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Abstract

Autism spectrum disorder (ASD) is associated with abnormal brain development during fetal

life. Overall, increasing evidence indicates an important role of epigenetic dysfunction in

ASD. The placenta is critical to and produces neurotransmitters that regulate fetal brain

development. We hypothesized that placental DNA methylation changes are a feature of

the fetal development of the autistic brain and importantly could help to elucidate the early

pathogenesis and prediction of these disorders. Genome-wide methylation using placental

tissue from the full-term autistic disorder subtype was performed using the Illumina 450K

array. The study consisted of 14 cases and 10 control subjects. Significantly epigenetically

altered CpG loci (FDR p-value <0.05) in autism were identified. Ingenuity Pathway Analysis

(IPA) was further used to identify molecular pathways that were over-represented (epigenet-

ically dysregulated) in autism. Six Artificial Intelligence (AI) algorithms including Deep Learn-

ing (DL) to determine the predictive accuracy of CpG markers for autism detection. We

identified 9655 CpGs differentially methylated in autism. Among them, 2802 CpGs were

inter- or non-genic and 6853 intragenic. The latter involved 4129 genes. AI analysis of differ-

entially methylated loci appeared highly accurate for autism detection. DL yielded an AUC

(95% CI) of 1.00 (1.00–1.00) for autism detection using intra- or intergenic markers by them-

selves or combined. The biological functional enrichment showed, four significant functions

that were affected in autism: quantity of synapse, microtubule dynamics, neuritogenesis,

and abnormal morphology of neurons. In this preliminary study, significant placental DNA

methylation changes. AI had high accuracy for the prediction of subsequent autism develop-

ment in newborns. Finally, biologically functional relevant gene pathways were identified

that may play a significant role in early fetal neurodevelopmental influences on later cogni-

tion and social behavior.
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Introduction

Autism is a neurological disorder that is characterized by social, communication, and cognitive

dysfunction and is clinically heterogeneous [1–3]. It generally manifests before the age of 3

years [4]. It has been estimated that about 2.21% of adults are living with some form of autism

spectrum disorder (ASD) [5]. Poor health care outcomes including early mortality are docu-

mented among the ASD group compared to peers of the same age group [6].

Etiologically, ASD is mediated by genetic, epigenetic, environmental influences, and

immune dysfunction [3]. DNA methylation, an epigenetic mechanism, uses cytosine methyla-

tion or attachment of a carbon atom to regulate gene expression without altering the DNA

nucleotide sequence. DNA methylation changes in autism manifest in the brain, placenta, and

blood [7]. The placenta is a transient organ that controls the biological interaction between the

maternal and fetal environment [8]. The placenta produces neurotransmitters such as seroto-

nin, dopamine, norepinephrine/ epinephrine along with nutrient transfer and gases that con-

tribute to a major degree to fetal neurodevelopment [9] and neurodevelopmental disorders

[8].

Artificial Intelligence (AI) is a branch of computer sciences in which machines, with limited

explicit programming, perform tasks that normally require human intelligence. AI applica-

tions in the biological sciences from imaging to genomic analysis [10, 11] represent an exciting

new development. AI is ideal for the analysis of the large volume of data generated from

‘omics’ experiments [12–14].

Placental methylome changes are known to occur in the placenta of autistic children [15,

16]. Our prior studies have shown the power of AI and machine learning analysis of omics

data for the detection of different phenotypes [17–20]. For example, we have earlier reported

DNA methylation changes in newborn leukocyte DNA combined with AI for the detection of

autism [13]. Prematurity is associated with altered brain macro and microstructure and is a

well-recognized risk factor for autism [21]. Most cases of autism however occur in term infants

and the mechanisms are on the surface less intuitive. Based on the above considerations, there-

fore, we evaluated the utility of placental epigenomics to help elucidate the molecular mecha-

nisms of autism in children born at term. Further, given the recognized benefit of early

detection in improving outcomes in autistic infants, we evaluated the utility of AI platforms

for the accurate prediction of autism.

Materials & methods

Study methods were previously described [13] and are summarized herein. Wayne State Uni-

versity, Detroit MI, Royal Oak, MI, USA granted IRB approval. The study group consisted of

14 term autism cases (7 males, 7 females) and 10 term ethnicity-matched normal controls (5

males, 5 females) that were not delivered prematurely. The parent or legal guardian of the

child provided written consent. The pediatric medical records were reviewed. We identified

children that were diagnosed with classic autism by a pediatric neurologist, and who had deliv-

ered at WSU, and for whom placental histology was performed. DNA was extracted from for-

malin-fixed, paraffin-embedded (FFPE) residual placental tissue that was archived after the

histological exam. We used the term singleton birth without a diagnosis of autism or any

known or suspected genetic syndromes or birth defects as controls and for whom FFPE pla-

cental tissue block was available. These control children had been followed birth in the regular

pediatric clinic with no diagnosis of developmental or brain disorders. This was confirmed

based on chart review and by the parent/ guardian. Exclusion criteria for cases also included

the absence of other known or suspected genetic syndromes or major anomalies. The autism

cases were diagnosed before 2014 as per the prevailing classification by the American
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Psychiatric Association (DSM-IV). The diagnostic category used was the autistic disorder sub-

type. In 2014 the classification system was changed to ASD encompassing the five different

subtypes: autistic disorder, pervasive developmental disorder- not otherwise specified, Asper-

ger syndrome, Childhood Disintegrative Disorder, and Rett syndrome. Limited demographic

and clinical data were obtained from the delivery records. DNA was extracted from FFPE tis-

sue using Qiagen Gentra Puregene Tissue Kit (Gentra systems MN, USA), and subsequent

bisulfite conversion of 500 ng of each extracted DNA using EZ DNA Methylation-Direct Kit

(Zymo Research, Orange, CA) was performed according to the respective kit protocols.

Genome-wide DNA methylation profiling and statistical analysis

The Illumina HumanMethylation450 BeadChip (450K), covering 485,000 CpG sites (Illumina,

Inc., California, USA) was used to perform DNA methylation profiling. The samples were ran-

domized and processed together to minimize the batch effect. The processed array chips were

fluorescently stained and imaged on Illumina iScan. CpG loci within 10bp of SNPs were

excluded because the latter can alter the methylation status of proximate cytosine loci. Statisti-

cal and bioinformatic analyses were performed followed by data processing and quality con-

trol. A β-value based on the ratio of methylated and unmethylated signal intensities were

calculated for each CpG loci using GenomeStudio software as detailed in our prior publica-

tions [12, 22]. FDR (Benjamini-Hochberg) p-value < 0.05 was considered significant. R-pack-

ages dplyr, reshape2, and ROCR were used to calculate Area Under the Receiver Operating

Characteristic (AUC-ROC) curves with 95% CI for ASD prediction. An unsupervised Princi-

pal Component Analysis (PCA) and heatmap were generated using an online tool “MetaboA-

nalyst 4.0” which is based on the R program [23] (Fig 1).

Prediction of ASD CpG markers using Artificial Intelligence (AI)

Our AI analytic methods have been extensively described previously [13, 20]. Six AI-based

platforms were used to predict autism based on CpG methylation. These algorithms were,

Deep Learning (DL), Support vector machine (SVM), Generalized Linear Model (GLM), Pre-

diction Analysis for Microarrays (PAM), Random Forest (RF), and Linear Discriminant Anal-

ysis (LDA) [24]. Analysis of placental intragenic, extragenic CpG methylation markers and

both combined were evaluated in autism prediction. The details were published earlier [20].

Biological functional enrichment analysis

The genes with significant CpG methylation changes were used for the disease enrichment

assessment using Ingenuity Pathway Analysis (IPA) (Qiagen IPA) system. The genes with

Entrez identifiers recognized by IPA were mapped. The disease mechanism associated with

autism with a statistical significance of p-value <0.05 was considered.

Results

The study cases and controls are not significantly different in terms of maternal age, race, and

gestational age (S1 Table). A total of 9655 CpGs were found to have significantly altered meth-

ylation in the full-term birth autism cases. Among them, 2802 CpGs were intergenic markers

and 6853 (4129 genes) were intragenic CpG. These involved the Transcription Start Site (TSS)

200, TSS1500, 5’ UTR, 1st exon, gene body, and 3’ UTR. PCA showed a clear separation of

ASD cases and normal control subjects (S1 Fig). The hierarchical clustering showed separation

of CpG markers based on hyper and hypomethylation status, depicted in S2 Fig.
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For intragenic CpG markers, we identified a total of 3820 CpGs were hypo and 3033 were

hypermethylated. The top 5 differentially methylated CpGs based on the lowest FDR p-values

were: cg16699528 (GATS; PVRIG), cg15436096 and cg21893185 (GPR135), cg19949776

(LOC100132724; AP4E1) and cg13342370 (ITGBL1). All 5 of these CpGs displayed a methyla-

tion difference of�30% and were hypermethylated. The S2 Table provides the details of all sig-

nificant CpG loci in autism full-term placental tissue.

AI analysis results

AI analysis using combined inter-and intragenic markers was highly accurate for term autism

detection. Based on DL analysis: AUC (95% CI) = 1.00 (1.00–1.00) with sensitivity and speci-

ficity of 100%. RF achieved identical performance. Analysis performed combining both inter-

and intragenic markers also achieved AUC (95% CI) = 1.00 (1.00–1.00). The top 5 predictive

markers were, cg23920016 (NOS1AP), cg24274662 (MOSPD1), cg05036212 (intergenic),

cg26017408 (AFAP1L2) and cg16930349 (GRIPAP1) with DL and cg22914188 (ANAPC7),

cg21483475 (DHX36), cg00991994 (C3orf26; FILIP1L; MIR548G), cg10706649 (POLA2) and

Fig 1. Schematic summary of the methylation array data processing and analysis pipeline.

https://doi.org/10.1371/journal.pone.0253340.g001
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cg09856604 (intergenic) using RF AI platforms, Table 1. The evaluation based on AI using

intragenic and intergenic separately are presented in S3A Table and S3B Table respectively.

Important predictors in order

SVM: cg25650964, cg23082393, cg18675381, cg21964564, cg23925650

GLM: cg24506662, cg19711553, cg16449972, cg18675381, cg17146731

PAM: cg18675381, cg01812571, cg21964564, cg03582285, cg02478023

RF : cg22914188, cg21483475, cg00991994, cg10706649, cg09856604

LDA: cg11263351, cg18536607, cg13687570, cg11123972, cg24506662

DL : cg23920016, cg24274662, cg05036212, cg26017408, cg16930349

Biological functional enrichment analysis

The biological functional enrichment showed four biological functions to be significantly over-

represented. The four functions are: (i) Quantity of synapse (p-6.37E-19), (ii) Microtubule

dynamics (p-6.06E-8), (iii) Neuritogenesis (p-1.68E-7) and (iv) Abnormal morphology of neu-

rons (p-5.99E-7) (Fig 2). Among the enriched genes in the above said biological functions,

about 93% were hypomethylated and 7% were hypermethylated genes. These molecular path-

ways are relevant to neuronal dynamics, cognition, and autism. The relevance of these biologi-

cal functions is further discussed.

Discussion

The prevalence of ASD continues to increase in the US. Despite advances in our understand-

ing of its biology the disease mechanisms remain incompletely understood. Currently, the

detection of ASD rests on clinical and parental observations of childhood behavior [25]. The

resulting delayed diagnosis contributes to delayed interventions [26] and worse outcomes. The

placenta has the potential to act as a surrogate tissue to predict ASD and is characterized by

methylated markers [15]. Based on the clear need to further understand disease mechanisms

and for biological disease markers, we investigated the value of AI analysis of placental epige-

nomics for autism prediction. High diagnostic accuracy with AUC close to 1.0 was achieved

with each of the six AI platforms for the detection of autism using placental epigenomics. This

was observed when intragenic, intergenic (outside of known genes) CpGs were analyzed sepa-

rately or in combination.

While preterm births are at higher risk for autism most cases occur in term births, by far

the largest delivery group. While there is an overall male predominant of males in autism this

is primarily due to their higher frequency among the term birth group with relatively higher

female frequency among the preterm births [27]. This suggests that the mature male brain

might be more susceptible to insults leaning to autism or that at the very least different mecha-

nisms for ASD exists in term from preterm births. Based on this reasoning, we focused on the

term autism in this study.

We further investigated the mechanisms of term autism. The prenatal environment can sig-

nificantly affect neurodevelopment and appears to play a significant role in the etiology of

Table 1. Results of Term Autism Placenta based on combined Inter and intragenic markers (with FDR p-value<0.05).

SVM GLM PAM RF LDA DL

AUC 0.9998 0.9988 0.9997 1.0000 0.9978 1.0000

95% CI (0.9500–1) (0.9500–1) (0.9500–1) (0.9900–1) (0.9500–1) (1–1)

Sensitivity 0.9300 0.9000 1.0000 1.0000 0.9000 1.0000

Specificity 0.9200 0.9900 1.0000 1.0000 0.9500 1.0000

https://doi.org/10.1371/journal.pone.0253340.t001
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ASD [28]. The placenta is the sole organ for the transmission of nutrients to the developing

fetus that is required for brain development as well [9]. One study, using the placenta, identi-

fied two genes in association with ASD (CYP2E1 and IRS2) [29] and we identified both to be

differentially methylated as well.

Four genes cg23920016 (NOS1AP), cg24274662 (MOSPD1), cg26017408 (AFAP1L2) and
cg16930349 (GRIPAP1) identified based on predictive ability for autism using AI analysis

(Table 1). The NOS1AP (Neuronal Nitric Oxide Synthase 1 Adaptor Protein) gene is located at

1q23.3 which is a candidate region for several psychiatric conditions including ASD. Genetic

variants of the NOS1AP gene are associated with ASD and other psychiatric diseases [30, 31].

The MOSPD1 “Motile Sperm Domain Containing 1” gene contains the Major sperm protein

(MSP) domain. MSP domain is a large family of genes whose proteins are involved in synaptic

transmission in the central nervous system identified in sea slug and has a role in human

neurodegenerative disorders [32]. MOSPD1 is involved in Mesenchymal stem cells (MSCs)

proliferation and differentiation. The MSCs exhibits immunomodulatory properties that

Fig 2. Ingenuity Pathway Analysis pathways analysis of significant DNA methylation variations and network analysis performed using Ingenuity Pathway

Analysis (IPA).

https://doi.org/10.1371/journal.pone.0253340.g002
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mediate diseases allied to inflammation and tissue damage such as ASD [32, 33]. The specific

relationship between this gene and the term autism which is predominantly a male disorder

remains to be elucidated. AFAP1L2 (another gene identified based on AI analysis) showed dif-

ferential expression in oligodendrocytes of the Amyotrophic lateral sclerosis murine model

[34]. However, molecular studies are required to explore its role in ASD. GRIPAP1 is one of

the glutamate receptor interactors, involved in neuronal cytoskeleton organization [35, 36].

GRIPAP1 genetic variant that alters the splicing of this gene was identified in ASD cases [37].

We further used the approach of IPA analysis to investigate the mechanisms of term autism.

Significant over-representation of biological functions found were as follows: Quantity of syn-

apse, Microtubule dynamics, Neuritogenesis and Abnormal morphology of neurons to be

enriched with the significantly differentially methylated genes. The nature and potential role of

each pathway are briefly discussed below.

Quantity of synapse

A process of synapse formation occurs between neurons is required for communication. Syn-

apse formation occurs in the fetus before 27 weeks gestation [38]. The synaptic connections

established by the neurons integrate functional neuronal networks required for the appropriate

brain function. Disruption of this function is associated with ASD pathologies including cog-

nitive impairments [39]. Some constituent genes in this pathway that were found to be epige-

netically altered in our study are highlighted. Protocadherin (Pcdh) is a family of genes

involved in the formation of neural circuits and synaptogenesis. Multiple studies implicate

gene mutations, copy number variations, and epigenetic variations in the Pcdh family of genes

in neurodevelopment and neurological diseases [40]. The present study found multiple PCDH

family genes to be hypomethylated and on enrichment analysis, PCDH family genes are

enriched with “quantity of synapse” (Fig 2). CAMK2D, a hypermethylated gene has a role in

intracellular calcium signaling and has been associated with ASD [41].

Microtubule dynamics

Neurons rely on microtubule cytoskeleton dynamics for several processes such as cell division,

cell migration, intracellular trafficking, signal transduction, axon guidance, and synapse for-

mation. After synapse formation, microtubules provide physical integrity that maintains neu-

ral connectivity throughout the developmental process [42]. Microtubule-associated proteins

support the microtubular functions that help axon outgrowth and pathfinding as well as den-

drite development [43]. Alterations in the levels of microtubule-associated proteins have been

identified in ASD patients [43]. The gene MYC was found to be differentially methylated in

the current study and was previously reported to be differentially expressed in neurological

disorders [44]. Upregulation of gene activity was identified in ASD cases [45]. The hypomethy-

lated WNT1 gene was earlier found to be associated with a missense polymorphism in ASD

and has a probable role in inducing Wnt signaling pathway activation [46]. We identified

altered methylation on other WNT family genes, WNT2, WNT2B, WNT7B, and WNT10A in

the present study.

Neuritogenesis

Neuritogenesis is one of the primary events during neuronal development in which new neur-

ites or growth cones form and give rise to axons and dendrites [47]. The control of neuritogen-

esis is complex and evident in neuronal connectivity deficits in ASD and mutations in the

genes affecting neuritogenesis have been associated with autism [48]. One of the autism candi-

date genes, AUTS2 is involved in neuritogenesis via Rac1 signaling activation in the
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developing brain [49]. The CUX1 gene in the neuritogenesis pathway was found to be hyper-

methylated in our study. Mutations in the active enhancer regions were associated with social

behavior and cognitive function of ASD in an earlier study by Doan et al., 2016 [50].

Abnormal morphology of neurons

Alterations in the neuronal cytoskeleton composition, especially aberrations in the actin fila-

ment polymerization, have been correlated with ASD development [51]. In the postmortem

human brains with ASD, both cortical and non-cortical regions showed abnormal neuronal

morphology, suggesting the importance of neuronal morphology in the pathogenesis of ASD

[52]. NEUROG2 (NGN2), found to be hypomethylated in our study, is a transcription factor

that converts progenitors to a neuronal fate during brain development. This also reprograms

early postnatal astroglia to develop into neurons [53]. NGN2 can induce excitatory neurons in

human cortices, and NGN2 knockout cells lack these neurons, indicating the NGN2 may be a

key gene in ASD [54, 55]. Similarly, another of the placental hypomethylated genes, POU3F2,

is a transcription factor that contributes to the process of neuronal differentiation [56]. This

gene is highly expressed in the developing brain and is said to be a master regulator of down-

stream ASD candidate genes [57]. Given its role as a fetal tissue and the biological regulator of

physiological and pathological interactions between mother and fetus, it is not surprising that

the placenta is considered as an appropriate surrogate for the evaluation of a fatal brain disor-

der. Prior studies have shown changes in the placental morphology [28] suggestive of reduced

ability to respond to intrauterine stresses. In addition, reduced placental trophoblast branch-

ing, the key vascular unit for exchange of materials and waste products between mother and

fetus was one of the changes reported. Differential methylated regions (DMRs) of the placenta

DNA have been reported to distinguish ASD cases and controls [29]. These DMRs were func-

tionally enriched for neuronal development. The findings reached genome-wide significance

for two genes: CYP2E1 and IRS2. Similarly, methylation differences were found in the placen-

tal methylomes in both partially and highly methylated regions of the DNA in ASD placentas

compared to unaffected controls [15]. This reached genome-wide significance near the DLL1
gene, which is thought to be a potential fetal brain enhancer. Collectively, these studies support

our findings that placental epigenomic alterations are a feature of ASD. Our study however

uses single nucleotide level resolution to improve specificity to both investigate the pathogene-

sis of term autism, accurately predict term autism. The identified key genes and pathways

involved in ASD pathogenesis provide an opportunity to identify novel targets that can be uti-

lized for therapeutic development.

Our study suffers from the limitations of a small sample size and the lack of corresponding

gene expression data to further refine the potential biological consequences of the epigenetic

changes. While expression studies are possible from FFPE samples, in our hands, they have

not performed as well as fresh placental tissues. It is also possible that co-existing obstetric con-

ditions such as fetal growth restriction and preeclampsia can modify the placental methylome.

However, we excluded cases with significant obstetric or other complications. Further, using

AI and pathway analysis we demonstrate that the most significant genes and pathways appear

highly relevant to brain and neuronal development, providing greater biological plausibility

for our results.

Conclusions

Combining DNA profiling with AI analysis we achieved accurate early prediction of term

autism cases. Given the importance of early diagnosis and intervention for improved outcomes

in ASD, our findings could be clinically significant. Biologically relevant functions of identified
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genes include synaptic transmission, neuronal cytoskeleton organization, neuritogenesis, the

morphology of neurons which are pertinent to ASD. We used a limited number of samples

and further functional analysis is desirable. Our findings should therefore be preliminary at

this stage and of need for validation in larger data sets. However, the study confirms the poten-

tial utility of the placenta as a surrogate tissue, given its easy accessibility and our findings of

high accuracy.
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