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With the prompt revolution and emergence of smart, self-reliant, and low-power devices,

Internet of Things (IoT) has inconceivably expanded and impacted almost every real-life

application. Nowadays, for example, machines and devices are now fully reliant on

computer control and, instead, they have their own programmable interfaces, such as

cars, unmanned aerial vehicles (UAVs), and medical devices. With this increased use

of IoT, attack capabilities have increased in response, which became imperative that

new methods for securing these systems be developed to detect attacks launched

against IoT devices and gateways. These attacks are usually aimed at accessing,

changing, or destroying sensitive information; extorting money from users; or interrupting

normal business processes. In this research, we present new efficient and generic

top-down architecture for intrusion detection, and classification in IoT networks using

non-traditional machine learning is proposed in this article. The proposed architecture

can be customized and used for intrusion detection/classification incorporating any IoT

cyber-attack datasets, such as CICIDS Dataset, MQTT dataset, and others. Specifically,

the proposed system is composed of three subsystems: feature engineering (FE)

subsystem, feature learning (FL) subsystem, and detection and classification (DC)

subsystem. All subsystems have been thoroughly described and analyzed in this article.

Accordingly, the proposed architecture employs deep learning models to enable the

detection of slightly mutated attacks of IoT networking with high detection/classification

accuracy for the IoT traffic obtained from either real-time system or a pre-collected

dataset. Since this work employs the system engineering (SE) techniques, the machine

learning technology, the cybersecurity of IoT systems field, and the collective corporation

of the three fields have successfully yielded a systematic engineered system that can be

implemented with high-performance trajectories.

Keywords: IoT communications, machine learning, shallow neural network, deep neural network, convolutional

neural network, cyberattacks detection, systems engineering

INTRODUCTION

Internet of Things (IoT) is a global term to entitle the network of heterogeneous or homogenous
resource-constrained physical objects (i.e., things) interrelated using diverse communication
structures and topologies for the accomplishment of a common goal/application. These things
are usually embedded with sensors, actuators, processors, software, and others for the purpose of
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transferring and communicating data with other devices over
the Internet without necessitating the interaction of human-to-
human (H2H) or human-to-computer (H2C) (Chiti et al., 2016).
IoT is a promising disruptive technology with incredible growth
and impact. It has been reported by Cisco Incorporation that
more than 50 billion IoT devices are expected to be connected
by 2021 (Evans, 2011).

Recently, the enormous technological revolution in
electronics, computing, and sensing has offered essential
infrastructure to develop today’s wireless sensor networks
(WSN) for different applications. The common theme of all
these WSN systems is usually associated with the Internet of
Things (IoT), where, through the use of sensors, the entire
physical infrastructure is closely coupled with cyber world with
its information and communication technologies (Al-Haija
et al., 2017). IoT comprises a collection of heterogeneous
resource-constrained devices interconnected via different
network architectures, such as wireless sensor networks (WSN),
machine-to-machine (M2M) networks, and cyber physical
systems (CPS). Therefore, IoT has become the main standard
for low-power lossy networks (LLNs) (Alrawais et al., 2017).
However, the massive growth of IoT networks and applications,
as the number of smart devices being deployed eventually
reaches trillions, has created several unsafe environments
that are highly vulnerable to security attacks. IoT security
continues to be a serious issue as the number of security
breaches is increasing from time to time. It has been reported
that thousands of attacks are continuously emerging because
of the addition of various services and protocols from IoT
and seems to increase linearly (Al-Haija and Tawalbeh,
2019).

Problem Background Review and
Definition
The basic IoT-layered architecture is comprised of three
layers: (A) the physical layer, where the different physical
component “things,” such as sensors and actuators, are placed
and connected to interact with the surrounding environment
to gather information and perform data analytics about the
designated phenomena. (B) the network layer, where the different
communication and networking components, such as routers,
switches, and gateways, are placed and connected to disclose and
link the heterogeneous or homogenous elements of IoT system
to communicate the data collected and sensed at the physical
layer. (C) The application layer where the different services
and applications, such as medical and eco-systems, are installed,
configured, and deployed to process, compute, and store the
corresponding data.

Commonly, most cyber-attacks are developed to target the
application and network layers of the IoT system; for instance,
Hyper Text Transfer Protocol (HTTP) Denial-of-Service (DoS)
attack that targets the application layer (Paar and Pelzl, 2010).
The HTTP DoS flooding attack aims to overwhelm a targeted
server by flooding it with HTTP requests from multiple sources
thus exploiting all the server processing capabilities, resulting
in the authorized client request being denied. Similar types of

other flood attacks include Synchronization/Transport Control
Protocol (SYN/TCP) flood attack and the User Datagram
Protocol (UDP) flood attack (Mahmoud et al., 2015). Other IoT
cyber-attacks that target the application or network layers are as
follows (Paar and Pelzl, 2010):

• Probe (side channel) attacks: attacks meant to investigate the
network for well-known weakness or ports. Ping is a common
utility for sending such a probe. Examples include SATAN and
IPSWEEP attacks (Tavallaee et al., 2009).

• Denial-of-Service (DoS) attacks: attacks meant to fold down
a system, device, or network, getting it unavailable to
its legitimate users by overwhelming the target victim
multiple sources. Examples include FLOODING, SMURF, and
TAPDOOR attacks (Mahmoud et al., 2015).

• Root to Local (R2L) attacks: attacks meant to obtain illegal
access to a victim system in the whole network (launched by
an attacker who resides externally to the legal user network).
Examples include FTPWRITE and IMAP attacks (Kolias et al.,
2017).

• User to Root (U2R) attacks: attacks meant to earn the
privileges of the network root (administrator level) by
unauthorized user when legitimately accessing a local system
(Launched by an attacker who has legal access with a non-
privileged account). Examples include BUFFER_OVERFLOW
and ROOTKIT attacks (Kolias et al., 2017).

It should be noted that the majority of IoT attacks are developed
as slight deviations (i.e., mutations) of earlier known cyberattacks
(Ambedkar and Kishore Babu, 2015). These slight mutations
of these IoT attacks have been demonstrated to be difficult
to identify/classify using traditional machine learning (TML)
techniques (Sakurada and Yairi, 2014; Pongle and Chavan, 2015;
Guy and Caspi, 2016; Kang and Kang, 2016; Wang et al., 2016;
Sapre et al., 2019; Taher et al., 2019).

Cyberattacks Mutaions
Like image recognition, in cybersecurity, more than 99% of
new threats and malware are actually very small mutations
of previously existing ones (Tavallaee et al., 2009). Indeed,
cyberattacks/malware are also software, so they can also exhibit
biological behavior as propagate, mutate, and replicate. This
means that the newly developed cyberattacks are usually made by
slightly changing the earlier known cyberattacks at very specific
andminimal parts of the attack file/header, for instance, changing
few bits of the attack/malware file. For example, Figure 1 shows
sample records of the original NSL-KDD training dataset in the.
csv format but read by Notepad in .txt format (prior to any
processing technique). These samples are all classified as anomaly
traffic records (the first feature corresponds to the class label,
i.e., normal: 0 and anomaly: 1). One can mutate few bits of the
depicted features to produce new anomaly traffic with new effect.
This changing in the those few bits is termed as bit mutation.
Therefore, traditional machine learning techniques have great
difficulty in detecting a large portion of this new malware (newly
mutated attacks).
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FIGURE 1 | Sample records of the NSL-KDD training data set.

Research Goal and SOI Identification
The goal of this research is the development of a system
that can detect mutations of common IoT cyberattacks as
discussed in the previous section using non-traditional machine
learning methods. Thus, the system of interest (SOI: The
acronym comes from INCOSE: International Council of System
Engineering) in this research concerned with developing a
software system at the IoT application layer to detect these
mutated cyberattacks. Specifically, the SOI is composed of three
subsystems (illustrated in Figure 2): Feature Engineering (FE)
subsystem to handle preprocessing and encoding for the collected
IoT traffic datasets to be fed as input features for the detection
system, feature learning (FL) subsystem to train and test non-
traditional machine learning (NML) algorithms for development
of the learning module, and Detection and Classification (DC)
subsystem to generate categorization for every IoT packet
through either a two-class classifier (i.e., intrusion detection)
or a multi-class classifier (intrusion classification). Besides, the
developed system performance shall be evaluated via several
metrics, such as accuracy, precision, sensitivity, specificity, false
alarm rate, and others. Finally, the developed system shall be
validated in comparison to IoT-Security-based machine learning
(TML) applications.

Indeed, the novelty of this design focuses on the design
methodology, which employs the top-down decomposing
techniques for system development according to the systems
engineering paradigm/life cycle, which realize the investigation
of every subsystem/module, taking into consideration the
different design alternatives corresponding to each individual
module/subsystem. The systematic study of this paper has been
developed by applying the systems engineering techniques to
develop intelligent cybersecurity solutions for IoT systems. To
the best of our knowledge, this is one of the few studies
that provide a systematic design/architecture for the intrusion
detection systems (IDSs) of IoT communication networks.

System of Interest Technology Feasibility
Analysis
This section discusses the existence of technologies and/or
methods for development of the SOI. Methodologies for the
development of the FE subsystem include Integer Encoding
(INE), One Hot Encoding (OHE), Categorical Embedding

Encoding (CEE), Grouping Operations, Data Scaling, and
Data Binning. Non-traditional machine learning methodologies
for the development of the FL subsystem include Shallow
Neural Networks (SNN), Deep Neural Networks (DNN), and
Convolutional Neural Networks (CNN). Methodologies for the
development of the DC subsystem include Majority Voting
Method (MVM), Support Vector Machine (SVM), Softmax
Function (Multiclass classifier), and Sigmoid Function (Binary
classifier). Finally, applicable programing environments for the
development of SOI include Python/Keras, MATLAB, Apache
Spark, Java, and C/C++.

Our Contributions
• In short, our contributions can be summarized as

follows: We provide a system machine learning-based
detection/classification architecture that can be developed to
classify the IoT traffic records into either (binary classifier) or
five (multiclassifier) classes. Furthermore, we present detailed
preprocessing operations for the collected dataset records
prior to their use with deep learning algorithms.

• We provide an illustrated description of our system’s
architecture modules and the machine learning algorithms
demonstrating a comprehensive view of the computation
process of our IoT-IDCS-CNN.

• We provide a comprehensive revision of state-of-the-art
models to handle the problem of intrusion/cyberattacks
detection (IDS) using machine/deep learning techniques.

• We present a systematic model, making use of system
engineering (SE) techniques, machine learning technology,
and the cybersecurity of the IoT systems field to introduce a
new comprehensive SE-based design and architecture for the
proposed system of interest (SOI).

LITERATURE REVIEW

In the last decade, IoT has been engaged in a wide range
of everyday life applications. It is growing continuously due
to evolution of hardware techniques that improve the design
area and bandwidth, such as the field programmable gate
arrays (FPGAs) and the cognitive radio-based networks to
address the frequency under utilization (Khan et al., 2017).
The smart features of IoT have attracted professionals from
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FIGURE 2 | The three main subsystems composing the proposed System of Interest (SOI).

diverse fields to utilize IoT technology in diverse real-life
applications (CISCO Corporation, 2016). However, due to IoT
heterogeneity and the restricted resources of IoT devices (limited
processing, communication, power, and memory), several IoT
security challenges and cyberattacks have emerged with the
implementation of such smart technologies and applications.
Consequently, the security systems need to be tailored to tackle
the security threats of the constrained architecture. Therefore,
immense efforts to handle the security issues in the IoT model
have been made in the recent years. Many of them were
developed by coupling the field conventional machine learning
techniques with the cybersecurity field. Indeed, a few promising
state-of-the-art experiments were conducted for cybersecurity
using deep neural networks models.

The application of conventional and traditional machine
learning approaches to solve cybersecurity issues was apparent
in many state-of-the-art works. For instances, Hodo et al. used
a Multi-Layer Perceptron (MLP) as a member of the Artificial
Neural Networks (ANN) family for offline binary classification
(normal or attack) (Hodo et al., 2016). The proposed neural
network model was trained using traces of IP packets, and
subsequently evaluated on its capability to prevent DDoS attacks.
The simulation results demonstrated 99.4% accuracy in detecting
various DDoS attacks. However, this research focused only on
a small dataset that contains one category of attacks (DDoS),
which is not realistic as IoT devices/gateways are vulnerable
for several groups of attacks, such as probes, R2L, U2R, and
others. Similarly, Amouri et al. employed the supervised machine
learning techniques to develop an IDS of the IoT communication
systems (Amouri et al., 2018). The proposed system tries to
learn the normal actions of the nodes and accordingly detect
any abnormal actions (anomaly) into the data traffic of the
communication network. Their stated simulation outcomes
showed their technique’s ability in recognizing benign and
malicious network traffic. Although the detection of IoT attacks
was reasonable, however, the authors have evaluated the system
performance over simulated network with a small array of attacks
and devices.

Another related research the authors focused on gathering and
evaluating the most common cyberattacks was launched over
the IEEE 802.11 standard (Kolias et al., 2016). They ended up
with a freely accessible dataset encompassing a wealthy mix of
benign and malicious records against IEEE 802.11 networks. To
do so, they have compiled the Aegean Wi-Fi Intrusion Dataset

(AWID) in a real-time utilization communication to maintain a
realistic content of the dataset. To confirm the efficiency of their
proposed dataset, they applied extensive experimental analysis
for different wireless technologies, including Wireless Fidelity
(Wi-Fi), Worldwide Interoperability for Microwave Access (Wi-
MAX), Universal Mobile Telecommunications System (UMTS),
and Long-Term Evolution (LTE) since they confirmed to have
comparable cyberattacks by employing various machine learning
techniques (Kolias et al., 2013). Their experiments indicated
a robust machine learning detection algorithm, especially
when implemented using Random Forest and J48 classification
algorithms with overall accuracy spans from 89 to 96%.
Nevertheless, the manual selection for data features requires
long-time processing and can be extremely tiresome.

Jan et al. proposed a lightweight intrusion detection approach,
employing an ML-based SVM technique to identify cyberattacks
against IoT network using two or three features (Jan et al.,
2019). For benchmarking purposes, they compared their
proposed intrusion detection classifier model with other ML
classifiers, including K-NN and DT methods, to demonstrate the
improvement of their model over other model classifiers. Their
experimental findings indicated that their proposed IDS model
can provide high detection accuracy with satisfactory execution
time. In a similar research tendency, Ioannou and Vassiliou
have also employed SVM learning to detect abnormalities
in IoT networks (Ioannou and Vassiliou, 2019). Accordingly,
the developed SVM-based IDS generates its normal profile
hyperplane based upon both normal and anomaly activities of
the local sensor since it uses the actual IoT traffic. As a result,
they reported that the proposed detection model attained around
81% accuracy if implemented with anonymous topology.

Shukla presented a new centralized detection model for IoT
intrusions using three different machine learning techniques,
including the K-means method (unsupervised), Decision tree
(supervised) and a Hybrid model comprising both methods
(Shukla, 2017). The experimental results demonstrated that
the approaches have attained detection rate ranges of 70–
93, 71–80, and 71–75% for the K-mean method, the decision
tree (DT) method, and the hybrid method, respectively.
However, the hybrid method recorded the highest accuracy as
it significantly reduces the false positive factor over the other
two detection methods. The system evaluation was performed
using small-scale simulated network (16 nodes) with different
network topologies.
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The application of deep machine learning approaches
provided only few promising state-of-the-art research’s findings
for cybersecurity. One noticeable centralized detection model
for IoT intrusions was suggested by Niya et al. in which they
applied the deep-learning techniques on the commonly used
dataset for IoT attacks, namely, the NSL-KDD dataset (Niyaz
et al., 2016). As a preprocessing stage, they encoded the training
data of the NSL-KDD dataset using the sparse-auto-encoding
mechanism. In this research, the authors developed self-reliant
unsupervised deep learning system that has been employed
using the encoded training records (i.e., input features). At the
classification stage, the authors used a binary classifier using the
acquired features along the labeled test dataset that classifies
traffic as normal or attack. Finally, to evaluate the efficiency of
their implemented system, the authors applied the n-fold cross-
validation mechanism and, accordingly, reported their attained
findings for accuracy and detection rate measures. However, their
obtained results seem rational and comparable.

Brun et al. proposed an IDS for network attacks by employing
a machine learning approach using a shallow random NN
(Brun et al., 2018). The proposed system relied on packet
features that are related to specific cyberattacks, which limits
the performance of the system when it is applied with more
generic attack features. The developed system has fairly detected
cyberattacks of the network traffic with reasonable accuracy.
However, the system validation was poorly performed on a
validation model comprising of no more than three devices, and
simple cyberattacks were engaged. Similarly, Thing studied the
cyberattacks and challenges affecting the IEEE 802.11 networks,
focusing on the novel attacks in which have never been
confronted by the scheme of attack detection (Thing, 2017).
Accordingly, the contributors proposed a self-taught deep NN
approach to identify and classify network anomalies for the
incoming attacks. The proposed approach was built through the
Stacked Auto-Encoder (SAE) architecture three hidden layers
(256/128/64 neurons, respectively). Their approach considers a
multi-classifier with four classes for network traffic, including
benign traffic, impersonation attacks, injection attacks, and
flooding attacks. Their detection technique attained 98.6% of
detection accuracy. However, their proposed scheme lacks to
include some other known attacks that severely impact the
network performance and security, such as the probes and DDoS.
Additionally, the approach still requires a ponderous work and
consumes a significant time for feature extraction to reach quite
well-classification accuracy levels.

Another appropriate related research can be recalled where
the authors constructed their deep learning approach utilizing
autoencoders (AE) for anomaly detection (Sakurada and Yairi,
2014). In this work, the normal traffic of the network has
been trained using AEs with a dynamic feature engineering
mechanism. As a result, the authors concluded that normal traffic
data have recorded small reconstruction loss (error) in the dataset
of validation, while a larger loss has been recorded for anomalous
traffic data of the same dataset. Roopak et al. proposed the
deep learning model to detect DDoS attacks over IoT networks
(Roopak et al., 2019). They have evaluated their model using the
“CICIDS2017” dataset for DDoS attack detection. As a result,

they have reported the highest detection accuracy between 86.25
and 97.16%. However, their evaluation stage encompasses a
very small representative sample that does not reflect realistic
accuracy in the actual IoT environments. Additionally, it is
totally unclear how the authors encoded input features for their
neural network.

Furthermore, another DL technique has also been applied
by contributors of Li et al. (2015) for detecting malicious
codes. The authors proposed a hybrid mechanism that employs
auto-encoders to extract the features in addition to multilayer
Restricted Boltzmann Machines (RBM) to classify the codes.
As a result, they concluded that hybrid deep neural networks
recorded better accuracy and a processing period over the
use of separate deep belief NN or that using shallow NNs in
cyberattack detection applications. However, the dataset used in
this research needs to be up-to-date to reflect more rationale
results and additional practical cyberattacks. Besides, (Abu Al-
Haija and Zein-Sabatto, 2020), Al-Haija et al. (2021) presented
a novel deep-learning-based detection and classification system
for cyberattacks in IoT communication networks employing
convolutional neural networks. They evaluated their model,
using NSL-KDD dataset scoring accuracy results of 99.3 and
98.2% for the binary-class classifier (two categories) and the
multiclass classifier (five categories), respectively. Besides, they
validated their system using a 5-fold cross-validation, confusion
matrix parameters, precision, recall, F1-score, and false alarm
rate. As a result, they showed that their system outperformed
many recent machine-learning-based IDCS systems in the same
area of study.

Indeed, ML methods have been extensively exploited in
cybersecurity of attacks detection and classification in the recent
years (Kolias et al., 2013, 2016; Sakurada and Yairi, 2014; Li
et al., 2015; CISCO Corporation, 2016; Hodo et al., 2016; Niyaz
et al., 2016; Wang et al., 2016; Khan et al., 2017; Shukla,
2017; Thing, 2017; Amouri et al., 2018; Brun et al., 2018;
Ioannou and Vassiliou, 2019; Jan et al., 2019; Roopak et al.,
2019). A critical restriction is that traditional ML methods
need to apply tiresome long-time feature engineering (FE)
to attain higher proportions for the detection accuracy of
cyberattacks/intrusions. However, the produced schemes are
usually not optimum in attaining a high level of validation
accuracy for the problems involving the classifiers of multiple
classes. Such models do not provide high detectability, especially
for the anomaly IoT attacks developed with minor mutations
(i.e., slight variations) of previously known attacks. Therefore,
the proposed approach of this research is promising to provide
better detectability, prediction, and classification for the anomaly
attacks developed with minor mutations that are meant to be
processed as normal traffic into the IoT environment. It was
reported that 99% of the cyberattacks are developed by slightly
mutating previously known attacks to generate a new attack,
tending to be handled as benign traffic through the IoT network.
In fact, even the newly developed cyberattacks depend on the
earlier rationalities and notions (Ambedkar and Kishore Babu,
2015). Finally, to sum up, Table 1 compares the research of
conventional and traditional machine learning approaches to
solve cybersecurity issues.
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TABLE 1 | A summary of the related research for machine-learning-based IoT security.

References Method Dataset # of classes Accuracy

Al-Haija et al. (2021) Shallow CNN NSL-KDD Two-classes 99.3%

Abu Al-Haija and Zein-Sabatto (2020) Shallow CNN NSL-KDD Five-classes 98.2%

Bendiab et al. (2020) RisNet-50 Zero-day Malware Two-classes 94.5 %

Shire et al. (2019) CNN Zero-Day Malware Five-classes 91.3%

Baptista et al. (2019) SOINN Ransomware file types Five-classes 94.1

Taher et al. (2019) ANN + SVM NSL-KDD Three-classes 83.7%

Gao et al. (2019) DNN + Ensemble NSL-KDD Five-classes 85.2%

Sapre et al. (2019) Hybrid NSL-KDD Five-classes 78.5%

Jan et al. (2019) SVM CICIDS dataset Two-classes 93.0%

Roopak et al. (2019) DNN CICIDS dataset Two-classes 92.0%

Ioannou and Vassiliou (2019) SVM Simulated dataset Two-classes 81.0%

Brun et al. (2018) DNN Real-Time dataset Two-classes 75.0%

Thing (2017) DAE AWID dataset Five-classes 98.0

Shukla (2017) NN+KM+DT Simulated dataset Two-classes 75.0%

Chowdhury et al. (2017) CNN+SVM NSL-KDD Two-classes 94.6%

Niyaz et al. (2016) Self-taught learning NSL-KDD Five-classes 88.4%

Hodo et al. (2016) MLP_NN DoS dataset Two-classes 99.0%

Kolias et al. (2017) Hybrid AWID Dataset Four-classes 92.0%

Imamverdiyev and Sukhostat (2016) Extreme LM NSL-KDD Five-classes 91.7%

Li et al. (2015) AE+DBN KDDCUP dataset Five-classes 92.0%

ALTERNATIVE ARCHITECTURE
DEFINITIONS AND ARCHITECTURE
SELECTION

This section involves the study and examination for the
various applicable techniques to develop the elements of the
proposed system as mentioned earlier; the SOI in this work
composed of the following subsystems: Feature Engineering
(FE), Feature Learning (FL), and Detection and Classification
(DC) subsystems.

Approaches to Feature Engineering
Subsystem
Typically, machine learning techniques entail all input/output
records to be numeric. Therefore, all categorical datasets need
to be preprocessed and encoded into numerical models prior to
the use by the machine learning techniques. The FE subsystem
normally composes of several preprocessing and encoding
operations to prepare the collected dataset to be safely fed as
feature inputs into the nextmachine learning stage. The proposed
FE subsystem consists of three modules as follows:

Data collection module: Data collection involves the
gathering of information on variables of interest (VOS) within a
dataset in a documented organized manner that allows to answer
the defined research inquiries, examine the stated hypotheses,
and assess the output consequences. In this research, the variables
of interest concern with the intrusions/attacks data records
over IoT computing environments. Many global datasets of IoT
attacks available in the literature can be investigated, including
the KDD’99 dataset (Ozgur and Erdem, 2016), the NSL-KDD

dataset (Revathi and Malathi, 2013; Canadian Institute for
Cybersecurity, 2019), the AWID dataset (Kolias et al., 2016),
the CICIDS dataset (CICIDS Dataset, 2017), the DDoS dataset
(DDoS Dataset, 2020), the UNSW-NB15 dataset (Moustafa
and Slay, 2015), the MQTT dataset (Vaccari et al., 2020),
and others.

Data preprocessing module: Data preprocessing involves
transforming raw data into an understandable and consistent
format. Data preprocessing operations are applied as needed at
the production stage of the system development life cycle.
An example of preprocessing operations includes data
grouping/aggregation, such as the grouping by sum, data
normalization/standardization, data scaling, and others.
Thereafter, proper encoding is typically applied after the
preprocessing to provide dataset-features mapping. Only
after this stage the data are converted to features output
and can be efficiently used by the next feature learning
subsystem. Therefore, following, we reviewed the most common
preprocessing operations that might be applied (as needed) on
the input dataset:

• Data grouping operations (DGO) – The main aspect of
grouping operations is to determine the aggregation technique
for the features/data. Group operations, such as average, max,
and sum functions, are usually convenient options (Sarkar,
2018).

• Data binning operations (DBO) – The idea of data binning
is to band together a set of continuous values into a smaller
number of “bins” (Sarkar, 2018). Themain goal of data binning
is to make the system more powerful and prevent overfitting;
however, it has a cost to the performance.
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• Data scaling operations (DSO) – Usually, numerical datasets
do not have a certain numerical range, such as age and
income columns (Sarkar, 2018). However, machine learning
techniques are based upon distance computations, such as
k-Nearest Neighbor (K-NN), or k-Means (K-M) require the
input features to be scaled continuously. Typically, three
popular methods of scaling are used in machine learning,
including normalization, standardization, and log transform.
The normalization process scales all values in a fixed range
between 0 and 1. The standardization scales the values while
considering standard deviation.

• Data naming/renaming – This process is usually performed
for the data columns of raw dataset records that are required
for further processing, utilizing the name of the column such
as the encoding techniques that require the name of the
column being encoded. For example, sorting data into a table
requires the determination of the reference column name
for operation.

Dataset encoding module: In many real machine learning
applications, the dataset will encompass categorical data records.
However, most of themachine learning algorithms cannot handle
categorical variables unless they are converted to numerical
values, and many algorithms’ performance varies based on how
categorical variables are encoded (Wang, 2019). Categorical
variables can be divided in two categories: nominal (has no
particular order of data) and ordinal (has some kind of
ordered data). Each of which has its own encoding algorithms.
In this research, we are employing the NSL-KDD dataset,
which is a nominal categorical dataset that needs to be
numerically encoded before it can be used in the machine
learning module. Three common alternative techniques that
are identified for the development of the encoding module
for our nominal categorical dataset (i.e., NSL-KDD) are
as follows:

• Integer encoding (INE) – In this encoding technique, each
category is assigned a value from 1 through K where K is
the number of categories for the feature (Brownlee, 2019).
INE is where each unique label is mapped to an integer. The
problem in this method is that categories that have some ties or
are close to each other lose some information after encoding.
Also, while the same column contains different numbers for
its records, the model would misinterpret the data that will
be in some sort of order (0 < 1 < 2). To overcome
such a problem, we used one hot encoder. An example of this
encoding method is provided in Figure 3A.

• Categorical embedding encoding (CEE) – An embedding-
vector is a 1-D array interpretation of categorical data records
(Mishra, 2019). For instance, the names of Europe countries
can be declared as vectors, each of six floating-point values.
LEE is where a distributed representation of the categories is
learned. However, the categorical embeddings usually perform
pretty good as they have a perception of similarity and
difference between themselves, which improve the model’s
generalization (Mishra, 2019). An example of this encoding
method is provided in Figure 3B.

• One hot encoding (OHE) – One of the most powerful and
common encoding methods in machine learning (Sarkar,
2018). In this method, the categorical data, which are
challenging to understand for algorithms, are encoded into
numerical format features using 1−K− encoding policy. One
Hot Encoding is where each label is mapped to a binary vector.
Indeed, OHE technique generally performs well for encoding
the categorical features into discreet features with no particular
order of data (i.e., nominal data records). An example of this
encoding method is provided in Figure 3C.

In order to select the most appropriate option of the three
alternative approaches to the design and implementation of the
dataset encodingmodule of the FE subsystem, we have used three
main criteria that are defined as follows:

• The feasibility criterion is an evaluation of the capability to
tailor the encoding technique to process the input dataset
records and provide the desired feature (such as the percentage
of target-dependent elements).

• The simplicity criterion is an evaluation of the amount of
efforts in investigation and development (such as training time
and the number of helps frames) of the method to be used in
the selected architecture.

• The functionality criterion is an evaluation of the capability
to construct the module independently without needing a
complete structure of the intended SOI.

Accordingly, One Hot Encoding (OHE) can be elected as the
most appropriate alternative (Mishra, 2019) for the development
of the dataset encoding module of the FE subsystem. OHE
provides unique feature encoding for categorical data where
no relationship exists between categories such as the NSL-
KDD dataset (Wang, 2019). The proper selection for the
encoding technique is significantly important in the feature
engineering, which affects the learning process performance
and accuracy.

Approaches for Feature Learning (FL)
Subsystem
Feature learning is the process that allows a system to
automatically determine the interpretations required to identify
the distinctive features from the raw data (Bengio et al.,
2013). This allows the system to discover the features and
employ them to accomplish a certain mission such as
classification or prediction. This requires the input data to
be computationally convenient to handle. The FL subsystem
is considered as the core part of the proposed SOI since all
features are learned at this subsystem. However, three machine
learning-based design alternatives can be considered at this
stage of the SOI, including Shallow Neural Networks (SNN),
Deep Neural Networks (DNN), and Convolutional Neural
Networks (CNN).

Shallow neural networks (SNN): – SNN (non-deep NN) is
a term used to describe neural networks that usually have only
one hidden layer (Aggarwal, 2018). In short, data introduced
to the network go through a single round (a hidden layer) of
pattern recognition.
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FIGURE 3 | (A) An integer encoding example of three categories (B) A learned embedding encoding example (C) One hot encoding example on City Country.

Deep neural networks (DNN): – DNN is an NN composed

of a set of hidden layers (also called encoders) between the
input layer (visible) and the output layer (visible) of NN

(Schmidhuber, 2015). DNN can manipulate the relationship

between the input and the output for either linear or a non-linear

relationship connection.
Convolutional neural networks (CNN): A CNN is a neural

network employing some convolutional layers and some other

layers, such as max-pooling and flattening (Li, 2019). The

convolution layer applies several convolutional filters to generate

a number of feature maps. An illustration example of CNN is
given in Figure 4. Specifically, in this figure, we show one of
the well-known CNNs that are firstly introduced by LeCun and
known as LeNet5 (Kim, 2017). It encompasses of 7 layers as
follows: two convolution layers (C1 and C2), two subsampling
(pooling) layers (P1 and P2), two fully connected layer (F and
FC), and finally end with softmax multiclass classification layers
with ten categories (classes).

• In order to select the most appropriate option of the three
alternative approaches to the development of the Feature
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FIGURE 4 | An example of deep convolutional neural network: LeNet-5 (Kim, 2017).

Learning (FL) subsystem, we have used four main criteria that
are defined as follows:

• The robustness criterion is an evaluation of the capability to
learn and detect the minor mutations of the input features for
the NSL-KDD dataset.

• The portability criterion is an evaluation of the capability to
train different sets of data with minimum amount of change
using learning transfer techniques.

• The accuracy is a criterion of an evaluation of the
capability of the technique to deliver model-based outputs
similar to the real measured output (the percentage of
correct predictions/classifications among the total number
of predictions/classifications).

• The functionality criterion is an evaluation of the capability
to construct the module independently without needing a
complete structure of the intended SOI.

Accordingly, Convolutional Neural Networks (CNN) can
be selected as the most appropriate alternative (Li, 2019)
for the development of the feature learning subsystem.
CNN provides a comprehensive approach since it requires
multiple computational layers each with several parallel feature
mapping applications. It can be utilized to learn even a
very minor mutation in the input features. However, its
performance can be highly enhanced with the utilization of GPU
parallel computation.

Approaches to Detection and
Classification Subsystem
For the DC subsystem, also three alternative design techniques
can be considered for this subsystem, including Majority Voting
Method (MVM), Support Vector Machine (SVM), and Softmax
Function Classifier (SFC). Furthermore, the common approaches
recognized for the implementation of detection and classification
(DC) subsystem that is briefly described include the following:

Majority voting method (MVM): After counting the whole
elections (predictions) of every executed experiment, the last
election result is decided as the experiment that collected the
majority of votes (> 50% of all counted votes) (Tama and Rhee,
2017). In the case of none of the experiment exceeds half of the
prediction counts, the ensemble method is said to be instable
in predicting this data sample (record). An example of classifier
ensemble using majority voting is provided in Figure 5A.

Support vector machine (SVM): A supervised machine
learning approach that is employed for application of prediction
and classification (Ghose, 2017). By applying the training records,
each sample/record is categorized as belongs to certain category.
SVMs are non-parametric technique since they comprise several
weighted vectors, nominated from the training dataset, where the
number of support vectors is less than or equal to the number
of training samples. For example, in ML applications for natural
language processing (NLP), it is not unheard of SVMs with tens
of thousands of vectors, each comprising hundreds of thousands
of data features (Ghose, 2017). Figure 5B illustrates the principle
of SVM technique. An example of an SVM classifier is illustrated
in Figure 6, which comprises a two-class classification problem
(correct class is the blue class). According to the Figure, we
compute the same score vector f, and then SVM classifier
construes these values as scores for the class and its loss function
stimulates the correct class to have a greater score over the scores
of the other classes. For this example, the ultimate loss value
is 1.58.

Softmax function (multiclass classifier): is a normalized
exponential formula that normalizes a vector of K real numbers
(Rk) into a probability distribution comprising of K real number
probabilities (Rk) that are proportional to the exponentials of the
input numbers (Li, 2019). The SoftMax function σ : R

k
7−→ R

k

is defined as follows:

σ (x)i =
exi

∑K
j = 1 e

xi
for i = 1, 2, 3, . . . , (1)

K and x = (x1, x1, . . . , xK) ∈ R
k

An example of the Softmax classifier is illustrated in Figure 7.
According to the figure, we compute the same score vector f,
and then the Softmax classifier construes these values for each
class as unnormalized log probabilities and then stimulates the
normalized log probability of the correct class to be higher
than the probabilities of the other classes. For this example, the
ultimate loss value is 1.04.

As a special case of Softmax function, Sigmoid Function
(Binary classifier) – a mathematical function (also called logistic
function) that takes a vector of K real numbers as an input
and normalizes it into a probability distribution, including of
two probabilities (e.g., normal traffic vs. attack) (Li, 2019). The
sigmoid function S : Rk

7−→ R
k is defined as follows:
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FIGURE 5 | (A) Classifier ensemble using majority voting (B) The principal idea of support vector machine (Ghose, 2017).

FIGURE 6 | A two-class SVM classifier: An example for one data point using hinge loss (Li, 2019).

FIGURE 7 | Multiclass SVM classifier: An example for one datapoint using cross entropy loss (Li, 2019).

S (x)i =
1

1 + e−x =
ex

ex + 1
for i = 1, 2 . . . , (2)

K and x = (x1, x1, . . . , xK) ∈ R
k

Many other functions are also used to classify the output for
neural network such as rectifiers, tanh, Maxout, and others

(Kim, 2017). However, the reason we mentioned only Sigmoind
and Softmax, is that they were both used extensively in several
machine learning classification applications. Figure 8 shows
examples of applying Sigmoid and Softmax functions for data
inputs x = (0, 1, 2, 3, . . . , 20).

In order to select the most appropriate option of the
three alternative techniques for the development of the
Detection and Classification (DC) subsystem (i.e., the traffic
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FIGURE 8 | The fundamental property of sigmoid and softmax functions.

classification), we have used four main criteria, which are defined
as follows:

• The precision criterion is an evaluation of the capability
to provide precise normalized percentages for the
desired outputs.

• The portability criterion is an evaluation of the capability
to generate the output in multiple classified categories
with minimum amount of loss (different numbers
of classes).

• The feasibility criterion is an evaluation of the capability to
tailor the SFC classification technique to accommodate the
output parameters for the CNN preceding it.

Accordingly, SoftmaxFunction Classifier (SFC) can be selected
as the most appropriate alternative (Tama and Rhee, 2017) for
the development of the intrusion detection and classification
subsystem. SFC uses the cross-entropy loss, which normalizes
the input value into a vector of numbers, following probability
distribution that sums up to one (Li, 2019). The output
results are in the range [0 ∼ 1]. This is highly preferred
since we can avoid using binary classification as we are able
to accommodate as many classes as needed in our neural
network architecture. Finally, the complete architecture of the
proposed system comprising all selected subsystems is illustrated
in Figure 9.

According to the figure, at the beginning, the raw IoT traffic
dataset received from IoT devices is collected to be preprocessed
and encoded as input features. This stage is very important (i.e.,
feature engineering) since it is responsible for utilizing the data
knowledge realm to produce distinctive features that permit ML
techniques to function appropriately. These produced features
present input data to the learning-based convolutional neural
network subsystem. This subsystem is responsible for learning
and parameters updates (weights and biases) through several
computation layers, such as a convolution layer and other hyper-
parameter operations. Thereafter, the detection subsystem is
formed by two or more layers of fully connected neural network
(FCNN) with the last layer containing a few parallel neurons

corresponding to the number of classes (categories) for final
classification (e.g., attack or normal).

SYSTEM ENGINEERING LIFECYCLE

Unlike traditional engineering paradigms originated form
Archer’s “Design Process Model (DPM)” [such as P&C Paradigm
(Plug and Chug) and SDBTF Paradigm (Specify-Design-Build-
Test-Fix)], which often goes in an endless loop resulting in
schedule and cost overrun (Wasson, 2017), System Engineering
(SE) entails every system design to adhere to the standardization
of system life cycle stages. Therefore, our proposed ML − IoT −

CovNet system follows the generic System/Product Life Cycle
Model of ISO/IEC 15288 : 2008 (ISO/IEC 15288:2008, 2008). In
Figure 10, we recall the ISO/IEC15288:2008 model followed in
this work.

System Operation
The system operation phase concerns with operating system
to satisfy user needs and provides sustained capability. This
stage begins when the system user officially approves the
system deployment and ends when the phase-out stage occurs
(Wasson, 2017). The proposed system is intended for operation
by academic scholars and PhD candidates/researchers involved
in the development/upgrading of intelligent solutions/systems
for IoT security against the different types of cyberattacks
for academia and industry. Such development can be targeted
and supported mainly by the governmental and industrial
organizations for information technology and security. The
proposed system once deployed - to begin active duty - in its
current status, it could be run for 3 consecutive years with minor
and regular adjustments in the configurations of the system’s
environment. During the operational lifetime of the system,
refinements and improvement updates may be obtained and
configured to enhance the capabilities and functionalities of the
target system in support of its planned missions in detecting and
classifying the data traffic received by IoT networking systems.
One major example of system upgrades is to have a timely-based
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FIGURE 9 | Complete architecture of proposed system of interest (SOI).

FIGURE 10 | Conventional system engineering life cycle phases using ISO/IEC15288.

training process for the CovNet network of our SOI with newly
developed IoT-attacks and threats (for example, if the rules of an
existing IDS will be updated). Indeed, these incremental upgrades
keep the system in its full operational capability (FOC) (Wasson,
2017).

System Maintenance
The system maintenance phase concerns ensuring the optimal
efficiency and availability of the proposed SOI, and it comprises a
set of actions and tasks required to correct the deficiencies/defects
that may impact mission success of the SOI. Systemmaintenance
is ultimately important as it maximizes the system reliability,
availability, and performance and minimizes the failure cost
(money/time) as well as reduces the risk of components breaking
down. Once the systemmaintenance is effectively preformed, the
system is resumed to its active service/operation phase. To ensure
improved maintenance operation, the system maintenance
plan usually includes pre-maintenance operations, maintenance
operations, and maintenance operations as illustrated in
Figure 11.

Finally, to ensure improved optimization and higher reliability
of SOI, it is important to find the optimal sense of balance among
preventive maintenance (PM) and corrective maintenance (CM)

while satisfying the goal and objectives of the SOI mission.
Figure 12 illustrates the impacts of frequent maintenance on the
costs, PM, or CM (Bachir et al., 2017). The optimal amount of
preventive maintenance occurs when the costs of corrective and
preventive maintenance meet.

For the proposed SOI, the system maintenance
operations can be performed at a user/operator level
and at the organizational level as well. This can be
performed through preventive maintenance and corrective
maintenance actions.

Preventivemaintenance: regularly performed on the working
component of the system (equipment/software) to minimize
the probability of a component’s failure (by enhancing the
component’s Mean Time To Failure - MTTF). PM activities
are performed to retain the SOI at a prescribed degree of
performance (Blanchard and Fabrycky, 2006). Indeed, the
preventative maintenance is ultimately important as it decreases
downtime of the system. Also, such maintenance can be
performed as time-based preventive maintenance or usage-based
preventive maintenance.

In our developed SOI, we planned our preventive
maintenance (PM) using time-based preventive maintenance
to be performed according to the workflow diagram given in
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FIGURE 11 | A system maintenance plan for our SOI.

FIGURE 12 | Total maintenance cost and optimal maintenance zone (Bachir et al., 2017).

Figure 13. For our system, the privative maintenance would be
performed in case of any problem occurred in SOI or its platform
environment, such as:

— It is essential to have PM that provide both logical security
(such as installing a licensed powerful antivirus system) and
physical security (such as having the system in a safe process
room that can only be accessed by authorized users and
tighten all cable connections).

— It is planned to keep a regular inspection on the Nvidia GPU
component as it severely impacts the system performance and
availability in the event of a breakdown. Indeed, all system
hardware should be inspected regularly.

— As preventative maintenance, it is very recommended to
maintain a mechanism of standby redundancy for the

sensitive components in the system, such as the GPU and
CPU, as well as the SOI’s software system to be replicated on
an external storage drive.

— Also, since our system is a software system developed by the
MATLAB platform, time-based preventive maintenance is
required to check for updated libraries and built-in functions
of MATLAB system as well as the corresponding toolboxes,
such as the deep learning and parallel computing libraries.

— Moreover, it is part of the preventative maintenance plan to
track the annual license for the MATLAB and other software
packages utilized in this SOI.

— Furthermore, it is crucial to develop a regular backup plan
for the system configuration and data utilizing off-site storage
and cloud-based strategies.
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FIGURE 13 | Preventive maintenance workflow for our SOI.

— In addition, to avoid the common power problems, such as
blackout or voltage surge, we recommend having a standby
Uninterruptible Power Supply (UPS) to resort to battery
backup power.

Correctivemaintenance: on-demand performed on the faulty
component of the system (equipment/software) to restore broken
down systems. This type (also called breakdown maintenance)
of maintenance is performed to restore the SOI to its
originally prescribed operational state within minimum amount
of maintenance time (the component’s Mean Time To Repair
- MTTR) (Blanchard and Fabrycky, 2006). Upon detecting a
faulty component, corrective maintenance should be planned
and scheduled for a future time; otherwise, the problem might
become an emergency maintenance need (leads to interruption
in service). During the execution of corrective maintenance
work, the component is repaired, restored, or replaced. Indeed,
the corrective maintenance is also ultimately important as it
decreases downtime of the system.

In our developed SOI, we planned our corrective maintenance
(PM) upon demanded to be performed according to the
workflow diagram given in Figure 14. Once an issue/problem
occurred, the appropriate corrective maintenance should be
performed as soon as possible to fix the issue either on-site
(for minor issues) or off-site (for major issues). For our system,
the corrective maintenance would be performed in case of any
problem occurred in SOI or its platform environment, such as:

— Diagnose and fix the logic errors in the SOI functionality,
appearing during the system operation such as misdetection
of present data.

— Restore the proper backup configuration settings, in case of
change system environment change or corrupt such as the
degrade in response time.

— Debugging the SOI program coding, troubleshooting, and
fixing to avoid syntax and semantics errors. This also includes
the update of system drivers, especially the drivers for
GPU cards.

— Replace defective hardware components, such as Memory,
GPUs, networking connections, and others, with minimum
possible MTTR.

— Fixing any power failure problems, especially during the
period using the UPS in order to enable the main
power supply.

— Upgrade or replace any outdated hardware or software
components to avoid the deficiency effect on other parts of
the system.

— Perform maintenance on software service modules that are
running slowly to bring it back to its optimal performance.

System Disposal
At a certain moment, any deployed system will turn out to be
no longer useful, wasteful to maintain, outdated, or unrepairable.
Therefore, the system disposal is an essential phase of the system
life cycle. The system retirement (disposal) stage involves a set
of actions and tasks needed to terminate the current system
from its active operation. It begins when the stage of phase-out
appears and preceded by the deactivation stage of the system.
Throughout the system retirement phase, the existing system can
be retired and dispositioned from its active operation via different
techniques, including selling, leasing, storage, or disposal. Also,
the system disposal phase can be altered by several replacements
policy, including disassembly, destruction, burning, and burial
(Wasson, 2017). Finally, the disposal stage of the system might
also involve ecological restoration and renovation to reconstruct
the system’s field site or retirement region to its normal status
(Wasson, 2017).

In our developed SOI, the principal plan of the disposal phase
is completely uninstalling the software system from the site with
all associated toolboxes, packages, and data. Besides, the disposal
phase should also consider:

— Strategies to discard system information hardware and
software. This includes details of underlying hardware (such
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FIGURE 14 | Corrective maintenance workflow for our SOI.

as the GPU/CPU type, specifications, and others) and the
system drivers as well as the user and system data.

— Plans to move to a new system. The required information
can be transferred, abandoned, ruined, or filed. Also,
further considerations are needed for restoring the archived
information in the future such as the utilization of external
archiving/storage platforms involving the use of cloud-based
services and standby storage drives.

— Security considerations: It should be stated that the
complete implementation of the system disposal stage
is vital, since severe faults at this moment might place
the organizations/stakeholders at a high chance of
revealing confidential data such as the development
coding and architecture.

System Life Cycle Cost
In system engineering (SE), life cycle costing (LCC) concerns
with investigating and assessing the system cost. LCC is a
crucial component for the decision maker of SOI since several
decisions are planned based on LCC (Pohl and Nachtmann,
2010). Therefore, it is important that the cost estimations are
constructed with maximum accuracy and precision. Like any SE
process, estimating LLC is an iterative process where the system’s
cost estimation can undergo updates as the system progresses
throughout the different stages of the system life cycle (SLC).
However, SE aims at trade-offs to satisfy requirements, reduce
the system life cycle costs, and lessen the risk to a satisfactory
point (Wasson, 2017). Figure 15 displays the common cost curve
in the system life cycle for conventional SE (Madni and Purohit,
2019). In this figure, the vertical axis shows the system LCC
(normalized into 0∼9), while the horizontal axis shows the
time factor. According to the figure, the system engineering
seems to have lower investment at the initial stages of the
SLC (e.g., concept/preliminary stages) while the investment
significantly increases at the late stages such as production and
operation stages.

In our developed SOI, we have developed our LLC plan
in compliance with SE cost policy, where we lowered the
expenditure at the early phases of system life cycle and focused
the investment at the later phases. Figure 16 illustrates our LLC

policy for our system life cycles. As shown in the figure, concept
and development phases collectively account for 20% of the total
LCC, whereas the remaining 80% of the LCC was invested in the
system production through system disposal phases (this includes
testing, operations, support, maintenance. . . ).

CONCLUSIONS

A new efficient and generic top-down architecture for intrusion
detection and classification in IoT networks using non-
traditional machine learning is proposed in this article.
The proposed architecture can be customized and used
for intrusion detection/classification incorporating any IoT
cyberattack datasets, such as the KDD’99 dataset, the NSL-
KDD dataset, the AWID dataset, the CICIDS dataset, the
DDoS dataset, the UNSW-NB15 dataset, the MQTT dataset,
and others. Specifically, the proposed system is composed of
three subsystems: Feature Engineering (FE) subsystem, Feature
Learning (FL) subsystem, and Detection and Classification (DC)
subsystem. All subsystems have been thoroughly described and
analyzed in this article. Accordingly, the employment of deep
learning models will enable to detect the slightly mutated
attacks of IoT networking with high detection/classification
accuracy for the IoT traffic represented by either real-time
system or a pre-collected dataset. Also, this work has employed
the system engineering (SE) techniques, the machine learning
technology, and the cybersecurity of the IoT systems field to
introduce a new comprehensive SE-based design and architecture
for the proposed system of interest (SOI). The collective
corporation of the three fields has successfully yielded a
systematic engineered system that can be implemented with
high performance and accuracy. Besides, in this work, we have
applied SE’s top-down approach, where the overview of the SOI is
initially formulated and specified through first-level subsystems.
Then, each subsystem is refined comprehensively, providing all
details of its elements (modules) and their design alternatives.
This top-down decomposition simplifies the implementation
of each level of the system abstraction with iterative and
incremental development, integration, and validation processes.
This also provides greater details of each subsystem/module
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FIGURE 15 | Common SE curve system life cycle cost (LLC vs. Time).

FIGURE 16 | Percentages of life cycle cost with time for proposed system development.

that helps the decision-making authority/stakeholders for
system configurations and future change management plans.
Moreover, this work emphasizes the benefits of employing the
non-traditional machine learning techniques involving CNN
networks in the cybersecurity of IoT environment to detect
and classify the data traffic of IoT communication. Unlike
traditional machine learning techniques used for detection tasks,
which require the data to be linearized in 1-D arrays (or
vectors) and a feature extractor to be manually designed, the
utilization of CNNs for the detection task of IoT cyberattacks
requires the dataset to be converted into 2-D matrices to
accommodate input for the deep 2D convolution operations.
This process helped generate the feature maps that extract
unique features of each dataset sample. Note that the nature
and the number of extracted features depend on the values
and the numbers of convolution filters (kernels) applied over

the input data. The filters’ values are also called the weights
of the convolution layers, and they are defined using the
training procedure. Finally, due to the large number of weights
(because of many hidden layers) needs to be trained in the deep
neural networks, the neural network requires more computations
and thus requires longer time for the training process.
This disadvantage (i.e., computational load) can be mitigated
through the use of high-performance computing platforms
involving the use of graphical processing units (GPUs) and
efficient programming modules (e.g., mini-batch normalization).

RECOMMENDATION FOR FUTURE WORK

Several recommendations for future research
works may be considered to extend this study.
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These further recommendations can be listed as
the following:

— The data records can be the coordinate of the next research
study by setting up a real-time IoT communication network
with sufficient number of nodes and gateways, incorporating
nodes diversity. A further researcher can develop a new
software system that catches and investigates any data packet
communicated through the IoT environment (in-going and
out-going) and come up with attacks to update an existing
dataset or to come up with a new dataset. Note that the
packet collection and investigation should be performed
for a sufficient amount of time to provide more insights
into the type of packets (normal or anomaly) processed at
IoT networking.

— The proposed SOI can also be tuned and used to
perform many other real-life applications, requiring image
recognition and classification, such as medical, biomedical,
handwritten recognition applications, and others.

— Finally, the proposed system can be employed by an IoT
gateway device to provide intrusion detection services for a
network of IoT devices such as a network of ARM Cortex-
based nodes. More investigation on the proposed SOI can be
reported, including power consumption, memory utilization,
communication, and computation complexity over the low-
power IoT nodes with tiny system components (such as the
battery-operated/energy aware devices).
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