
Effects of Adhesion Dynamics and Substrate Compliance
on the Shape and Motility of Crawling Cells
Falko Ziebert1,2, Igor S. Aranson3,4*

1 Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany, 2 Institut Charles Sadron, Strasbourg, France, 3 Materials Science Division, Argonne National

Laboratory, Argonne, Illinois, United States of America, 4 Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of

America

Abstract

Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical
processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate
deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell
responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational
model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of
adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion
vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness,
and the rates of adhesion. Implementing a step in the substrate’s elastic modulus, as well as periodic patterned surfaces
exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and
shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of
cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio
of adhesive to non-adhesive stripes.
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Introduction

Substrate-based cell motility is involved in many vital biological

processes like morphogenesis, wound healing, immune response,

as well as in pathologies, especially in cancer growth and

metastasis. On the other hand, cell motility is used for cell

screening and sorting, and for the design of bio-active surfaces.

However, a general understanding of the underlying mechanisms

and a prediction of the responses of cells to changes in the

environment or external stimuli has not been achieved to date.

Predictive computational modeling will be helpful in this

respect, however is a very complex task. It is commonly accepted

that the basic processes involved in substrate-based cell motility are

actin protrusion via polymerization at the cell’s front (also called

the leading edge), the intermittent formation of adhesion sites for

the cell to transfer momentum to the substrate, and the

detachment of adhesion and possibly myosin-driven contraction

at the cell’s rear [1,2]. While the cell’s protrusion is in itself a

complex process [3,4], on a coarse scale - on the scale of the cell -

it can be successfully modeled by the level set [5,6] or the phase

field [7–9] methods that track the cell’s boundary (i.e. the

membrane) in a self-consistent way.

For reasons of simplicity, however, in most models the dynamics

of cell adhesion and its interplay with the substrate properties - like

substrate adhesiveness or stiffness - are neglected and the whole

complexity of this process is reduced to the level of a simple viscous

friction between the crawling cell and the substrate [7,10,11].

While this is an acceptable approximation for rapidly moving cells

like the often studied keratocytes on substrates with moderate

adhesive strength [11], it is commonly recognized that the

dynamics of adhesion sites and substrate compliance can strongly

affect the shapes, the internal organization, and the overall mode

of cell movement. A few exceptions to this simplification are e.g.

Ref. [9], where discrete stochastic adhesion sites where introduced

while the friction was described by a spatially uniform drag force

proportional to the velocity of the cell, and Ref. [6], where the

dynamics of the integrin density - the membrane-embedded

proteins establishing the link between the substrate and the actin

cytoskeleton inside the cell - was modeled explicitly, but the overall

effect of adhesion was still an effective friction.

Even less established are the effects of substrate stiffness, which

so far have been accounted for only in highly simplified

mechanistic models [12,13], and on the level of force-velocity

relations. Due to the complexity of the cellular adhesion

mechanism [14], it is obvious that specific questions like

mechano-sensitivity [15], or complex motility modes like stick-

slip motion occurring e.g. for filopodia [16], can not be understood

by the usual approximations, i.e. a simple friction law and

neglecting substrate stiffness. Other important phenomena related

to adhesion are the effects of artificially designed spatially selective

adhesion patterns, recently studied experimentally for both

spreading [17] and motile cells [18], as well as the guidance of
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cell movement by the rigidity of the substrate [19], the so-called

durotaxis.

In order to elucidate the effects of adhesion and substrate

properties in the modeling of cell movement, here we generalize

our model for motile cell fragments proposed previously in Ref.

[8]. This model, based on a phase-field approach coupled to the

averaged actin orientation (or polarization) field, is significantly

extended to account for explicit dynamics of the adhesion site

formation and an averaged deformation of the substrate. To

reduce the computational complexity, while the density of

adhesion sites is spatially resolved, the substrate is treated as an

effective (visco-)elastic spring. This simplification has been done in

order to extract the generic features of the adhesion dynamics and

the effects of substrate stiffness, as well as to make analytic

calculations - in addition to the computational modeling - possible,

in order to obtain better insight in how adhesion affects cell

motion. Despite all the simplifications, we were able to reproduce

key experimental observations, such as transitions between steady

and stick-slip motion as a function of protrusion rate, adhesiveness

and stiffness. In addition we make testable predictions for the

locomotion of eukaryotic cells on selectively patterned adhesive

substrates and analyze the response of cells to a step in the

adhesiveness or substrate stiffness. Both situations have been

recently studied experimentally [18,20].

Results

Description of the Model
In Ref. [8], we developed a two-component physical model that

was able to account for the key phenomenology of moving cells: a

discontinuous onset of motion [21], a broad diversity of cell shapes

spanning from crescent-like keratocyte shapes to more fan-like

fibroblast shapes [22], as well as shape oscillations.

The main ingredients of the model are two continuum fields.

One describes the two-dimensional cell boundary (phase field) and

a second one models, in a simplified way, the dynamics of the actin

cytoskeleton. Both equations are coupled, inspired by the relevant

biological processes: (i) The polymerization of the F-actin network

predominantly occurs near the cell’s boundary. This is due to

Wiskott-Aldrich syndrome proteins (WASP) nucleating new

branches of actin filaments by activating the Arp2/3 complex

located near the cell membrane [4]. (ii) Through nascent adhesive

contacts (formed by integrin complexes) the polymerizing actin

network, possibly with the assistance of myosin molecular motors

[23], is able to transfer momentum to the substrate and to push the

boundary forward. Besides these two main ingredients, motor

contraction and overall area conservation of the cell are included.

Finally, to model keratocytes, an additional symmetry breaking

term was added that mimics the effect of myosin motor-induced

bundling of actin filaments at the rear, cf. [21]. The present work

significantly extends the model to account (i) for an explicit

adhesion dynamics, the adhesion strength controlling the propul-

sion force exerted by the cell. (ii) The adhesion dynamics is self-

consistently coupled to the deformation of the substrate the cell

crawls on, see Fig. 1 for illustration.

To efficiently track the cell’s interface, as described earlier [8],

we introduce an auxiliary phase field r(x,y,t), separating the

interior of the cell (where r~1) from the exterior (where r~0)

and varying smoothly in between. The diffuse interface is

interpreted as the location of the cell’s membrane. The second

field, p(x,y,t), describes the averaged orientation field of the actin

filament network. For these two fields the following simple

dynamic equations are proposed, cf. [8]:

Ltr~DrDr{(1{r)(d{r)r{aAp:(+r) , ð1Þ

Ltp~DpDp{t{1
1 p{t{1

2 (1{r2)p

{b
+rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zeD+rD2
q {c (+r):p½ �p : ð2Þ

The first term in Eq. (1), DrDr, has two meanings: first, it

characterizes the width of the phase-field interface. In addition, it

describes, on a simplified level, the ratio of the membrane surface

tension to the cell’s friction with the substrate [7]. The second term

is the variational derivative of a model ‘‘free energy’’,

F (r)~
Ð r

0
dr’(1{r’)(d{r’)r’, which has a double-well form.

For d~1=2 the depths of the two potential wells are equal, and

hence none of the two ‘‘phases’’, r~1 (the cell) and r~0 (the

outside), is preferred - a situation representing a stationary cell.

The last term in Eq. (1) describes the advection of the cell’s

interface due to actin polymerization with the propulsion

parameter a. It results in a preference of either r~0, in which

case the cell locally retracts, or of r~1, when the cell locally

advances. In addition to propulsion due to actin polymerization

other possible mechanisms of force-generation are discussed in the

context of cell motility, e.g. the combined activity of filament

treadmilling and motors [24,25] or of retrograde actin flow and

contractile forces generated by stress fibers [23]. While different in

detail, a phenomenological description of this mechanism will be

similar to that presented in Eqs. (1,2).

Equation (1) is supplemented by the global constraint

d~
1

2
zm

ð
dxdyr(x,y){V0

� �
{sDpD2 : ð3Þ

The two additional contributions in Eq. (3) describe overall area

conservation (to preserve the size V0 of the cell, with a stiffness of

the constraint m) and the actin contraction by myosin motors due

to active stresses (of strength s), see [8,26] for details. The

Figure 1. Schematics of the model. The soft (visco-)elastic adhesive
layer of thickness h is sandwiched between the much less deformable
substrate (e.g. a glass slide or PDMS) and the cell, here assumed to be
moving in positive x-direction with speed V. The cell exerts a dipolar
force in the layer, illustrated schematically by the propulsion force Fp

balanced by the friction force Ff. Correspondingly, a pair of forces of
opposite polarity is applied to the cell. The induced deformation in the
soft layer is modeled by the extension of an effective spring, with
effective spring constant G.
doi:10.1371/journal.pone.0064511.g001

Effects of Adhesion Dynamics
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parameter s is involved in the control of the cell’s shape: cells

assume fan-like (fibroblast) shapes for small values of s, and

crescent-like (keratocyte) shapes for larger values, see the Methods

section.

Equation (2) models, in a simple way that is inspired by more

advanced theories [26,27] the dynamics of the actin cytoskeleton

on the level of its mean orientation. The terms on the r.h.s.

describe, in the order of appearance, stiffness/diffusion of the

orientation field, degradation of orientation (e.g. by depolymer-

ization, of rate 1=t1), suppression of orientation outside the cell

(with rate 1=t2), generation of new filaments (with rate b) by actin

polymerization at the location of the membrane, and finally a

symmetry-breaking term mimicking the effect of motor-induced

bundle formation at the cell’s rear (see also below).

For a more detailed discussion of the basic model, we refer to

Ref. [8]. We would however like to make two remarks: first, we

introduced a saturation of the growth term of actin filaments at the

membrane, to prevent excessive creation of filaments for very

steep +r and to suppress this non-physical instability; the

parameter e sets the maximum value of the filament growth rate

to ^b=
ffiffiffi
[
p

. Second, concerning the last term in Eq. (2) that was

introduced in Ref. [8] to model keratocyte cells: for keratocytes,

and also their fragments, it is known [21,22] that myosin motors

induce an anti-parallel actin bundle at the cell’s rear, apparently to

stabilize the cell’s polarized shape. In terms of the vector p, this

means that polar orientation is suppressed at the rear, as

implemented by the term {c (+r):p½ �p. Note that this term,

breaking the +p-symmetry, favors polarized motile cells. Howev-

er, our subsequent studies revealed that it is possible to obtain self-

sustained cell motion even without this term, namely for large

values of the parameter s characterizing the overall contraction of

the actin network by myosin motors. In this case, the self-sustained

motion is the outcome of the shape deformations of the moving

cell. This point is discussed in more detail in the Methods section.

Within the model given by Eqs. (1–3), there are, therefore, two

possibilities for further simplification: one could, in principle,

neglect either the last term in Eq. (2) or the last term in Eq. (3) and

still obtain moving states.

Let us now discuss the extension of the model towards adhesion

and substrate dynamics. First, note that in Ref. [8] adhesion was

tacitly assumed to allow the filaments to push against the

membrane - i.e. it was acting like a homogeneous friction, the usually

applied approximation as discussed in the introduction. In

contrast, here we have written for the last term in Eq. (1),

describing the actin-based propulsion. In principle, the propulsion

strength will be a certain function a(A). Indeed, it is known that

the cell’s crawling velocity is a non-monotonous function of

adhesion strength [28], first increasing, reaching a maximum and

then decreasing again for too sticky substrates. We here assume

a(A)~aA for simplicity. Thus, the propulsion term becomes

aAp:(+r), i.e. the propulsion is now explicitly dependent on the

number of adhesive contacts, A(x,y,t). The adhesion contacts

describe integrin complexes that are engaged to both the substrate

(where ligands like fibronectin or RGD [Arginine-Glycine-

Aspartic acid] are assumed to be present) and the cytoskeleton

via recruitment of further proteins like zyxin, talin, or vinculin

[23,29]. Note that the parameter a contains properties of the

adhesive contacts, for example, the typical force that can be

transmitted to the substrate by a single bond.

We now specify the dynamics of the adhesive contacts, and

suggest the following reaction-diffusion type equation (a somewhat

similar approach was adopted in the context of stick-slip friction in

ultra-thin films in Ref. [30]). We would like to stress that this

dynamics is highly simplified, as discussed in more detail below.

Here we take into account only the most basic features needed to

model complex cellular dynamics and substrate dependence. The

proposed dynamics couples the number of adhesive contacts A,

the orientation of the actin cytoskeleton p, the substrate

Figure 2. Dynamic modes of motion. The main figure shows a typical stick-slip motion. The inset displays steady-state motion for high substrate
stiffness and otherwise same parameters and initial conditions. The integrated adhesion density SA(t)T is shown in red and the velocity V (t) of the
cell in blue. The absolute value of the extension (in the direction of motion) of the effective spring modeling the substrate, DU(t)D, is shown in green.
The dashed box is the time window where Figure 2 displays the spatially resolved dynamics. Parameters: a~b~2:5, c~0:5, s~0:3, a0~0:0025,

Uc~
ffiffiffi
5
p

, anl~1:5, G~0:15; initial area of the cell V0~706:8 (initial radius R0~15). Other parameter as given in Table 1.
doi:10.1371/journal.pone.0064511.g002

Effects of Adhesion Dynamics

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e64511



deformation U, and the shape dynamics described by the phase

field r:

LtA~DADAzr(a0p2zanlA
2){sA3{d(U)A : ð4Þ

Here DA is a (small) diffusion coefficient introduced for spatial

regularization of the adhesion site distribution. The following two

terms describe the attachment dynamics, and the last two terms

model excluded volume interaction and detachment of adhesive

contacts, respectively. The term proportional to a0 describes the

attachment of adhesion sites inside the cell. As effective adhesion

forms only if actin is present and independently on the actin

network orientation [23], we introduced a direct proportionality to

!rp2. Furthermore, it is known that an already formed adhesion

complex favors the formation of other adhesive contacts in the

surrounding. This has several reasons: first, due to an already

formed contact, the membrane’s fluctuations are locally reduced

[31]. Second, the exterior of the cell membrane is decorated by a

thin polymer layer (the so-called glycocalyx) that is thicker than the

size of the ligand-receptor bond (integrin-fibronectin). Hence,

engaged bonds deform the membrane, and, therefore, effectively

attract each other, as an aggregation reduces the elastic energy of

the membrane [32,33]. To mimic the nonlinear (multi-body)

attachment due to such collective effects, we introduced the term

proportional to anlA
2. The term sA3 models an excluded volume

interaction, leading to a local saturation of the adhesion site

concentration.

The last term in Eq. (4), {d(U)A, introduces a coupling to an

averaged substrate deformation U(t). As shown in the sketch of the

geometry in Fig. 1, we do not resolve the substrate deformation

locally, but model it as and effective spring that has a certain

extension U(t)~u(t){u0 from its equilibrium value u0, in the

absence of the cell. If the absolute value DU(t)D exceeds a critical

value Uc, the adhesion contacts will break. For the deformation-

dependent breakage rate we state the following computationally

convenient form:

d(U)~
d

2
1z tanh b(U2{U2

c )
� �� �

: ð5Þ

For high values of b, d(U) is a step-like function, i.e. zero for

DUDvUc and equal to the detachment rate d for DUDwUc.

Let us briefly discuss additional properties of the adhesion

dynamics, that could be incorporated in a future, more complete

description. The formation and rupture of the adhesive contacts

displays many subtleties, some of them still under debate or not yet

completely understood. Firstly, the processes are stochastic in

nature, which we neglected in our mean-field description.

Secondly, the growth of an already formed adhesive contact

(and, correspondingly, its maturation) depends on the stresses

inferred by both the substrate and actin network. These issues

have been addressed in several studies [34,35], although not on the

level of an entire cell. Since we do not resolve local stresses in the

cytoskeleton, the substrate effects are included in a highly

simplified fashion. Another class of subtleties is related to the

molecular scale: the molecular complexity is manifested by the so-

called catch bond mechanism, i.e. an allosteric change in the

integrin structure under external force, altering its binding affinity.

Another molecular consequence is the opening of cryptic (hidden

under normal conditions) sites under the applied stress, allowing

the recruitment of helper proteins that in turn amplify the

recruitment of actin. Hence adhesion in general has, depending on

the relevant time scales, a feedback on the actin dynamics [29,36].

Nevertheless, our simple model of the adhesion dynamics is

qualitatively correct for rapidly moving cells like keratocytes, as

well as for two generic aspects of cell migration: the occurrence of

stick-slip motion and navigation on patterned substrates.

For the subsequent studies, it should be noted that all

attachment and detachment rates (i.e. a0, anl and d) are effective

parameters including both characteristics of the adhesion complex

and its formation and characteristics of the preparation conditions

of the substrate. For example, varying the concentration of

fibronectins on the substrate effectively changes all these param-

eters. Hence, a spatial modulation of the number of adhesion

ligands present on the substrate, cf. the experiments in Ref. [18],

will affect the overall dynamics of adhesion. This aspect will be

studied in detail in the section Patterned adhesiveness.

Finally, we specify a dynamic equation for the extension U(t) of

the spring modeling the overall substrate deformation:

d

dt
U~{

1

g
GUzVð Þ : ð6Þ

Here V is the velocity of the cell’s center of mass, G is an

effective spring constant and g an effective viscous friction

Table 1. Parameters.

parameter value description

parameters of motility machinery

t{1
1

0.1 degradation of p inside cell

(actin depolymerization rate of 10s{1)

? sets time scale to 10s

Dp 0.2 diffusion/elastic coefficient for P

? sets length scale to ^1mm

Dr 1 stiffness of diffuse interface

a 0.5–3 advection of r by P

b 1–2 creation of p at interface

< actin polymerization velocity 0:1mms{1

c 0–2 symmetry breaking due to motors,

corresponding motor velocity 0:1mms{1

s 0–2 network contractility by motors

parameters for adhesion turnover and substrate

DA 1 diffusion of adhesion sites (AS)

a0 0.001–0.03 linear attachment rate of AS

anl 0.5–1.5 collective (nonlinear) attachment rate of AS

d 1 detachment rate of AS

Uc 1–5 critical extension to break adhesive contacts

G 0.01–0.5 substrate stiffness

g 10 dissipation in the adhesive layer

This table shows a summary of the most important parameters of the model.
Typical rescaled values used in the numerical solution and their relation to
typical values for the ‘‘real’’ system are also given. Additional parameters:
stiffness of volume conservation: m~0:1; decay rate of p outside the cell:

t{1
2 ~0:4; overall area of the cell: V0~pr2

0 (typically with r0 = 5–18mm);

regularization parameter for actin creation: e~37:25; parameter describing the
steepness of the detachment transition: b~5; coefficient for nonlinear
saturation of adhesion sites: s~1.
doi:10.1371/journal.pone.0064511.t001

Effects of Adhesion Dynamics
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coefficient modeling the dissipation mechanisms in the adhesive

layer. This equation can be motivated as follows, cf. also Fig. 1:

Consider a thin adhesive layer, e.g. a layer of extracellular

matrix (ECM) or fibronectin, covering a significantly more rigid

glass slide or PDMS (polydimethylsiloxane) substrate. This layer

of thickness h is sandwiched between the cell at position z~h

and the much stiffer substrate at z~0. After integrating the

force balance equation +:s~0 in z-direction, one obtains in

leading order in h:

sxz(0)~tx , syz(0)~ty , ð7Þ

Figure 3. Spatially resolved dynamics during a stick-slip cycle. The cell’s boundary is given by the green curves. The arrows display the local
averaged actin filament orientation. The density of adhesion sites is color coded (with white color corresponding to A~0, blue to 0:5 and red to 1).
The direction of motion is to the right. The time window is the one marked by the dashed box in Figure 2. Between t~294 and the next attachment
event, the cell will relax to an almost round state, similar to the one displayed for t~260. Parameters as in Fig. 2.
doi:10.1371/journal.pone.0064511.g003

Figure 4. Phase diagrams. a) The different modes of motility in the plane of propulsion parameter a vs. substrate stiffness G for a0~0:01 and
b~a=2. b) The different modes of motility in the plane of rate of adhesion formation a0 vs. substrate stiffness G for a~4, b~a=2. For both parts,
parameters where a cell stops after an initial perturbation are marked by blue circles. If stick-slip motion is persistent this is marked by red diamonds
and if the cell acquires a steadily moving state (continuous gliding), by a green square. Other parameters as in Fig. 2.
doi:10.1371/journal.pone.0064511.g004

Effects of Adhesion Dynamics
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Figure 5. Stick-slip cycle in the reduced ODE model. The main plot shows the nullclines LtA~0 (dashed line) and LtU~0 (solid line) and the
limit cycle (with each quarter period marked in a different color) obtained by numerical integration of Eqs. (10). Starting at the upper part of the blue
trajectory, the cell increasingly adheres and U becomes more negative as the cell exerts more and more force on the substrate. When DU DwUc,
adhesive contacts break and A rapidly decreases (lower part of the blue trajectory) until the dynamics reaches the A-nullcline (red branch). There U
relaxes while A almost stays zero, but effectively slowly grows as at small values of A the cell slows down and adhesion can restart (green trajectory)

followed again by rapid attachment (blue trajectory). Parameters: a0~0:0025, d~1, b~5, Uc~
ffiffiffi
5
p

, anl~1:5, s~1, �aa~0:2, G~0:01, g~10. The two
panels on the right show A(t) and U(t) for one period of the stick-slip cycle.
doi:10.1371/journal.pone.0064511.g005

Figure 6. Response to step-like changes in substrate properties. A) Motion of a cell on a substrate where the adhesive strength is modulated
by a step in the rate of adhesion formation a0 , corresponding to a varying density of adhesive ligands (e.g. different surface coverages of fibronectin).
The blue region has a0~0:2, the black one a0~0:01, substrate stiffness is G~0:15. B,C) Motion of a cell on a substrate where the substrate stiffness
exhibits a step (the blue region is a rigid substrate with stiffness G, the black one is much softer, G=20). B) The cell bounces off the step for G~0:05,
a0~0:1 within the entire cell and a~2, b~2:45. C) The cell overcomes the step and continues in the same direction for G~0:1,a0~0:1,
a~4, b~2:45. All other parameters as in Fig. 4.
doi:10.1371/journal.pone.0064511.g006

Effects of Adhesion Dynamics
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where tx,y are the traction forces on the top of the layer at

z~h. We further assume the layer to be rigidly fixed to the

substrate (i.e. the displacements ux,uy~0 at z~0), and a planar

shear ux(z)~ux(h)z=h. Now we have to specify the constitutive

relation of the layer. At long times, the response will be elastic.

However, at short times there can be (e.g. viscous or breakage-

induced) dissipation in general. Hence we use a Voigt-Kelvin-

type viscoelastic solid model for the layer, and write

sxz~G0uxzzg0Ltuxz~G0(uxzztuLtuxz) : ð8Þ

Now, as we do not want to resolve the displacement locally, we

need an integrated quantity describing the stresses/forces induced

by the cell.

Since the cell does not exert a net force on the substrate, the

total traction, T~
Ð

tdxdy, is zero and can not be used for this

purpose. However, the traction dipole moment Qij~
Ð

xitjdxdy is

nonzero (compare e.g. [12]). We assume here, for simplicity, that

the traction force t associated with the motility is parallel to the

cell’s migration velocity, tEV. The traction pattern for keratocytes

is not yet understood in detail. There is typically high traction at

the sides [36], related to the actomyosin bundles spanning at the

rear to both sides. Nevertheless, the traction relevant for motion is

the dipole in the direction of motion.

The traction can then be written as t~{jVf (r), where f is a

localized, dimensionless function having zero average,Ð
f (r)dxdy~0, but a finite dipolar contribution. The coefficient

j has units of friction per area, Ns=m3. Note that there is also a

velocity-independent contribution to the force dipole and hence to

the traction force: immobile cells exert forces on the substrate as

well, but this part does not affect the dynamics - namely, it can be

absorbed in u0 and leads to a renormalization of the parameter Uc

- and can be discarded here.

Finally, from the z-integrated force balance, Eq. (7), and

accounting for the constitutive relation, we get by multiplication

by f (r) and integration over the area of the cell

Figure 7. Motion of cells on substrates with alternating stripes of high/low adhesiveness. a) Motion of a cell on a rigid substrate (G~0:2)
with alternating stripes of high adhesiveness parameter a0~0:15 (blue) and no adhesiveness (a0~0 for black stripes). The cell positions itself
symmetrically and moves parallel to the stripes in a steady fashion. b) Motion of a cell on a substrate with G~0:1, and with alternating stripes of low
adhesiveness parameter a0~0:0015 (blue) and a0~0 (black). After moving initially along the stripes, the cell turns and moves perpendicular to the
stripes in a stick-slip fashion. Parameters are as in Fig. 4 except a~4, b~2:45. c) Select trajectories of the center of mass of cells moving on stripe-
patterned substrates with different values of the adhesion formation rate a0 and substrate stiffness G. Gray stripes correspond to high adhesiveness
regions, white stripes correspond to zero adhesiveness regions (a0~0). For high G and a0, the cell displays persistent and steady motion along the
stripes (black curve). For intermediate values the predominant motion is along the stripes with excursions into the perpendicular directions (blue
curve). Finally, for low adhesiveness the motion is perpendicular to the stripes with reversals.
doi:10.1371/journal.pone.0064511.g007

Figure 8. Trajectories of cells on substrates with three different
width ratios of adhesive to non-adhesive stripes. In the
corresponding snapshots, the adhesive stripes are shown by the blue
color and the green arrows indicate the direction of motion. All
parameters are as for Fig. 7, except for a0~0:1, G~0:1 (all parameters
are the same in the three cases, only the width ratio changed).
doi:10.1371/journal.pone.0064511.g008
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g0

hj

d

dt
U~{

G0

hj
UzV

� �
, ð9Þ

where U~
Ð

u(r)f (r)dxdy=
Ð

f (r)2dxdy. The vector U , having

units of length, is a measure for the overall deformation imposed

by the cell on the substrate. Defining a renormalized viscous

coefficient g~
g0
hj, and a renormalized stiffness G~

G0
hj , we obtain

Eq. (6). Note that a relaxation time for the adhesive layer is defined

by tu~g=G.

Steady vs. Stick-slip Motion
There are many realizations of unsteady motion in the context

of cellular motility. It has been found that lamellipodia can show

periodic contractions that depend on the adhesiveness of the

substrate [38], later on interpreted by a stick-slip model [39].

Stochastic modeling of the adhesion dynamics under applied

forces and flows also predicted the occurrence of stick-slip events

[35]. Experimentally, stick-slip-like motion has been found in parts

of the lamellipodium, e.g. in osteosarcoma cells [40], as well as in

filopodia [16]. Finally, transitions from steady motion to stick-slip

and to arrest of motion have been observed in human glioma cells

cultured on extracellular matrix (ECM) [41]. We will now

investigate the consequences and generic features of the adhesion

dynamics and substrate properties in the proposed model, and

analyze in detail the occurring stick-slip behavior.

We first investigated whether the generalization still comprises

the phenomenology of the model described previously. This can

be tested by choosing a high value for the substrate stiffness, since

then the spring extension will not play a significant role. Indeed,

after a transient, the system acquires a steadily moving state with

the number of adhesion sites A and the substrate spring extension

U reaching time-independent values as shown in the inset of Fig. 2,

see also Movie S1. This is exactly what the model developed in

Ref. [8] already predicted, but with the propulsion parameter a
(proportional to the actin polymerization rate and substrate

adhesiveness) replaced by an effective propulsion strength aA.

Figure 9. Subcritical onset of motion and stationary cell shapes. Panel a) displays the normalized velocity f vs. the normalized driving force k.
The main plot shows the solutions of Eq. (16), the solid line corresponding to the stable moving branch and the dashed line to the unstable branch.
The inset shows results obtained by numerical solution of the full model for A~1, b~a=2, R0~15, Dr~1,Dp~0:2,t1~10,t2~2:5 and for different
values of c and s as indicated. b) A typical stable moving shape corresponding to s~0 and c=0. c) A typical stable moving shape corresponding to
s=0 and c~0.
doi:10.1371/journal.pone.0064511.g009

Figure 10. Effect of adhesion strength and motor activity on
the velocity and shape. The upper panel shows the cell’s velocity as
a function of the propulsion parameter a for fixed b, mimicking an
increase of the substrate adhesiveness as explained in the text. Two
different levels of the contractile motor activity have been investigated,
modeled by different values of the parameter s. The lower panel
displays the corresponding aspect ratios (see Ref. [8] for its definition).
Parameters as in Fig. 2, except b~2, c~0:5.
doi:10.1371/journal.pone.0064511.g010
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Keeping the substrate stiffness G high and decreasing the value of

a finally leads to a termination of motion, again in accordance

with the previous results: in this case, the polymerization force is

not high enough to sustain the polarized moving state and the cell

will stop and acquire a radially symmetric shape. Finally, in the

steady-state regime the cell’s speed is almost independent of the

substrate stiffness G and linear attachment rate a0. Note that in

this regime, the displacement of the spring U, modeling the

substrate deformation, is below the critical extension for bond

breaking Uc. Hence, the number of adhesion sites is governed by

the attachment and excluded volume effects.

Having this established, we can study the model in a broader

range of parameters. One would expect the occurrence of a stick-

slip regime by the following generic mechanism: When the

adhesion sites are forming, the cell speeds up. Since the cell,

adherent to the substrate, exerts dipolar forces on the substrate,

the substrate deformation increases in its absolute value, and for

low enough stiffness G to an extent that the critical value DUcD is

reached and the adhesive contacts rapidly break. However, the cell

has still to slow down and adjust its shape to the new conditions. If

the substrate relaxes, new adhesion sites are allowed to form again

and the cycle restarts. Figure 2 shows the dynamics of the cell’s

velocity V (t), the integrated density of adhesive contacts A(t), and

the substrate extension U(t) for typical parameters in the

intermediate stick-slip regime. Note that due to the coupling to

the shape dynamics, the stick-slip oscillations are not strictly

periodic in general, although this can be the case for some

parameters (cf. Movie S2). The average period of the stick-slip

cycle increases with a decrease of the attachment rate a0, roughly

linearly, and the effective stiffness G.

Figure 2 showed only averaged quantities. The shape deforma-

tions and the local dynamics of the adhesive contacts are depicted

in Fig. 3. It illustrates the shape of the cell (represented by the

green curve), the local actin orientation (indicated as black arrows)

and the local distribution of adhesive contacts during the stick-slip

cycle highlighted by the dashed box in Fig. 2. The concentration of

adhesive contacts A is color coded, with white corresponding to

A~0, blue to A~0:5 and red to A~1 [which is the maximum

value, as can be tuned by the excluded volume term in Eq. (4)].

The respective times are added in the panels. At first, there are

practically no adhesive contacts and the cell is almost round. In the

next panel, adhesion contacts form close to what becomes the

leading edge of the cell (the cell is moving to the right). This is due

to the fact that the actin concentration proportional to DpD is slightly

higher there, a remnant from the last cycle. Then adhesion site

formation spreads over the entire cell for the given parameters.

Note that there is a range of model parameters, as shown in Movie

S2, where adhesive contacts form only close to the front. In our

simple model this is determined mainly by the time scales of

adhesion and substrate dynamics and the value of the diffusion

coefficient DA.

Since the distribution of adhesive contacts is not symmetric -

they formed earlier close to the leading edge - the cell is able to

polarize and starts to move again, until the substrate displacement

generated by the cell reaches the critical value Uc and adhesion

breaks down. As the propulsion force decreases, the cell slows

down and becomes more round, i.e. depolarizes, cf. the last panel.

By performing large scale parameter sweeps, we obtain dynamic

‘‘phase’’ diagrams for the different modes of cell motion, as shown

in Fig. 4. In part a) we varied both the substrate stiffness G and the

propulsion parameter a, which is related to the actin polymeri-

zation rate. In agreement with the above discussion, for high

enough substrate stiffness and propulsion, the system displays

steady-state motion with a fixed shape, reminiscent to keratocyte-

like motion. Decreasing the stiffness, at intermediate values a

region of persistent stick-slip motion appears, while for small

stiffness the cell is unable to move and stops. On the other hand,

upon a decrease of the propulsion parameter a, the size of the

stick-slip region shrinks until the cell is completely unable to move

below a certain critical ac.

Figure 4b displays a similar plot, where the rate of adhesion

formation a0 and the substrate stiffness are varied. Similar as for

the propulsion parameter a, there is a threshold value a0~a1 for

the adhesion rate below which the cell is not able to move -

adhesion is just to weak to transfer momentum. Increasing a0, one

obtains a steady motion for high substrate stiffness, stick-slip

motion for intermediate values and no motion for small stiffness.

The width of the stick-slip region is fairly independent of a0, until

it abruptly ceases to exist for a second threshold value a0wa2;

above this threshold the formation of adhesion sites dominates

detachment, resulting in steady gliding motion.

Similar diagrams as shown in Figure 4 can be in principle

obtained by varying other relevant parameters. The above study

already demonstrated that the type of cell motion and the cell

shape are governed by the interplay of (i) the motility machinery of

the cell, exemplified here by the propulsion parameter a which is

proportional to the actin polymerization rate, (ii) the adhesion

dynamics, exemplified here by the adhesion rate a0 depending also

on the substrate’s surface preparation, as well as (iii) the elastic

properties of the substrate/the adhesive layer, i.e. the stiffness G
and the relaxation time tu.

Finally, one should note that the stick-slip motion of cells

adherent to a substrate is somewhat different from a classical view of

stick-slip motion [42,43], illustrated by a brick pulled by a spring on

an adhesive layer: there no motion occurs while the brick is stuck,

while the brick moves upon a slippage event after bond breaking. In

contrast, for cells crawling on a substrate, the motion is mostly

generated upon adhesive contact, where the cell polarizes and

momentum from actin polymerization can be effectively transferred

to the substrate, while the shape accommodation after the bond

breaking has only a minor contribution to motion. Hence instead of

stick-slip cycle, a better name for this process occurring in crawling

cells would be propulsion-relaxation cycle, cf. also Fig. 3.

Reduced Description of the Stick-slip Cycle
To obtain a better understanding of the stick-slip motion, we

will reduce the full model, Eqs. (1)–(6) to two effective ordinary

differential equations (ODEs): one for the area-integrated density

of adhesive contacts, A(t)~SA(x,y,t)T~
Ð

A(x,y,t)dxdy, and the

second for the extension U(t) of the spring, modeling the overall

substrate deformation.

For this purpose we first neglect all diffusion terms. We also

disregard the effects of the orientation field p and assume that the

cell is already polarized and able to move. We can then assume a

one-dimensional motion. In this approximation the phase field

equation yields a relation between the cell’s velocity V (t) and the

mean polarization, V&SaA(x,y,t)pT^�aaA, where �aa is a numer-

ical factor. For a more elaborate description see Eq. (16) in the

Methods section. Similarly we obtain �aa0*a0Srp2T and arrive at:

_AA(t)~�aa0{d½U(t)�A(t)zanlA(t)2{sA(t)3 ,

{g _UU(t)~G U(t)z�aaA(t) , ð10Þ

where the deformation-dependent detachment rate is still given by

Eq. (5).
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Eqs. (10) is a second-order system of equations that can be easily

integrated numerically. In addition, the stick-slip motion can be

understood qualitatively from the analysis of nullclines _AA(t)~0

and _UU(t)~0. Both nullclines (solid black line for _UU(t)~0, dashed

black curve for _AA(t)~0) and the actual trajectory - obtained by

solving Eqs. (10) numerically - are shown in Fig. 5. The stick-slip

motion corresponds to a periodic trajectory (limit cycle) encircling

the unstable fixed point at the intersection of both nullclines. We

can also discuss the dependence on parameters by this method:

Increasing the stiffness of the substrate G (or decreasing the

propulsion �aa) results in a decrease of the slope of the nullcline

U(A)~{
�aa

G
A (solid line). At some critical value of G this nullcline

will have additional intersections with the second nullcline (the

dashed line), resulting in the disappearance of the limit cycle and

the creation of a new stable fixed point corresponding to the steady

motion of the cell. The same happens - when starting from the

stick-slip regime - upon decrease of �aa, cf. the transition from stick-

slip to steady motion upon lowering a in Fig. 4a. Finally, upon an

increase in a0, the maximum in the dashed nullcline for _AA(t)~0
decreases and is shifted to higher A values. As soon as the fixed

point, i.e. the intersection of the nullclines, is no longer on the

descending branch of the dashed curve, steady motion occurs

again, cf. the transition from stick-slip to steady motion upon

increase in a0 displayed in Fig. 4b.

In addition, Figure 5 displays A(t) and U(t) obtained from Eqs.

(10) by numerical integration. The color code splits the period in

four. One can see that the attachment-detachment event [cf. the

blue peak in A(t)] is very rapid. The curves are very similar to ones

obtained by the full model, cf. Fig. 2. However, due to the

complete omission of the shape and polarization dynamics - as well

as of the subcritical onset of motion, cf. the Methods section - the

cycles are perfectly periodic in the simple model.

Patterned Adhesiveness and Patterned Substrate
Stiffness

The extended model also allows to study the effects of

modulated substrate properties. Note that from the experimental

perspective, it is much easier to engineer and pattern the substrate

properties and to study the respective response of the cells than to

modify the intertwined biochemical processes inside the cell. We

focus on two generic geometries: (i) a step in substrate property

(adhesiveness, stiffness) and (ii) a periodic modulation of substrate

property, exemplified by an periodic array of adhesive stripes,

similar to the experiments in Ref. [18]. Experimentally, the

adhesiveness can be changed by varying the density of integrin

ligands on the substrate; for example, using photolithography

techniques based on cleavage of the PEG (polyethylen glycole)

layer upon UV exposure, nowadays almost any adhesive pattern

can be engineered [44]. On the other hand, the substrate stiffness

can be varied, either in a gradient fashion [19] or step-like using

soft lithography fabricated microposts [20].

Steps. The snapshots in Fig. 6A illustrate cell motion on a

substrate with a step in the adhesion strength, modeled by a step-

like spatial variation of the rate of adhesion formation a0. The blue

area corresponds to high adhesiveness, the dark one to low

adhesiveness. One sees that the cell is capable of navigating on

patterned substrates: it bounces off the low-adhesion region back

to the region with higher adhesion, see Movie S3. This behavior is

in qualitative agreement with experiments confining cells in

regions of high adhesiveness, cf. e.g. Ref. [44]. Figures 6B,C

illustrate cells moving on substrates with variable stiffness, as a

simplified example of mechano-sensitivity. In this case the

spatially-dependent substrate stiffness is modeled by a step in the

effective spring constant G. We observed three possible scenarios,

depending on the difference in stiffness G, the strength of adhesion

a0, and the value of the propulsion parameter a. For cells moving

on a relatively soft substrate, and for small values of a (i.e. for

relatively slow moving cells), the cell bounces off the region of low

substrate stiffness and chooses to stay on the more rigid substrate,

Fig. 6B. On stiffer substrates and for larger values of a, however,

the cell can overcome the step in stiffness and continues in the

same direction, although with a smaller speed, cf. Fig. 6C. For

intermediate values of G and a we observed that cells often

become trapped at the boundary between the high/low stiffness

domains. In contrast, for similar parameters, a cell coming from

the softer side became trapped at the boundary between soft/hard

substrates and did not reflect back. These results are in qualitative

agreement with experiments in Ref. [20]: there a step in substrate

stiffness was implemented by regions of differently dimensioned

posts on which the cells adhere (while the overall adhesiveness was

kept the same). Fibroblast cells preferably stayed in the area of

high stiffness, while cells coming from the softer side often rotated

to migrate perpendicularly to the stiff substrate [20]. Hence

already the simplified model developed here shows that the

outcome of a cell’s ‘‘collision’’ with a step in substrate parameters

depends quite sensitively on the cell’s shape and speed, as well as

on the relative difference in adhesiveness/substrate stiffness.

Striped substrates. We also investigated the motion of cells

on striped substrates with alternating high/low adhesiveness. This

situation was studied experimentally for keratocytes in Ref. [18],

using micro-contact printing of fibronectin for regions of high

adhesiveness and of poly-L-lysine-PEG blockcopolymers for

practically non-adhesive regions. In the model, again the selective

adhesiveness of the substrate is modeled by a spatial modulation of

the rate of adhesion complex formation a0. For stripes with large

values of a0 we observed that the cell positions itself symmetrically

with respect to the stripes, see Fig. 7a and Movie S4 (i.e. the

center-of-mass of the cell drifts to the center of the high

adhesiveness stripe) and that the cell moves along the stripes.

This behavior agrees well with the experimentally observed one

[18]. Remarkably, in faithful agreement with the experiment, the

leading edge of the cells exhibits ‘‘protrusion bumps’’ on high-

adhesiveness stripes and ‘‘lagging bumps’’ on the stripes of low

adhesion.

However, a fundamentally different behavior was obtained for

cells moving on striped substrates with lower values of the

adhesion parameter a0, i.e. in the regime where the homogeneous

system may display stick-slips. The displayed cell was stimulated to

move along the stripes by the initial conditions (the initial

polarization was chosen in the direction parallel to stripes), as in

the above case. However, after some time the cell slows down,

abruptly changes the direction, spreads along the stripe in order to

maximize the contacts with the high-adhesiveness region, and

begins to move perpendicular to the stripes, cf. Fig. 7b and Movie

S5. This motion is associated with stick-slip, where the cell

intermittently almost stops along the adhesive stripe building up

adhesion strength, and then moves again. We also observed that in

this regime the cell may randomly reverse the direction. Thus, our

model makes a nontrivial prediction on a new type of motion on

patterned low adhesive substrates.

For intermediate values of the adhesion parameter a0 we

observed a combination of these two modes of motions: for some

time the cell moves along the stripes, then it moves perpendicular,

then parallel again, etc. The representative trajectories of the cells

are summarized in Fig. 7C.

Effects of Adhesion Dynamics
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Experimentally, it is rather difficult to modulate the strength of

adhesion to a large extend. However, it is relatively simple to vary

the relative width of adhesive/non-adhesive stripes, while keeping

the period of the pattern fixed [18]. We investigated this situation

in our model and observed three different types of motility, see

Fig. 8. For large widths of the adhesive stripe, the cell moves along

the stripes in agreement with previous simulations. Gradually

decreasing the width of the adhesive stripes, we observed an

instability: the cells exhibits a kind of ‘‘rocking motion’’, and

eventually turns perpendicular to the stripes. The motion is

associated with a random reversal of direction, similar as on the

substrates with low value of the adhesion rate a0 discussed above.

Remarkably, for very small widths the reverse trend is observed:

the cell stretches in the direction of motion in order to fit between

two stripes, and moves along the stripes. These simulations signify

that the type of motion is affected by the commensurability

between the size of the cell and the period of the modulation,

another prediction that deserves experimental investigations.

Conclusions and Discussion

The sensitivity of cell response on a modulation of the substrate

properties has clear implications for the design of bioactive

surfaces and test assays for cell screening and sorting. There are

increasing experimental efforts to perturb cells externally via the

substrate, both on a subcellular level [18] and on larger scales

[11,19,20,44], by structuring the substrate, or changing its

adhesiveness or stiffness. This calls for modeling efforts where

the cell’s shape, internal cytoskeletal and adhesion dynamics, as

wells as the substrate compliance are taken into account in a self-

consistent, dynamic way. As a first step in this direction, we added

a generic dynamics for adhesion and overall substrate deformation

to a simple and computationally efficient phase-field model

developed in Ref. [8].

The generalized model has been analyzed in detail and displays

the following new features: (i) For homogeneous substrates, a

transition from steady motion with a fixed shape (reminiscent to

keratocyte-like motion) to stick-slip motion with concomitant

oscillatory shapes occurs, which we study as a function of actin

protrusion rate, adhesion kinetics and effective substrate stiffness.

(ii) For substrates with spatially varying adhesiveness we obtain the

phenomenology experimentally found in Ref. [18]: On a step

profile from high to low adhesiveness, the cell can bounce off. On

substrates patterned with alternating high and low adhesiveness

stripes, we observed motion along the stripes. In addition the cells

were migrating towards the center of the stripe to symmetrize their

position with respect to the stripe pattern and they exhibited

protruding and lagging bumps, in good qualitative agreement with

Ref. [18]. We rationalize this behavior analytically (within the

approximation of a spherical cell) and show that the cell’s motion

corresponds to an overdamped motion in an effective periodic

potential defined by the stripes. Our model also provides nontrivial

predictions: while for high adhesion rates we observed an

alignment of the direction of motion along the stripes, for lower

adhesion rates irregular motion perpendicular to the stripes

occurs. Similar trends are found for cells moving on substrates with

different width ratios of the adhesive to non-adhesive stripes: for

the case of wide adhesive stripes cells move along the stripes, while

for narrower adhesive stripes they move perpendicular. The trend

reverses for very narrow stripes: the cells tend to fit in between

neighboring stripes and move parallel to them. These interesting

predictions deserve experimental validation.

Our investigation of the response of cells on a step-like variation

of the substrate stiffness also revealed nontrivial behavior. There is

an overall trend that cells prefer to stay on the more rigid

substrate, as found in many experiments [19,20]. However,

depending on the parameters of our model (especially the

propulsion strength, i.e. the actin polymerization rate), the cell

can bounce off, become trapped at, or overcome the step in the

substrate stiffness. It is evident from the shape changes during

these processes that the interplay between shape and adhesion is

very important, however a detailed study would need a model with

spatially resolved substrate deformations.

While our model demonstrated qualitative agreement with

experimental observations on a variety of shapes and responses to

external stimuli, and even yielded testable predictions, obviously

several extensions are still needed for a more adequate description

of the biological system. First, a more realistic treatment of the

substrate’s elasticity is needed for detailed studies of the cell’s

behavior close to a step in substrate stiffness, as well as for

durotaxis [23]. Instead of an effective spring, as proposed here for

simplicity, a full two-dimensional linear elasticity model should be

used and also the cell’s velocity has to be calculated locally. In such

a refined model, adhesive contacts will stretch (and break) only

locally, making an analysis much more complicated (imagine

locally sticking and slipping regions) but far more realistic. The

experiments reported in Ref. [11] might also be modeled by such

an extension: there, it was found that on low adhesive substrates

keratocytes are almost round and move with erratic protrusions,

on substrates with intermediate (optimal, cf. [28]) adhesiveness

keratocytes had the usual crescent-like shape and move steadily,

while for high adhesiveness they were very irregular, as well as

performed erratic motion again. Note that the first transition is

somewhat reminiscent of the transition from stick-slip to steady

motion in the present model. Finally, such a model extension

would allow to obtain explicit traction fields, that could be

compared with those experimentally measured for various cell

types (cf. Ref. [37] for keratocytes).

A second interesting and important direction is the incorpora-

tion of the cell’s intrinsic (visco-)elasticity into the model. First,

apart from the elastic deformation and the viscous losses in the

adhesive layer, stresses that build up and relax in the cytoskeleton

are a second major source for the occurrence of irregular and

stick-slip-like motion. Second, such an extension can possibly allow

for a more accurate description of the bipedal motion of

keratocytes observed in Refs. [45,46]. In this respect it is

interesting to note that our model shows a regime reminiscent of

the bipedal (rocking) motion, when the cell moves on adhesive

stripes, see Fig. 8. In this case, the reason for the cell’s rocking

motion is the inhomogeneous distribution of adhesion sites due to

the presence of the stripes. Indeed, for keratocytes adhesion sites

are concentrated at the front and mostly at the sides of the cell

[11,37]. Thus, the coupling of adhesion dynamics and cell

elasticity may well be responsible for the bipedal motion.

Finally, the main type of cells considered here, keratocytes,

move in a very persistent way. In order to identify and separate the

effects of the patterned substrate, other possible factors inducing

changes in the direction of motion were not implemented.

However, for other types of cells, it would be interesting to

include stochasticity in polymerization and/or adhesion turnover.

In addition, a random anisotropy or heterogeneity of the substrate

could lead, depending on its characteristic scale, to abrupt changes

in the direction of motion as well.

Effects of Adhesion Dynamics
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Methods

Numerical Method
Equations (1)-(6) were solved numerically by the quasi-spectral

Fourier method in large domains [200|200 dimensionless units,

512|512 FFT (fast Fourier transform) harmonics used]. The

algorithm was implemented on GPUs (graphical processing units)

using the NVIDIA CUDA programming language, resulting in an

overall speedup of about 50 times compared to CPU. The GPU

implementation hence allowed us to explore systematically the

system in a wide range of parameters and under different

conditions.

Parameter Estimates
Estimates and typical values for the parameters used in the

model are presented in Table 1. As it was explained in detail in

Ref. [8], we set the time scale to 10s and the length scale to 1mm
by choosing the parameters of the motility machinery (actin

polymerization rate and diffusion) accordingly.

Typical lateral diffusion coefficients of proteins in a membrane

are D~10{9-10{12 cm2

s
[47]. Hence we can estimate

DA~0:001–1 in reduced units. For numerical reasons we use

DA~1, in accordance to Ref. [11]. While the strength of adhesion

forces of crawling cells are well established [29,37,48], not much is

known about the dynamics, i.e. the rates of adhesion contact

formation in such a non-equilibrium situation. Nascent adhesions

typically form on a time scale of seconds, but the connection to the

actin network and the maturation to focal adhesions can take tens

of minutes [29]. In modeling efforts for cell motility, cf. Ref.

[6,11], usually rates are adjusted to obtain realistic dynamics on

the spatial scale of the cell and on the time scale relevant for

motion. For the source term of adhesive contact formation, we

chose a0~0:001–0:05. In addition we have the term anlA
2,

describing collective adhesion, which is chosen to be in the range

anl~0:5–1:5 - note that it has different units than a0 and should be

attributed a larger value, due to the quadratic dependence on the

adhesion site density A. Our detachment kinetics is dominated by

the deformation of the substrate, placing the adhesion complexes

under stress, and we typically chose d~1 (i.e. rapid breakage of

adhesion sites) and Uc of the order of micron.

Finally, typical traction forces are of the order of 0:01{0:05
kPa [36]. Together with the typical cell speed, 0:01{1mm=s, this

leads to j~109-1011Ns=m3. The typical thickness of the adhesive

layer plus the typical depth of substrate deformation is of the order

of several microns. For soft substrates, G0~1{100kPa, we can

therefore estimate G~G0=hj~0:01–100. The viscous losses are

described by g~Gt, where we assume a relaxation time of 10–50
s. We typically use G~0:05–1 and keep g~10 fixed.

Circular Approximation
In this and the following sections we develop a reduced

description for steady cell motility, as well as for the response to a

substrate modulation, rationalizing why the cells move along the

stripes in case of steady-state motion, cf. Fig. 6a. The main

simplification is to assume a fixed round shape of the cell (a

somewhat similar approach was used in Ref. [49] in the analysis of

a bifurcation to traveling localized spots in a reaction-diffusion

system). In spite of this approximation, one should be aware that

the cell must be polarized and non-circular to move (cf. [8]),

implying that the distribution of polarization p is not axisymmet-

ric. Unfortunately, the developed description does not allow to

model the stick-slip motion of cells perpendicular to the adhesive

stripes, cf. Fig. 7b, because significant shape deformations are

involved in that case.

We will describe the center of mass of the cell by R~(X ,Y ) and

assume a fixed circular shape, given for the sake of simplicity by a

Gaussian approximation r(r)~ exp ({r2=R2
0), with R0 measuring

the size of the cell. This choice makes analytical calculations possible.

For the case of a homogeneous substrate, for the adhesive sites we

assume A~A0 for rvR0, where A0 is a solution to Eq. (4). In case of

periodic modulations of the substrate’s adhesiveness (e.g. stripes in x-

direction as discussed above), these will be approximated by a square

wave f (y) with A(y)~A0 on the adhesive stripes and A(y)~0
between the stripes. The distribution A(x,y,t) then becomes

A(r{R,t)~A0f (y) where A0 is again a solution to Eq (4). For the

following it is enough to use a Fourier expansion and to keep only the

two first modes. Here we used the expansion f (y)~
1

2
1zsign( sin (k0y))ð Þ~ 1

2
z

2

p(2nz1)

X?

n~0
sin (k0(2nz1)y).

Assuming c~0,Dp~0, for a stationary cell (i.e. V~0) the

polarization p is given to leading order by p&{bt1+r, cf. Eq. (2).

Similarly, for V=0, Eq. (2) yields the condition

{V+p~{t{1
1 p{b+r and for small V we obtain

p&{t1b+ rzt1V+r½ �&{t1b+r(rzt1V) : ð11Þ

Hence, to leading order the polarization is just shifted by the

amount t1V. Correspondingly, the net polarization

�pp~
Ð

pdxdy=pR2
0=0 for V=0.

Estimate for the Velocity
Here we show how the velocity of a stationary moving cell can

be estimated by the use of the circular approximation discussed

above. Assuming a solution of the form r~r(r{Vt) and

multiplying Eq. (1) by Lxr,Lyr, after integration over the entire

domain we obtain for the components of the center of mass

velocity: Vx~aax, Vy~aay, where for a round cell

ax~
2

p

ð
A(pxLxrzpyLyr)Lxrdxdy , ð12Þ

ay~
2

p

ð
A(pxLxrzpyLyr)Lyrdxdy : ð13Þ

Let us consider a cell moving along the x-direction, and no

substrate modulation. Then Vy~0 and Vx~aax, where ax can be

explicitly integrated (using the expression (11) for p) to yield

ax~
8bA0t2

1

81R4
0

Vxe
{

2t2
1

V2
x

3R02 4t2
1V2

x{3R2
0

� �
: ð14Þ

Substitution into Vx~aax immediately shows that one of the

roots is Vx~0, corresponding to the stationary cell. Additional

possible roots are given by the equation

8abA0t2
1

81R4
0

e
{

2t2
1

V2
x

3R02 4t2
1V2

x{3R2
0

� �
~1 : ð15Þ

Effects of Adhesion Dynamics

PLOS ONE | www.plosone.org 12 May 2013 | Volume 8 | Issue 5 | e64511



This equation has additional solutions only for a finite velocity

above a certain critical value. To see that, we introduce the

dimensionless velocity f~t1Vx=R0 and the dimensionless driving

parameter k~8abt2
1A0=(81R2

0). Then Eq. (15) assumes a simple

dimensionless form

ke
{

2f2

3 4f2{3
� �

~1 : ð16Þ

For kwkc~e3=2=6&0:746, Eq. (16) has two roots, with a

minimal finite velocity of f~3=2. Fig. 9 shows these two branches,

the stable upper branch as the solid curve and the lower unstable

branch as the dashed curve. This result is in qualitative agreement

with the numerical solution of the full model, concerning

bistability and the finite velocity gap. However, the numerical

values for the dimensionless critical driving parameter kc are off by

approximately a factor of two due to our approximations,

especially due to the assumption of fixed round shape. For

comparison, the Inset to Fig. 9 presents the cell velocity vs. the

propulsion (both dimensionless again) obtained by direct numer-

ical solution of Eqs. (1)–(6). The black curve is for keratocyte-like

parameters (with c=0 mimicking actomyosin bundle formation at

the cell’s rear). The red curve is without this term, but with a

higher value of s, describing the overall contraction by myosin - cf.

the discussion above after Eq. (2).

Why does the Cell Move along the Stripes?
Using the circular approximation we can rationalize why cells

move along the stripes in case of a steady-state motion, cf. Fig. 7a.

We account now for the fact that A depends on y. As mentioned

above, we will keep only the first two terms in the square wave

expansion of the substrate pattern. Expanding the result for

Vx&Vy, i.e. motion almost along the stripes in x-direction, and

inserting the result for Vx~aax into Vy~aay, one obtains a single

equation for Vy:

Vy~
dY

dt
~{

3 k2
0R2

0z
8t2

1
V2

x

R2
0

{24

� �
cot (k0Y )

k0 k2
0R2

0z
8t2

1
V2

x

R2
0

{18

� � : ð17Þ

For t1Vx=R0%1, this reduces to

dY

dt
~{

3 k2
0R0{24

� �
cot (k0Y )

k0 k2
0R2

0{18
� � ð18Þ

Note that Eq. (18) describes an overdamped motion of a particle

in a periodic potential - given by the stripe pattern characterized

by the wavenumber k0. The cell migrates to the center of the stripe

if 18vk2
0R2

0v24 and in between the stripes if k2
0R2

0w24. This is

consistent with the numerical solution of the full model, cf. Figs. 7a

and 8: the cell’s centroid migrates to the center of the stripe for

small k0 (large period of the stripes) and moves between the stripes

for larger k0.

Effect of Adhesion Strength and Motor Activity on Cell
Velocity and Shape

To further examine our model, we investigated the speed of the

cell and its aspect ratio in more detail. Experimentally, these

quantities were studied for the steady motion of keratocytes in Ref.

[11] [cf. Fig. 8C,E therein], as a function of two parameters: the

adhesiveness of the substrate (changed experimentally by varying

the grafting density of RGD-peptide-containing block-copolymers,

RGD inducing specific cell adhesion via binding to integrin) and

the amount of active motors (changed experimentally by using

blebbistatin, a myosin inhibitor, and calyculin A, a myosin

promoter).

We performed similar studies within our modeling framework,

cf. Fig. 10. In our model, we can assume that the adhesive contact

density A is normalized to the area per grafted ligand. Thus,

within this interpretation, the propulsion parameter a will increase

as a function of the coverage/grafting density, while everything

else remains unchanged. Note that one can still separate the effects

of adhesion and actin polymerization, as the parameter b contains

only the polymerization rate: increasing a with b fixed corresponds

to increasing the number of grafted ligands, while simultaneous

increase of a and b is associated with faster actin turnover.

The upper panel of Fig. 10 shows the cell’s velocity vs. the

propulsion parameter a for fixed b, hence mimicking increasing

adhesiveness, for two different values of the motor contraction

strength. The lower panel displays the respective aspect ratio (i.e.

the ratio of the effective cell width to length, see Ref. [8] for our

definition). These results can be compared to the experimental

data in Ref. [11], Fig. 8C,E: as in the experiments, decreasing the

motor activity (i.e. decreasing the contraction parameter s) leads

to a shift of the adhesion-mediated velocity increase towards

higher values of adhesiveness. Also as in the experiments, the

aspect ratio shows a maximum as a function of the adhesiveness.

For the case of myosin inhibition (lower value of s), the aspect

ration is practically independent on the adhesiveness.

Supporting Information

Movie S1 steady motion.

(AVI)

Movie S2 stick-slip motion, cf. Fig. 2.

(AVI)

Movie S3 cell bounces off the step in adhesion, cf.
Figure 6A.

(AVI)

Movie S4 motion on the substrate with alternating
stripes of high/low adhesiveness: motion parallel to
the stripes, cf. Fig. 7a.

(AVI)

Movie S5 motion on the substrate with alternating
stripes of high/low adhesiveness: motion perpendicular
to the stripes, cf. Fig. 7b. In all the movies, RGB (red/green/

blue) color channels encode the phase field (red), the adhesive

contacts (green) and the absolute value of the orientation field

(blue), respectively. Hence high adhesive contacts are yellow,

highly oriented regions are purple. In the case of substrate

modulations, blue color encodes high adhesiveness regions, black

color encodes low adhesiveness regions.

(AVI)
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