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Abstract

Background: Species living at high altitude are subject to strong selective pressures due to inhospitable environments (e.g.,
hypoxia, low temperature, high solar radiation, and lack of biological production), making these species valuable models for
comparative analyses of local adaptation. Studies that have examined high-altitude adaptation have identified a vast array
of rapidly evolving genes that characterize the dramatic phenotypic changes in high-altitude animals. However, how
high-altitude environment shapes gene expression programs remains largely unknown. Findings: We generated a total of
910 Gb of high-quality RNA-seq data for 180 samples derived from 6 tissues of 5 agriculturally important high-altitude
vertebrates (Tibetan chicken, Tibetan pig, Tibetan sheep, Tibetan goat, and yak) and their cross-fertile relatives living in
geographically neighboring low-altitude regions. Of these, ∼75% reads could be aligned to their respective reference
genomes, and on average ∼60% of annotated protein coding genes in each organism showed FPKM expression values
greater than 0.5. We observed a general concordance in topological relationships between the nucleotide alignments and
gene expression–based trees. Tissue and species accounted for markedly more variance than altitude based on either the
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expression or the alternative splicing patterns. Cross-species clustering analyses showed a tissue-dominated pattern of
gene expression and a species-dominated pattern for alternative splicing. We also identified numerous differentially
expressed genes that could potentially be involved in phenotypic divergence shaped by high-altitude adaptation.
Conclusions: These data serve as a valuable resource for examining the convergence and divergence of gene expression
changes between species as they adapt or acclimatize to high-altitude environments.
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Data Description
Transcriptome sequencing

Six tissues (heart, kidney, liver, lung, skeletal muscle, and
spleen) of 3 unrelated adult females for each of 5 high-altitude
vertebrates and their low-altitude relatives were sampled
(Fig. 1a and Supplementary Fig. S1). Animals were sacrificed
humanely to ameliorate suffering. All animals and samples
used in this study were collected according to the guide-
lines for the care and use of experimental animals established
by the Ministry of Agriculture of China. We extracted total
RNA, prepared libraries, and sequenced the libraries on Illu-
mina HiSeq 2000 or 2500 platforms. We generated a total of
∼909.6 Gb of high-quality RNA-seq data for 180 samples (∼5.05
Gb per sample) of 30 individuals across 6 tissues (Supplementary
Table S1).

Whole-genome resequencing

To compare the phylogeny derived from gene expression with
the phylogenetic relationships of the 5 high-altitude vertebrates
and their low-altitude relatives, we constructed the phyloge-
netic tree based on nucleotide alignments. We extracted the
unassembled reads from short-insert (500 bp) libraries of a sin-
gle yak (NCBI-SRA: SRX103159 to SRX103161, and SRX103175 and
SRX103176) [1], a Tibetan pig (NCBI-SRA: SRX219342) [2], and
a low-altitude Rongchang pig (NCBI-SRA: SRX1544519) [3] that
were used for de novo assemblies to roughly ×10 depth coverage.
We also randomly selected an individual of the cattle, low- and
high-altitude chickens, goats, and sheep and sequenced their
whole genomes at ∼×10 depth coverage (NCBI-SRA: SRP096151).
Genomic DNA was extracted from the blood tissue of each indi-
vidual. Sequencing was performed on the Illumina X Ten plat-
form, and a total of 198.64 Gb of paired-end DNA sequence was
generated (Supplementary Table S2).

Data Analysis
Data filtering

To avoid reads with artificial bias, we removed the follow-
ing type of reads: (i) reads with ≥10% unidentified nucleotides
(N); (ii) reads with >10 nt aligned to the adapter, allowing
≤10% mismatches; (iii) reads with >50% bases having phred
quality <5.

Identification of single-copy orthologous genes

Single-copy orthologous genes across 5 reference genomes, i.e.,
chicken (Galgal4) [4], pig (Suscrofa 10.2) [5], cattle (UMD3.1) [6],
goat (CHIR 1.0) [7], and sheep (Oar v3.1) [8], were determined
using a EnsemblCompara GeneTrees method (Supplementary
Fig. S2, Supplementary Methods) [9].

Construction of phylogenetic tree based on nucleotide
alignments

High-quality resequencing data were mapped to their respec-
tive reference genomes using BWA software, version 0.7.7 (BWA,
RRID:SCR 010910) [10], reads with mapping quality >0 were re-
tained, and potential PCR duplication cases were removed. For
each individual, ∼97.01% of reads were mapped to ∼97.40% (at
least ×1 depth coverage) or ∼91.86% (at least ×4 depth coverage)
of the reference genome assemblies (Supplementary Table S2).
Single nucleotide variations (SNVs) and insertion and deletions
(InDels) were further detected by following GATK’s best practice,
version 3.3–0 (GATK, RRID:SCR 001876) [11].We substituted SNVs
and InDels identified in our study in the coding DNA sequences
(CDS) of the respective reference genomes. Single-copy ortho-
logues with the substituted CDS of the 5 vertebrates were ap-
plied to Treebest [12] and generated the neighbor-joining tree
(Fig. 1b).

Analyses of gene expression
High-quality RNA-seq reads were mapped to their respec-
tive reference genomes using Tophat version 2.0.11 (TopHat,
RRID:SCR 013035) [13]. Cufflinks version 2.2.1 (Cufflinks,
RRID:SCR 014597) [14] was applied to quantify gene expression
and obtain FPKM expression values. We generated abundance
files by applying Cuffquant (part of Cufflinks) to read mapping
results. Log2-transformed values of (FPKM + 1) for genes with
>0.5 FPKM in more than 80% of the samples were used for
subsequent analyses.

Pearson’s correlations were calculated across 6 samples from
low- and high-altitude populations within each group of spe-
cific tissues and animals; among pairwise comparisons of 5 an-
imals within each of the 6 tissues; and among pairwise com-
parisons of 6 tissues within each of the 5 animals. Principal
variance component analysis (PVCA) was carried out using R
package pvca [15]. Neighbor-joining expression-based treeswere
generated according to distance matrices composed of pairwise
1-Spearman’s correlations implemented in the R package ape
[16]. Reproducibility of branching patterns was estimated by
bootstrapping genes; i.e., the single-copy orthologues were ran-
domly sampled with replacement 100 times. The fractions of
replicate trees that share the branching patterns of the origi-
nal tree constructed were marked by distinct node colors in the
figure.

We generated abundance files by applying Cuffquant (part
of Cufflinks) to read mapping results, and further applied abun-
dance files to Cuffdiff (part of Cufflinks) to detect DEGs between
population pairs from distinct altitudes within each group of
specific tissue and species. Genes with FDR-adjusted P-values
≤0.05 were detected as DEGs.

Genes were converted to human orthologues and assessed
by the DAVID (DAVID, RRID:SCR 001881) [17] webserver for func-
tional enrichment in gene ontology (GO) terms consisting of

https://scicrunch.org/resolver/RRID:SCR_010910
https://scicrunch.org/resolver/RRID:SCR_001876
https://scicrunch.org/resolver/RRID:SCR_013035
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Figure 1: Sampling locations and nucleotide alignment-based tree. (a) Geographic locations of the studied animals. (b) A neighbor-joining tree constructed based on

concatenated coding sequences of single-copy orthologues substituted by SNVs and InDels detected in each animal. We downloaded and extracted the unassembled
reads from short-insert (500 bp) libraries of a single yak [1], a Tibetan pig [2], and a Rongchang pig [3] that were used for de novo assemblies to roughly ×10 depth
coverage. We also randomly selected an individual of the cattle, low- and high-altitude chickens, a goat, and a sheep and sequenced the whole genomes at ∼×10
depth coverage.

molecular function (MF) and biological process (BP), as well
as the KEGG (KEGG, RRID:SCR 012773) pathways and Inter-
Pro (InterPro, RRID:SCR 006695) databases (Benjamini-adjusted
P ≤ 0.05).

Analyses of alternative splicing

Single-copy orthologous exons were identified by finding anno-
tated exons that overlapped with the query exonic region in a
multiple alignment of 99 vertebrate genomes including the hu-
man genome (hg38) from the UCSC genome browser [18]. Exon
groups with multiple overlapping exons in any species were ex-
cluded. Each internal exon in every annotated transcript was
taken as a “cassette” exon. Each “cassette” alternative splicing
(AS) is composed of 3 exons: C1, A, and C2, where A is the al-
ternative exon, C1 the 5’ alternative exon, and C2 the 3’ alterna-
tive exon. For each species and read length k, we generated all
nonredundant constitutive and alternative junction sequences
for the following RNA-seq alignments. The junction sequences
were constructed by retrieving k-8 bp from each of the 2 exons
making up the junction, and when the exon length is smaller
than k-8, the whole sequence of the exon is retrieved. This en-
sures that there is at least 8-bp overlap between the mapped
reads and each of the 2 junction exons.

We then estimated the effective number of uniquely map-
pable positions of the junctions. We extracted L-k+1 (L being
the junction length) k-mers from each junction and mapped
such k-mers back to the reference genome, allowing up to 2mis-
matches. Those k-mers that failed to align were further mapped

to the nonredundant junctions. The number of k-mers that
could uniquely align to a junction was counted and deemed
the effective number of uniquely mappable positions for the
junction.

For each sample, RNA-seq reads were first aligned to the
reference genome, allowing up to 2 mismatches, and the un-
aligned reads were further mapped to the nonredundant junc-
tions. Uniquely mapped reads for each junction were counted
and multiplied by the ratio between the maximum number
of mappable positions (i.e., k-15) and the effective number of
uniquely mappable positions for the junction.

The “percent-spliced in” (PSI) values for each internal exon
was defined as PSI = 100 × average (#C1A, #AC2)/(#C1C2 + aver-
age(#C1A, #AC2)); here #C1A, #AC2, and #C1C2 are the normal-
ized read counts for the associated junctions. Exons were taken
as alternative in a sample if 5 ≤ PSI ≤ 95. We also defined “high-
confidence” PSI levels as those that meet the following criteria:

∗max(min(#C1A, #AC2), #C1C2) ≥ 5 AND min(#C1A, #AC2) +
#C1C2 ≥ 10

∗—log2(#C1A/#AC2)— ≤ 1 OR max(#C1A, #AC2) < #C1C2
For cross-species analyses, we included exons with single-

copy orthologues in all species, PSI values in all samples, and
confident alternative splicing in at least 1 of the samples.

Findings
Data summary

We generated a total of ∼909.6 Gb of high-quality RNA-seq
data, of which ∼676.6 Gb (∼74.6%) reads could reliably be
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aligned to their respective reference genomes (Supplementary
Fig. S3 and Table S1). We found that on average 61.2% of an-
notated protein coding genes in each genome had FPKM ex-
pression values greater than 0.5 (Supplementary Fig. S4 and
Table S3).

Concordance in the tree topology based on nucleotide
sequence alignments and gene expression data

Nucleotide alignments–based phylogenetic relationships of
these high-altitude vertebrates and their low-altitude relatives
matched the established morphological species groupings and
the known history of population formation (Fig. 1b). The gene
expression–based tree of 4746 transcribed single-copy ortholo-
gous genes (66.61% of 7125) for each tissue showed a highly con-
sistent topology to the nucleotide sequence alignment-based
phylogeny (Fig. 2, Supplementary Methods) [9]: Mammals were
mainly divided into omnivore (pig) and ruminant (goat, sheep,
and yak/cattle); within the ruminant cluster, the 2 caprinae
(goat and sheep) were closer to each other than the bovinae
(yak/cattle). This observation lends supports to the idea that
gene expression changes evolve together with genetic variation
over evolutionary time, resulting in lower expression divergence
between more closely species [19].

Distinctly transcriptomic characteristics between gene
expression and alternative splicing

Through comparison of the expression levels of 4746 transcribed
single-copy orthologous genes (Supplementary Fig. S2) and the
alternative splicing patterns (reflected by PSI values) of 2783
orthologous exons shared by the 5 vertebrates genomes, we
observed a tissue-dominated clustering pattern of gene expres-
sion, but a species-dominated clustering pattern of alternative
splicing [20, 21].

For gene expression, there were critical biological differences
among tissues (Pearson’s r = 0.67 and weighted average propor-
tion variance = 0.36), followed by species (Pearson’s r = 0.75,
weighted average proportion variance = 0.22) and local adap-
tation (Pearson’s r = 0.95 and weighted average proportion vari-
ance = 0.019) (Fig. 3a and Supplementary Fig. S5). By contrast,
for alternative splicing, the differences among species (Pearson’s
r = 0.64 and weighted average proportion variance = 0.30) were
higher than among tissues (Pearson’s r = 0.78 and weighted
average proportion variance = 0.075), followed by the differ-
ence between high- and low-altitude animals (Pearson’s r = 0.84
and weighted average proportion variance = 0.021) (Fig. 3b and
Supplementary Figure S6).

Both unsupervised clustering (Fig. 4a and c) and princi-
pal components analysis (PCA) (Fig. 4b and d and Supple-
mentary Figs S7 and S8) recapitulated the distinctly transcrip-
tomic characteristics between gene expression and alterna-
tive splicing. Tissue-dominated clustering of gene expression
indicated that in general tissues possess conserved gene ex-
pression signatures and suggested that conserved gene ex-
pression differences underlie tissue identity in mammals. On
the other hand, greater prominence of species-dominated clus-
tering of alternative splicing suggested that exon splicing is
more often affected by species-specific changes in cis-regulatory
elements and/or trans-acting factors than gene expression
[20, 21].

Notably, tissue-dominated clustering patterns of gene ex-
pression further revealed that the cluster of striated muscle

(heart and skeletal muscle) and the cluster of vessel-rich tis-
sues (lung and spleen) were closer to each other than the clus-
ter of metabolic tissues (kidney and liver), followed by the dis-
tinct clusters of birds (chicken) and mammals according to the
evolutionary distance (Fig. 4a and b). Notably, tissues of birds
(chickens) formed a distinct cluster, rather thanwith theirmam-
malian counterparts, which indicates that divergence in gene
expression among these species started to surpass that between
different tissues around when birds diverged from mammals
(approximately 300 million years ago) (Fig. 4a and b).

Gene expression plasticity to a high-altitude
environment

To exclude the impact of prominence of tissues-dominated clus-
tering of gene expression, so as to comprehensively present
transcriptomic differences involved in high-altitude response
based on whole annotated genes of their respective genome
assembly instead of the single-copy orthologues, we measured
the pairwise difference of gene expression between the high-
altitude populations and their low-altitude relatives within each
tissue for each vertebrate.

We identified ∼1423 DEGs between 30 low- vs high-altitude
pairs (177 DEGs in the muscles of chickens to 3853 DEGs in the
kidneys of sheep) (Table 1). Notably, among 5 pairs of verte-
brates, the highly diverged yak and cattle [1] exhibited the high-
est number of DEGs (∼2005) across 6 tissues. Among 6 tissues,
the highly aerobic kidney [22] exhibited the highest number of
DEGs (∼2097) across 5 pairs of vertebrates.

Expectedly, the more closely related vertebrates (Fig. 1)
shared more DE genes (Supplementary Figs S9–10 and Addi-
tional file 3). Compared with shared DE genes among mam-
mals, especially between the 2 closely relatedmembers of Capri-
nae (goat and sheep), the birds (chickens) exhibited significantly
fewer shared DE genes with mammals (Wilcoxon rank sum
test, P < .0021) (Supplementary Fig. S11). We also identified
significantly enriched functional gene categories of DE genes
(chi-square test or Fisher’s exact test, P< 1.03×10−4), whichwere
shared among multiple pairwise comparisons (Supplementary
Figs S12–13 and Additional file 4) that were potentially related to
the dramatic phenotypic changes shaped by high-altitude adap-
tation, such as response to hypoxia (typically, “oxidation reduc-
tion,” “heme binding,” “oxygen binding,” “oxygen transport,” and
“oxygen transporter activity”), the cardiovascular system (“an-
giogenesis” and “positive regulation of angiogenesis”), the ef-
ficiency of biomass production in the resource-poor highland
(“metabolic pathways,” “cholesterol biosynthetic process,” and
“steroid metabolic process”), and immune response (“responses
of immune and defense”) (Additional file 2).

Conclusions

High-altitude adaptive evolution of transcription, and the con-
vergence and divergence of transcriptional alteration across
species in response to high-altitude environments, is an
important topic of broad interest to the general biology
community. Here we provide a comprehensive comparative
transcriptome landscape of expression and alternative splic-
ing variation between low- and high-altitude populations across
multiple species for distinct tissues. Our data serves a valuable
resource for further study on gene regulatory changes to adap-
tive evolution of complex phenotypes.
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Figure 2: Gene expression phylogenies for 6 tissues across 5 vertebrates. Neighbor-joining expression tree constructed based on 1-Spearman correlation distances in 6
tissues. We performed 100 bootstraps by randomly sampling the single-copy orthologues with replacement. Bootstrap values (fractions of replicate trees that have the

branching pattern, as in the shown tree constructed using all the transcribed single-copy orthologues) are indicated by different colors: red color of the node indicates
support from less than 50% of bootstraps, while orange, yellow, and white colors indicate support between 50% and 70%, between 70% and 90%, and greater than 90%,
respectively.
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Figure 3: Comparison of variations between altitudes, species, and tissues revealed by (a) gene expression and (b) alternative splicing pattern. Scatter-point and bar
plots represent the pairwise Pearson’s correlation between samples. Weighted average proportion variance of the alternative splicing (reflected by PSI values) was
determined using the PVCA approach and is depicted as red dots connected by black lines.
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Figure 4: Global pattern of gene expression and alternative splicing pattern. Hierarchical clustering of samples using (a) gene expression and (c) alternative splicing

(reflected by PSI values). Average linkage hierarchical clustering was used with distance between samples measured by Pearson’s correlation between the vectors of
expression values. (b, d) Factorial map of the principal component analysis (PCA) of (b) gene expression levels and (d) the alternative splicing. The proportion of the
variance explained by the principal components is indicated in parentheses. The vertical leading lines with different colors from the plotted points dropping to the
x/y plane show the separation of points based on the first and second principal components.

Availability of supporting data

The RNA-seq data for 180 samples was deposited in the NCBI
Gene Expression Omnibus (GEO) under accession numbers
GSE93855, GSE77020 (note: GSM1617847–GSM1617849 and
GSM2042608–GSM2042610 are duplicates and represent the
same samples), and GSE66242 (note: 9 goat samples derived
from individuals sampled at 2000-meter altitude were not
included in this study). The resequencing data for 7 individuals
was deposited in the NCBI sequence read archive (SRA) under
accession number SRP096151. Supporting data are also available
via the GigaScience database, GigaDB (GigaDB, RRID:SCR 004002)
[23].

Additional files

Supplementary figures and tables are provided as Additional
files 1–4.

Ethics statement

All studies involving animalswere conducted according to Regu-
lations for the Administration of Affairs Concerning Experimen-
tal Animals (Ministry of Science and Technology, China, revised
in June 2004). All experimental procedures and sample collection
methods in this studywere approved by the Institutional Animal
Care and Use Committee of the College of Animal Science and
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Table 1: Number of DEGs between 5 high-altitude vertebrates and their low-altitude relatives for each tissue

Heart Kidney Liver Lung Muscle Spleen Mean
Species No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

Chicken 1283 (8.28) 748 (4.83) 613 (3.96) 1072 (6.92) 177 (1.14) 984 (6.35) 812 (5.25)
Pig 206 (0.95) 532 (2.46) 1199 (5.55) 426 (1.97) 385 (1.78) 994 (4.60) 623 (2.89)
Cattle/yak 1602 (8.02) 1797 (8.99) 869 (4.35) 3092 (15.47) 2403 (12.03) 2268 (11.35) 2005 (10.04)
Sheep 1332 (6.37) 3853 (18.43) 259 (1.24) 1829 (8.75) 1079 (5.16) 2356 (11.27) 1784 (8.54)
Goat 2215 (10.01) 3557 (16.07) 655 (2.96) 1330 (6.01) 2305 (10.42) 1269 (5.73) 1888 (8.53)
Mean 1327 (6.73) 2097 (10.16) 719 (3.61) 1549 (7.82) 1269 (6.11) 1574 (7.86)

Percentages of the DGEs compared with the total number of annotated protein coding genes in their respective reference genomes are listed in parentheses. There are
15 495, 21 594, 19 981, 22 131, and 20 908 annotated protein coding genes in the reference genomes of the chicken (Galgal4) [4], pig (Suscrofa 10.2) [5], cattle (UMD3.1)

[6], goat (CHIR 1.0) [7], and sheep (Oar v3.1) [8], respectively.

Technology of Sichuan Agricultural University, Sichuan, China,
under permit No. DKY-B20121406. Animals were allowed free ac-
cess to food and water under normal conditions and were hu-
manely sacrificed, as necessary, to ameliorate suffering.
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