBN QDSP firmware (ibid). In particular, for
each measured qubit, a 2.3 μs homodyne signal is integrated using a pre-
calibrated matched filter63, and subsequently reduced to a single-bit value
according to an optimized threshold. All of this signal processing takes place on
the digitizer field-programmable gate array (FPGA) board, thus expediting data
acquisition and writing to disk. The results, which are digitized independently
for each qubit, are then converted into a number of counts for each of the four
combinations in a qubit pair, which is the input format for pyGSTi. This process
is illustrated in Fig. 5.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14873-1

6 NATURE COMMUNICATIONS |         (2020) 11:1084 | https://doi.org/10.1038/s41467-020-14873-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Gate set gauges in PAPA+GST. Gauge freedom in GST gate set characterizations
arises from the fact that the gate set, preparation, and measurement are char-
acterized simultaneously using data that takes the form of expectation values such
as

data ¼ Mh jh Ĝ ρj ii; ð15Þ
where we have used super-operator notation for the preparation state ρ and
measurement observable M̂. Such expectation values are invariant under trans-
formations of the form

data ¼ Mh jh T̂T̂
�1ĜT̂T̂�1

ρj ii; ð16Þ

where T̂ is an invertible matrix referred to as the gauge matrix. This emphasizes
that while gauge has no effect on physical observables and experiments, it can
change the properties of a gate set (and change the preparation and measurement
to compensate).

GST minimizes the effects of gauge freedom by gauge optimizing the
characterized gate set to the a priori assumed ideal gate set, and it is these gauge-
optimized gate sets that we have used for PAPA reconstruction in the Results
section. We have also tried PAPA reconstruction with the GST characterizations
that have not been gauge optimized to the ideal gate set, and as Fig. 6 shows, this
results in a lower quality PAPA reconstruction.

As trace distance is a gauge variant quantity, the large trace distances for non-
gauge-optimized GST data is a non-physical error, coming from the input data to
the PAPA algorithm being gauge inconsistent across qubit pairs. To explore the
limits of performance, we gauge optimize the PAPA reconstructions directly to the
GST characterized gate sets before calculating the trace distance. The gauge
optimization was done using pyGSTi, and the result plotted in Fig. 6 shows only
modest improvements at best. We have also had mixed success taking the opposite
approach: gauge optimizing the GST characterized pairwise gate sets to be in a

consistent single-qubit gauge before performing the PAPA reconstructions, which
we detail in Supplementary Note 4.

On average, we find the best approach to gauge consistency is to gauge optimize
the GST reconstructions to the ideal gate set (as is done in pyGSTi by default), and
use this for the PAPA reconstruction, which is what we present in the Results
section. Future developments in using PAPA or other bootstrapping approaches on
QPT data that has gauge freedom (such as from GST) will seek to address the
gauge consistency issue by performing some parts of the initial pairwise
tomographic reconstruction jointly.

Simulation test error models. For the results shown in Fig. 4, the unitary
describing the CR-CNOT in the presence of coherent error is given by

ÛCNOT ¼ Ẑ
1
�90X̂

2
90ÛCR, with the ±90∘ single-qubit rotations assumed to be perfect,

and

ÛCR ¼ exp �i
π

2
þ β

� � ẐX̂Î
2

þ ϕ
ÎẐẐ
2

" # !
; ð17Þ

where for compactness of notation we have suppressed the tensor product symbols,
such that ẐX̂Î ¼ Ẑ � X̂ � Î.

In Eq. (17), the angles β and ϕ quantify the coherent error, with β the angle of
over-rotation from the desired CR interaction between qubits 1–2, and ϕ the
angle quantifying the effect of spurious ZZ-coupling between qubits 2–3. We
consider the echoed CR-pulse of ref. 64, such that the only remaining ZZ-
coupling is between the target and idle qubits (i.e., 2 and 3). We use values of β
between π∕16 and π∕8 radians, which produce non-ideal gates with trace-overlap
fidelity of 95–99%, and values of ϕ between 10−3 and 4 × 10−3 radians. For a gate
of 400 ns in duration, these values of ϕ correspond to spurious ZZ-couplings of
2.5–10 kHz.

a

b

GST-12
(GST-12) ⊕ |0〉
(GST-12) ⊕ |1〉

GST-13

GST-23

APS2

Chip HEMT X6

PAPA
pyGSTi Google cloud

Q Q1

Q2

Q3 Q

JPA

JPC

APS2

Fig. 5 PAPA experimental data flow. a GST experiments are interleaved by pair and spectator qubit state and sent to the BBN Arbitrary Pulse Sequencers
(APS2)59. Gate instructions are converted to control pulses and sent to the five-qubit device. Demodulated readout signals are first amplified by HEMTs,
JPAs and JPCs then digitized into qubit state information with custom firmware running on an X6-1000M digitizer card. This data is then passed to pyGSTi
and reconstructed in parallel using Google Cloud Compute services. The three separate reconstructions are then passed to the PAPA algorithm for
bootstrapping to three-qubit processes. b A notional diagram of the IBM five-qubit device used in the experiment. The location of the {Q1, Q2, Q3} subset
is specified in red. Lines denote static capacitive coupling through CPW resonators.
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Data availability
All data presented is available on request.

Code availability
Source code for the pairwise perturbative ansatz bootstrapping technique is available at
https://github.com/BBN-Q/PAPA.jl.
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