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Abstract: The repair of infected bone defects (IBDs) is still a great challenge in clinic. A successful
treatment for IBDs should simultaneously resolve both infection control and bone defect repair. Hy-
drogels are water-swollen hydrophilic materials that maintain a distinct three-dimensional structure,
helping load various antibacterial drugs and biomolecules. Hybrid hydrogels may potentially possess
antibacterial ability and osteogenic activity. This review summarizes the recent progress of different
kinds of antibacterial agents (including inorganic, organic, and natural) encapsulated in hydrogels.
Several representative hydrogels of each category and their antibacterial mechanism and effect on
bone repair are presented. Moreover, the advantages and disadvantages of antibacterial agent hybrid
hydrogels are discussed. The challenge and future research directions are further prospected.

Keywords: hydrogels; antibacterial agents; infection control; bone repair

1. Introduction

With the advancement of society, the occurrence of high-energy injury events and the
use of internal implants increased, as did the number of trauma and postoperative bone
infection patients [1]. Each year, over 2 million bone transplants are applied nationwide [2].
Bone tissue has a limited capacity for regeneration and healing. For complex fractures and
bone defects, early external intervention is frequently needed for successful recovery [3].
Generally speaking, a “critical-sized” defect is one that does not receive adequate blood
supply for the callous formation and does not recover spontaneously after surgical stabi-
lization, requiring subsequent intervention [3,4]. Critical-sized bone defects, which are
typically associated with high-energy injuries or pathological fractures, remain to be a
substantial therapeutic problem and necessitate bone transplantation. The defects might
vary in severity depending on the site of the damage [5].

An acute and well-controlled inflammatory response is elicited and beneficial to
healing when a bone injury occurs. Once the response is inhibited, dysregulated, or
becomes chronic, it could be harmful to the healing process [6–8]. Inflammation is a
critical physiological activity for pathogen elimination and tissue homeostasis preservation.
Infected bone defects (IBDs) are chronic diseases with a complex pathology that typically
lasts long and has an uncertain prognosis [9]. The healing time varies affected by the
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location and size of the defects, as well as the severity of the infection [10,11]. IBDs are
frequently caused by a combination of acute high-energy injuries and contamination. These
types of acute bone infections can occasionally lead to osteomyelitis and chronic infection.
Opening fractures, soft tissue or bone tissue loss, infection following internal fixation, and
a bone tumor are common causes [11]. Acute bone infections are typically treated with
routine systemic antibiotics. Chronic infections and osteomyelitis often necessitate surgical
debridement of necrotic tissues in combination with local antibiotic therapy [12].

Efficient elimination of inflammatory stimulants and the release of anti-inflammatory
and reparative cytokines are required to treat infected diseases and restore tissue homeostasis [13].
However, the sequence of events can be changed by the presence of a pro-inflammatory
stimulus, and the condition may turn to chronic inflammation. Immune cells, particularly
macrophages, are important in regulating inflammation. Research on the interconnection
between the immune system and bone metabolism led to the term “osteoimmunology”
being coined to describe this new field [14]. The presence of both hematopoietic stem cells
(HSCs) and mesenchymal stem cells (MSCs) in bone marrow emphasizes the strong connec-
tion between these two systems [15]. Bone-resorbing osteoclasts and immunomodulatory
macrophages originate from HSCs, and bone-forming osteoblasts develop from MSCs [16].
Because of the shared origin of cytokines, receptors, signaling molecules, and transcription
factors, osteoblasts and bone-resorbing osteoclasts of a monocyte/macrophage cell regulate
one another [17,18].

Because of bacterial colonization and osteonecrosis, clinical treatment of IBDs has
always been complex [19,20]. Surgical treatment of the infected bone frequently results in
significant disabling defects. The implantation of bone grafting materials and antibiotic
therapy are common treatment modalities for IBDs in clinic [21]. The presence of bacteria in
infected bone and surrounding tissues can cause the release of inflammatory and tissue de-
structive mediators, interfering with osteogenesis [22]. One of the most difficult challenges
in modern orthopedics is to eliminate bacterial infection and provide a biocompatible
microenvironment for bone repair in bone defects. Because of the inadequate local blood
supply, antibiotics in high concentrations are needed in the area of infection. However,
conventional routes of drug administration are challenging to achieve excellent antibiotic
effects and exacerbate serious side effects [23].

Bone grafts used to treat IBDs should act as osteoinductive bone substitutes and an-
timicrobial carriers [12]. Autologous bone, also known as autograft, is still regarded as the
clinical “gold standard” for bone repair. However, there are several limitations to autoge-
nous grafting associated with the harvesting process. The shortcomings include morbidity
of the donor site, increased blood loss, and longer operating times [24]. Furthermore, the
allograft is a limited supply of autologous bone substitutes because of the high expenses
and dangers of viral transmission [24–26]. Fortunately, bone substitutes or synthetic grafts
are intended to overcome the drawbacks of autologous and allogeneic bone grafts. When
used to restore contaminated bone tissue, bone grafts should ideally inhibit local bacterial
growth. Simultaneously, it should stimulate cellular infiltration and immunomodulatory
effects in host reparative cells [27,28].

Fabrication of biomedical materials with good antimicrobial and osteogenic activities
is critical for promoting the repair effects of bone substitutes on IBDs [29]. Several common
materials have been extensively used in bone tissue engineering, including nanofibrous
materials, coatings, and hydrogels [30]. In particular, hydrogels have porous network
structures and good biocompatibility to mimic the extracellular matrix (ECM) [31]. As a
distinct class of soft materials, hydrogels are composed of hydrophilic networks that can
maintain moisture. Hydrogel is a suitable candidate to be used as carrier materials for
cells or bone growth to facilitate growth factors released and can be easily loaded with
antibacterial agents [32]. Hydrogels can be fabricated from polymer chains connected by
physical interactions or chemical bonds, and varying crosslinking methods and degrees
can easily control the degradation rate, porosity, or release profile [33]. Additionally,
hydrogels can self-assemble with self-complementary amphiphilic peptides by gelation.
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Furthermore, they can be tailored to meet the optimum geometry for implantation or
injection [34]. Hydrogels are appealing therapeutic delivery materials, presenting the
great potential to encapsulate agents in the water-swollen network [35]. Additionally,
some types of hydrogels have inherent antibacterial properties, such as chitosan (CS)
and polyethyleneimine (PEI) [32,36,37]. So hydrogels are scaffolds that have been widely
researched as a potential alternative material for antibacterial tissue engineering.

Antibacterial agents can be classified into three types: inorganic antibacterial agents,
organic antibacterial agents, and natural antibacterial agents based on their composition,
source, and nature. Additionally, each type is sorted into different categories, as summa-
rized in Figure 1.
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Figure 1. Antibacterial agents and their categories for infected bone defects.

Antibacterial agents administered systemically have a lot of drawbacks, such as low
concentrations in the infected area and side effects. In comparison, local delivery of antimi-
crobial agents may offer appropriate antibacterial dosages [38]. Sustainable local delivery
of antibacterial agents via a delivery carrier avoids many disadvantages of systemic side ef-
fects. Due to the excellent water content, great bioactivity, and convenience of drug-loading,
hydrogels have been extensively researched as drug carriers for targeted delivery [39].
Antibacterial agents can be used in conjunction with hydrogels to slow down the kinetics of
drug release and deliver the medication to the target site. Moreover, the hydrogels’ degra-
dation rate can also be controlled, providing this material system the characteristics of a
prolonged-release cycle and reducing administration dosage [40,41]. Therefore, hydrogels
can encapsulate agents or agent-loaded nano-/microcarriers to provide sustained localized
antimicrobial drug release for excellent antibacterial and bone repair performance [42].
This review will focus on recent research on antibacterial hydrogel systems in infected bone
regeneration. The features of hybrid hydrogels in antibacterial mechanism and their effect
on bone repair will be systemically presented.
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2. Hybrid Hydrogels with Inorganic Antibacterial Agents for Infected Bone Repair

Inorganic antibacterial agents are classified based on their modes of action: metal ion
elements (e.g., silver (Ag), gold (Au), copper (Cu), zinc (Zn)), and inorganic light-mediated
antibacterial materials (e.g., reduced graphene oxide (rGO), carbon-based nanomaterial,
titanium dioxide (TiO2), zinc oxide (ZnO) [43]. Light-mediated antibacterial activity can
be achieved through photothermal therapy (PTT), photodynamic therapy (PDT), and
sunlight-mediated antibacterial treatments [44]. There are few studies on sunlight-activated
nanomaterials to date, so this review will focus on the PTT and PDT related inorganic
light-mediated antibacterial agents.

2.1. Hydrogels with Metal Nanomaterials

The antibacterial action of nanoparticles is achieved in a number of ways. Several
factors, such as the released metal ions and the physicochemical characterization of nanopar-
ticles, may lead to membrane disruption or cell wall penetration, which can contribute to
nanoparticles’ antibacterial activity [45,46]. It has been shown that metallic nanoparticles
(as in silver, gold, copper, and titanium) have significant antibacterial activity [47–49].
The mechanisms of inorganic antibacterial agents of several metal ions are illustrated in
Figure 2.
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Among the several metal nanomaterials applied in antibacterial therapy, silver nanopar-
ticles (AgNPs) are the most extensively investigated antibacterial nanoagent with a broad
antibacterial spectrum [51,52]. AgNPs are typically assumed to perform antibacterially
by attaching to the cell wall and membrane, and then destroying the structures and
biomolecules within the cell with AgNPs and silver ions [53–55]. At the same time,
AgNPs can promote bone formation and accelerate the rehabilitation of injured tissues.
Mahmood M et al. demonstrated that AgNPs could regulate many osteogenic genes re-
lated to bone growth [56]. Han et al. described a method to synthesize AgNPs-loaded
hydrogels using gelatin (Gel) as a stabilizing agent in a simple way under sunlight, which
improved the survivability and proliferation of osteoblasts on the hydrogels for bone
fracture treatment [57].

Gold nanoparticles (GNPs) are also gaining immense attention since their antimicrobial
activity has been reported [58]. After intracellular uptake, GNPs have been demonstrated
to stimulate osteogenic differentiation and mineralization in cells [59,60]. For example,
Zhang et al. prepared PEG-hydrogels with GNPs of 4 nm, 18 nm, and 45 nm in size. The
results indicated that hydrogels containing GNPs of 45 nm could efficiently induce bone
regeneration in vivo by increasing the osteogenic gene expression, mineralization, and
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alkaline phosphatase (ALP) activity [61]. In another case, Lee D et al. designed a hydrogel
that tyramine (Ty) bound with the Gel backbone (Gel-Ty) containing GNPs attached to N-
acetyl cysteine (NAC) (Gel-Ty/G-NAC) for effective bone regeneration [62]. Furthermore,
GNPs can be utilized for PTT to treat tumors when exposed to near-infrared light [63]. In
addition, copper nanoparticles show excellent antibacterial ability for both Gram-positive
bacteria (GPB) and Gram-negative bacteria (GNB) [64]. For example, Dai Q et al. fabricated
a unique 3D-printed Ty-modified Gel/silk fibroin (SF)/copper (Cu)-doped bioactive glass
(BG) hydrogel [65]. The hydrogel with 1 wt% Cu-BG can effectively modulate osteogenesis
and vascularization’s spatiotemporal coupling.

Like antibiotics, prolonged usage of AgNPs results in the development of multidrug-
resistant microorganisms [66]. Unfortunately, inorganic nanoparticles are difficult to
biodegrade in vivo. So the toxicity of inorganic nanoparticles should be reduced by
surface modification.

2.2. Light-Mediated Inorganic Antibacterial Hydrogels

In comparison to traditional antibiotics, PTT would not induce bacterial resistance [67].
Aside from metal NPs, various photothermal agents (PTAs) have been successfully used
in the antimicrobial field. PTAs can convert light into heat, resulting in rupture of the
cell membrane, protein denaturation, and microbial death [68]. PTT has demonstrated
significant promise in antibacterial and bone regeneration treatment due to the rapid
development of different PTAs. The inorganic nanomaterials with PPT abilities include
metal nanomaterials (Au, Pt), carbon-based nanomaterials (graphene, fullerene, rGO), black
phosphorus (BP), and other metal oxide nanoparticles [44,69,70]. Unlike PTT, PDT generates
reactive oxygen species (ROS) to generate cytotoxicity. Three elements are required for
PDT: light, molecular oxygen, and photosensitizers (PSs). When the PSs are irradiated with
light whose wavelength meets the PSs’ absorption, singlet oxygen (1O2), hydroxyl radicals,
or oxygen-free radicals can be produced. These radicals can destroy cell membranes and
DNA molecules [71].

Nanoparticles with photothermal and photodynamic ability have recently received
much attention as a potential treatment for bacterial infections and bone healing. Geng et al.
developed a multifunctional biodegradable gelatin/methacrylate anhydride (GelMA) hy-
drogel by controlling the surface charge and preventing the positive- and negative- charged
carbon quantum dots (CQD)from aggregating [72]. They deposited positively charged
carbon quantum dots (p-CQDs) on the surface of tungsten disulfide (WS2) nanosheets.
Additionally, Geng et al. incorporated (p-CQDs)/WS2 with antimicrobial effects and nega-
tively charged CQDs (n-CQDs) with bone induction ability in GelMA hydrogels. Not only
can the hydrogels effectively kill multidrug-resistant bacteria (MDR), but they also consider-
ably accelerate bone regeneration. Graphene, a typical carbon-based nanomaterial, has been
extensively investigated for its ability to stimulate bone formation through interaction with
osteoprogenitors and other skeletal progenitors. rGO is the product of treating graphene
oxide (GO) under thermal, chemical, or UV [73]. In addition to improving mechanical prop-
erties, graphene family materials uniformly dispersed into polymers to produce materials
can also promote cell proliferation and differentiation, hence facilitating bone regenera-
tion [74]. Wang et al. fabricated the NIR light-responsive, rGO-loaded CS hydrogel films
by electrodeposition [75]. The histological and radiological examination revealed that the
films promoted bone regeneration in calvarial defect osteoporotic models. Li et al. de-
veloped hybrid hydrogels containing gelatin methacrylate, β-cyclodextrin-modified rGO,
and acryloyl-β-cyclodextrin for infected skull defects [76]. These hydrogels exhibited ideal
antibacterial photothermal properties, as well as unswelling and mechanical properties.

The difficult biodegradation of GO limits its biomedical applications, particularly
in vivo [77]. Conversely, BP can degrade in aqueous conditions, generating harmless phos-
phates and phosphonates that promote biomineralization and regulate osteogenesis [78,79].
As a recently emerged 2D nanomaterial, BP has stimulated widespread research interest.
For example, Miao et al. reported that the BP/Gel hydrogel could promote osteogenesis
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in vitro without osteoinductive factors. In the Sprague Dawley rat model, they also found
considerable newborn cranial bone tissue growth [80].

The human body is capable of withstanding high heat for a brief period of time, but
normal cells in the surrounding area could be damaged [81,82]. The NIR light frequently
employed for PTT therapy has a limited penetration depth [83]. In comparison to NIR-I
light (650–1000 nm), the NIR-II window (1000–1700 nm) exhibits a greater penetration
depth in tissue and lower energy attenuation [84,85]. Additionally, the combination of PDT
and PTT can significantly enhance the antibacterial efficiency of phototherapy. As shown
in Figure 3, Zhang et al. designed a NIR-II phototherapy system using ytterbium (Yb),
erbium (Er), and holmium(Ho) co-doped TiO2 nanorods (TiO2 NRs) (TiO2:FYH)/curcumin
(Cur)/hyaluronic acid (HA)/bone morphogenetic protein-2 (BMP-2) [86]. It had antibiofilm,
anti-inflammatory, and osteogenic capabilities in vitro and in vivo. The temperature in-
creased to 47 ◦C when the 1060 nm laser was used, which was higher by about 7.2 ◦C
than that of the 808 nm laser in the rabbit femur. Furthermore, the system exhibited great
antibiofilm capability in the rabbit femur when irradiated with a 1060 nm laser, while
numerous microorganisms lived when irradiated with an 808 nm laser. Then, on a titanium
bone implant, they constructed a NIR-II-triggered nano-platform made of Yb and Er-doped
TiO2 nano-shovel (TiO2@UCN)/quercetin (Qr)/L-arginine (LA) [87]. When irradiated with
a 1060 nm laser, the nanoplatform can eradicate biofilms on the titanium implants at 45 ◦C.
Furthermore, the nano-platform enhanced revascularization and osteogenic differentiation,
reduced inflammation, and promoted the generation of bone structures.
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High temperatures and 1O2 from the phototherapy could easily destroy adjacent
tissues, such as the periosteum and blood vessels [88]. PSs can also be developed to be
activated by enzyme-mediated luminescence techniques in addition to external sources
of excitation, allowing them to address depth constraints [89]. Developing near-infrared
light-triggered nanomaterials with extremely prolonged luminescence lifetimes, allowing
for continuous activation of PSs for phototherapy, may provide another way to avoid
external light irradiation [70].

3. Hybrid Hydrogels with Organic Antibacterial Agents for Infected Bone Repair

Organic antibacterial agents including glutaraldehyde, quaternary ammonium salt
compounds, and chlorhexidine (CHX), have been extensively studied [90–92]. Metal-
organic frameworks (MOFs) are effective against bacteria. MOFs usually refer to composites
with a network structure by the self-assembly of metal ions and organic ligands. In
comparison to traditional bactericidal materials, MOFs exhibit larger specific surface areas,
more adjustable pore structures, and controllable ion release rates. As a result, MOFs
have a promising future in infected bone regeneration [93]. In addition to the inorganic
photothermal materials mentioned above, organic photothermal agents have received
much attention in recent years.

3.1. Hybrid Hydrogels with Organic Antibacterial Agents

Most inorganic antibacterial agents appear in the form of metal ions to kill GNB,
whereas GPB are sensitive to organic antibacterial compounds via organelle modification
and disruption of metabolic processes [50]. There are many organic antibacterial agents,
such as CHX, organic acids, phenols, and quaternary ammonium compounds [94,95].

Quaternary ammonium salts (QAS) are important synthetic organic antimicrobials
with a broad antimicrobial spectrum. QASs’ hydrophobic and ionic interactions with
biological membranes damage microorganisms’ barriers [96,97]. For example, Lin et al.
used quaternary ammonium chitosan (QTS) as a liquid phase in conjunction with calcium
silicate (CaSi) powder to form cement [98]. When considering the osteogenic capacity, the
antibacterial ability, and the setting time, the results revealed that CaSi cement with1% QTS
might be a promising choice for bone regeneration.

Like QAS, CHX is commonly applied by healthcare personnel for general disinfection
and hand hygiene [99]. CHX is a broad-spectrum antimicrobial material that inhibits
the formation of biofilms and GPB/GNB growth, particularly against E. faecalis [100].
The antibacterial effect of CHX is mediated by the cation’s electrostatic interaction with
the negatively charged portions of the bacterial surface, interfering with physiological
activities and osmotic regulation in bacteria [101]. Xu L et al. developed a novel injectable
hydrogel composed of nanohydroxyapatite particles and CHX (nHA/CHX) loaded in
gellan gum (GG), which has the potential to enhance the repair of IBDs [102]. Bacteria
counts were considerably lower in the surrounding bone tissue of rats treated with surgical
debridement and GG/nHA/CHX transplantation than in the control group. Additionally,
at 4 and 8 weeks, rats in the hydrogel group demonstrated considerably abundant new
bone formation compared to the control group.

The antibacterial actions of the various organic antibacterial agents encompass a
variety of distinct methods, including breaking down cell membranes or oxidizing the
proteins and amino acids inside bacteria [103]. However, organic antimicrobials have
some limitations in biodegradability, stability, and lifetimes [104]. For overcoming these
problems, MOFs may be the solution.

3.2. Hybrid Hydrogels with Metal-Organic Frameworks

Due to the rapid rate of evolution of bacteria, the resistance of bacteria to many
organic antimicrobial agents is increasing, which is an urgent problem in the healthcare
system [105]. MOFs have attracted substantial attention recently as an innovative and
fast-evolving group of organic-inorganic hybrid materials [106]. The majority of MOFs
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display antimicrobial properties by decomposing metal-ligand bonds and releasing ligands
or metal ions into the bacteria. Additionally, they can be used as medication carriers
through the adsorption or binding of medicines to their surfaces [107,108]. Various metal
ions have been shown to have different effects on osteogenesis and bone mineralization,
and their mechanisms of action have also been investigated. As a result, it was established
that MOFs enhance osteogenic differentiation in vitro. In vivo studies were less common,
which means that the application of MOFs for orthopaedic implants is just starting to be
investigated [109].

As an essential member of MOFs, zeolitic imidazolate frameworks-8 (ZIF-8) is a
monocrystal constructed of Zn2+ that connects to each other [110]. Recently, Zhang’s
study generated antibacterial ZIF-8 using the diethanolamine template and solvent tech-
niques [111]. The ZIF-8 synthesized in these two techniques exhibits remarkable antibacte-
rial activity and is biocompatible at low concentrations. Taking advantage of its prolonged
release of Zn2+, which is essential in bone regeneration, revascularization, and antimi-
crobial activities, ZIF-8 has the promise to be applied as a modification material in bone
tissue engineering. When applied to rat bone marrow stromal cells (rBMSCs), ZIF-8 acti-
vated the extracellular-signal-regulated kinase (ERK) pathway primarily, and eventually
activated the classical mitogen-activated protein kinase (MAPK) signaling and promoted
osteogenesis. [112]. For example, Liu et al. designed ZIF-8 nanoparticles (ZIF-8 NPs)
functionalized catechol-chitosan (CA-CS) hydrogels (CA-CS/Z) to guarantee adequate
blood supply, maintain the stabilization of the bone transplant environment, enhance os-
teogenesis, and promote bone regeneration (Figure 4) [113]. The hydrogel demonstrated
satisfactory adhesion and antimicrobial activities. ZIF-8 discharged from hydrogels may
also increase the release and formation of osteocalcin, collagen I, and ALP, hence enhancing
rBMSCs’ osteogenic differentiation.

Gels 2022, 8, x FOR PEER REVIEW 8 of 25 
 

 

3.2. Hybrid Hydrogels with Metal-Organic Frameworks 
Due to the rapid rate of evolution of bacteria, the resistance of bacteria to many or-

ganic antimicrobial agents is increasing, which is an urgent problem in the healthcare sys-
tem [105]. MOFs have attracted substantial attention recently as an innovative and fast-
evolving group of organic-inorganic hybrid materials [106]. The majority of MOFs display 
antimicrobial properties by decomposing metal-ligand bonds and releasing ligands or 
metal ions into the bacteria. Additionally, they can be used as medication carriers through 
the adsorption or binding of medicines to their surfaces [107,108]. Various metal ions have 
been shown to have different effects on osteogenesis and bone mineralization, and their 
mechanisms of action have also been investigated. As a result, it was established that 
MOFs enhance osteogenic differentiation in vitro. In vivo studies were less common, 
which means that the application of MOFs for orthopaedic implants is just starting to be 
investigated [109]. 

As an essential member of MOFs, zeolitic imidazolate frameworks-8 (ZIF-8) is a mono-
crystal constructed of Zn2+ that connects to each other [110]. Recently, Zhang’s study gener-
ated antibacterial ZIF-8 using the diethanolamine template and solvent techniques [111]. 
The ZIF-8 synthesized in these two techniques exhibits remarkable antibacterial activity and 
is biocompatible at low concentrations. Taking advantage of its prolonged release of Zn2+, 
which is essential in bone regeneration, revascularization, and antimicrobial activities, ZIF-
8 has the promise to be applied as a modification material in bone tissue engineering. When 
applied to rat bone marrow stromal cells (rBMSCs), ZIF-8 activated the extracellular-signal-
regulated kinase (ERK) pathway primarily, and eventually activated the classical mitogen-
activated protein kinase (MAPK) signaling and promoted osteogenesis. [112]. For example, 
Liu et al. designed ZIF-8 nanoparticles (ZIF-8 NPs) functionalized catechol-chitosan (CA-
CS) hydrogels (CA-CS/Z) to guarantee adequate blood supply, maintain the stabilization of 
the bone transplant environment, enhance osteogenesis, and promote bone regeneration 
(Figure 4) [113]. The hydrogel demonstrated satisfactory adhesion and antimicrobial activi-
ties. ZIF-8 discharged from hydrogels may also increase the release and formation of oste-
ocalcin, collagen I, and ALP, hence enhancing rBMSCs’ osteogenic differentiation. 

 
Figure 4. Scheme of the fabrication of CA-CS/Z hydrogels with acceptable adhesion properties and 
antibacterial properties, enhancing the stability of the implanting environment after bone 
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antibacterial properties, enhancing the stability of the implanting environment after bone transplanta-
tion. HCA, hydrocaffeic acid; 2-Mclm, 2-methylimidazole; VEGF, vascular endothelial growth factor
(Reprinted with permission from Ref. [113]. Copyright 2020 American Chemical Society).
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Nonetheless, excessive metal ions produced by MOFs may be toxic to human cells [51,114].
Numerous institutions are researching ways to improve the stability of metal ions as a
solution to this issue. Zheng et al. fabricated a nanoplate with a gallic-acid-magnesium-
based MOFs (Mg-MOF) core and a biodegradable calcium phosphate (CaP) shell [115].
With the shell in place, the core was less susceptible to degradation, and the bioactive
components contained within were more likely to reach a prolonged release under low-pH
conditions stimulated by cytokine interleukin-4 (IL4). Then, IL4-MOF@CaP was integrated
into collagen (Col) to create a biodegradable scaffold with significant bone regeneration.
In addition to being composed of metal ions with antibacterial properties to exert an-
tibacterial effects, MOFs can be loaded with various antibacterial agents as carriers [116].
For instance, Huang et al. successfully constructed an intelligent and long-lasting agent
carrier of MOFs(HKUST-1)@carboxymethyl chitosan (HKUST-1@CMCS) [117]. These re-
sults indicated that dimethyl fumarate-loaded carrier had enhanced and long-lasting
antibacterial action.

3.3. Light-Mediated Organic Antibacterial Hydrogels

Organic photothermal agents are categorized into two types: organic nanoparti-
cles (such as porphyrin–lipid conjugate porphysome and organic semiconducting poly-
mer nanoparticles) and organic dye molecules (such as indocyanine green (ICG), IR820,
IR780) [70,118,119]. These photothermal conversion materials are biodegradable but easily
photodegradable or photobleached [120].

Kuang et al. developed an injectable multifunctional hydrogel for NIR-triggered
release for bone regeneration. This hydrogel consisted of poly (dimethylaminoethyl
methacrylate-co-2-hydroxyethyl methacrylate)-coordinated situ-generated CaP nanopar-
ticle (ICPN) (poly (DMAEMA-co-HEMA)/ICPN) (DHCP) hydrogel loaded with poly
(N-acryloyl glycinamide-co-acrylamide) (PNAm)-ICG- parathyroid hormone (PTH) mi-
crospheres (PIP MSs) [121]. Through the photothermal activity of ICG and the thermal
polymerization of PNAm, the temperature was rapidly raised, so that PTH can be re-
leased accurately and controlled. The injectable NIR (808nm)-light-responsive hydro-
gel may stimulate osteoblast and osteoclast activity simultaneously and repair cranial
defects successfully.

Additionally, served as PTAs, Polydopamine (PDA) exhibits excellent photothermal
conversion and adhesion abilities [121,122]. Luo et al. combined immobilized cisplatin
with PDA-modified nano-hydroxyapatite (HA) in an injectable hydrogel composed of
oxidized sodium alginate and CS. In animals, the hydrogel had photothermal anticancer
effects and facilitated the growth of new bone structures [123]. Yao et al. prepared HA,
PDA, and carboxymethyl chitosan (CMCS) composite scaffolds [124]. In vitro, the scaffolds
with PDA may stimulate higher BMSCs’ osteogenic differentiation than scaffolds lacking
PDA. Additionally, the effect of the photothermal process on the osteogenic differentiation
was not affected.

The disadvantage of organic photothermic agents is their susceptibility to photobleach-
ing. Not only are conventional organic NIR-absorbing compounds difficult to synthesize,
but they are also prone to photobleaching when exposed to light. These disadvantages
result in increased costs and the possibility of performance degradation in PTT. Organic
photothermal agents must therefore be modified or packaged to maintain their photother-
mal capabilities [125].

4. Hybrid Hydrogels with Natural Antibacterial Agents for Bone Defect Repair

Natural antibacterial agents can be classified according to their sources, including
microorganism origin (antibiotics such as vancomycin [126], Aspergillomarasmine A [127]),
plant origin (curcumin (Cur) [128], quercetin [91]), and animal origin (antimicrobial pep-
tides (AMPs) [129]). As a matter of fact, the majority of antibiotics currently used or under
investigation are produced from secondary metabolites extracted from microbial pathogens,
including gentamicin, penicillin, erythromycin, and chloramphenicol [130]. Plant extracts
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are diverse in composition because even from the same plant, numerous extracts with
varying compositions can be prepared by altering the extraction conditions. Due to the
inherent activity of natural antibiotics, the extracts of lysozymes, AMPs, and antimicrobial
proteins from natural substances are a crucial focus of animal origin antimicrobial agent
development [131]. AMPs, which are also called host defense peptides (HDPs), are found
in all living animals. They are essential parts of the innate immune system’s response to
pathogens [132,133]. In vivo, AMPs have the primary biological function of eliminating
harmful microbes such as GPB and GNB, fungi, and viruses [134]. Aside from their antibac-
terial effect, it has also been shown that AMPs are essential in intracellular processes such
as angiogenesis, inflammation, and cell signaling, making them potential candidates for
creating new medications [135].

4.1. Hybrid Hydrogels with Microorganism Origin Natural Antibacterial Agents

Antibiotics are antibacterial organic compounds derived from natural microorganisms
or synthesized in the laboratory. Antibiotics are the most frequently prescribed treatments
in hospitals and clinics for bacterial illnesses. Both in therapy and prevention, they are
frequently employed in clinical care. Antibiotics have a wide range of antibacterial mecha-
nisms at their disposal. Aside from affecting cell walls and proteins, they can also harm
DNA replication and disrupt metabolic processes [136]. Traditionally, broad-spectrum
antibiotics are applied systemically to treat bone infections. Antibiotics such as gentamicin
and vancomycin are commonly utilized in clinic to treat IBDs [137,138].

Internal encapsulation/physical entrapment through the hydrogels is a strategy for
achieving prolonged, localized antibiotic release, hence minimizing systemic adverse effects
of antibiotic treatment [139]. This is particularly critical for managing osteomyelitis, which
often requires prolonged courses of antibiotics at high doses. Some antibiotics affect
osteogenic activities in vitro. According to recent research, a low dose of doxycycline
can promote osteogenic differentiation during the initial stages of the procedure [140].
Park JB. et al. showed that increasing tetracycline levels could result in a dose-dependent
inhibition in osteogenesis and cell differentiation [141]. A co-delivery system can be
built to deliver antibacterial and osteoinductive medicines concurrently or sequentially.
Jung et al. fabricated an alginates (ALG)/hyaluronic acid (HA) hydrogel that gelled in situ
and comprised BMP-2 and vancomycin [142]. The hydrogel successfully inhibited bacteria
proliferation of osteomyelitis and promoted bone repair without the use of supplemental
bone transplants. Additionally, the femur treated with the hydrogel regenerated bone
more densely compared to the other groups. Only checking the influence of antibiotics
on osteogenic activities is insufficient for antibiotics with osteogenic and antibacterial
capabilities. The impact of their different concentrations on osteogenesis activity should
also be investigated. Liu et al. composited calcium phosphate bone cement (CPC) with
gelatin–alginate hydrogels impregnated with gentamicin (GS) in various ratios of 0, 12.5, 25,
and 50 vol% [143]. As a result of the findings, the C/0.5-GS complex had the most excellent
antibacterial effect and was non-cytotoxic. However, it decreased cell mineralization. The
result indicated that high levels of GS in CPC inhibited the capacity of ALP. As a result,
C/0.25-GS could be chosen as the best composite due to its adequate strength, steady
and sustainable antibiotic release ability, antibacterial activity, and bio-reactivity. An ideal
balance between growth factor and drug is necessary for bone formation because high
antibiotic doses may hinder osteoblastic differentiation [144].

Antibiotic-resistant bacteria have been increasingly prevalent during the last few
decades [145]. Antibiotic therapy is frequently ineffective in osteomyelitis as a result of
impaired local vasculature [146]. Furthermore, antibiotics have been proven to be harmful
to mammalian cells, resulting in mitochondrial malfunction [147]. The high occurrence of
severe bone infections and the increasing risk that antibiotics may become less effective
necessitates the development of non-antibiotic-based treatments to replace antibiotics.
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4.2. Hybrid Hydrogels with Plant Origin Natural Antibacterial Agents

As a result of the excellent biocompatibility and biodegradability, natural antibacterial
agents are the first antibacterial agents utilized by humans. They are derived from certain
animals and plants with antibacterial activity [90].

Curcumin is a polyphenolic organic molecule derived from turmeric [148]. A series of
studies revealed that Cur had antibacterial and anti-inflammation activities [128,149], en-
hanced osteoblasts’ proliferation, and induced osteogenesis-related gene expressions [150,151].
Various investigations have demonstrated that curcumin possesses broad-spectrum antibac-
terial properties as well as significant biological activity against both GPB and GNB [152].
The antimicrobial mechanistic methods of curcumin typically entail interfering with cellular
division as well as the stimulation of the temperature-sensitive protein-filamenting mutant
Z. (FtsZ) [153]. The FtsZ protein is related to cell replication in microorganisms, and it is
the first protein to appear at sites about to divide [154]. Curcumin is a photosensitizer with
phototoxicity that has been shown to have bactericidal effects on various bacteria when
exposed to blue light [155–157]. Moreover, investigations have demonstrated that methoxy
and hydroxyl of Cur are directly related to its antibacterial properties [158]. Unfortunately,
it is challenging to combine hydrophobic curcumin with hydrophilic hydrogels. The low
solubility and bioavailability restrict the use of curcumin in clinic. So far, many efforts have
been made to encapsulate curcumin. Through the use of photocuring and ethanol treatment,
Yu et al. were able to develop Cur-loaded CS nanoparticles (CCNP) in SF/hyaluronic acid
esterified by methacrylate (HAMA) hydrogel (CCNPs-SF/HAMA) [159]. In vitro study
revealed that the hydrogel showed anti-cancer properties while also enhancing osteoblast
growth when the concentration of Cur was 150 g/mL. Virk et al. used an electrophoretic de-
position technique to create a multilayer coating containing CS and Cur to give orthopedic
implants biological and antibacterial abilities. Both characteristics indicate the prospects of
the novel material for bone regeneration [160].

Similar to curcumin derived from plants, cannabidiol (CBD) is an ingredient obtained
from the Cannabis sativa with anti-inflammatory, antibacterial activity, and the ability
of regulating bone metabolism [161–163]. CBD has also been found to enhance the mi-
gration of MSCs by activating the P42/44 MAPK signaling pathway and subsequently
differentiating into osteoblasts [164]. Qi et al. developed a Cu-alginate hydrogel containing
CBD (SA@Cu/CBD) for bone regeneration [165]. The hydrogel was antimicrobial and
suppressed the inflammatory response while also promoting osteoblast differentiation and
exhibiting angiogenic properties.

4.3. Hybrid Hydrogels with Animal Origin Natural Antibacterial Agents

AMPs have broad-spectrum antibacterial activity by cationic and hydrophobic residues [166,167].
Various mammalian cells synthesize AMPs such as defensins, cathelicidins, and his-
tatins [168]. The antimicrobial properties of AMPs were widely believed to be based
on their capacity to disrupt membranes via the amphipathic scaffold [169]. AMPs derived
from small amino acids would rarely deposit in the human body and could be promptly
eliminated from the body [170].

Previous studies demonstrated that AMPs have negligible induction of bacterial
resistance. Thus, they can be used to limit microbial contamination in biomedical implants
by delivering locally [171]. AMPs cooperated with an appropriate scaffold material to
promote bone repair is one of the effective methods in the treatment of IBDs. Yang et al.
synthesized a self-assembling hydrogel that RADA16 loaded with AMPs, and the RADA16-
AMP had a significant impact on bone growth [172]. Cheng et al. formed a gelatin-based
hydrogel containing catechol motifs [173]. Additionally, then, the hydrogel composition
was backed with a short cationic antimicrobial peptide (HHC-36) and synthetic silicate
nanoparticles (SNs). The hydrogel showed unique features, including strong adhesion,
antibacterial activity, and promoting osteogenesis. Sani et al. reported a hydrogel made
of gelatin and AMPs that was triggered by visible light [174]. The GelAMP demonstrated
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excellent antibacterial properties against Porphyromonas gingivalis and promoted bone
regeneration in mice.

Some antimicrobial peptides also have an effect on osteogenesis. Due to its broad-
spectrum antibacterial activity and multiple bio-functions, particularly osteogenic stim-
ulation, antimicrobial peptides LL37 are regarded as a promising option for bone tissue
engineering [175]. LL37 can enhance proliferation, migration, and osteogenic differentiation
of MSCs and block bone resorption [176]. Liu et al. fabricated a scaffold for subchondral
bone regeneration utilizing LL37-modified layered double hydroxide/CS (LL37@LC) [177].
The study demonstrated that the scaffold might differentiate MSCs into osteoblasts and pro-
mote vasculogenesis. Although natural antibacterial agents have a wide range of sources
and excellent biodegradable ability, they do have some drawbacks, including insufficient
antimicrobial activities or unstable antimicrobial activities.

5. Hydrogels with the Inherent Antibacterial Ability for Bone Defect Repair

Besides the antimicrobial agents, the carrier materials (hydrogels) also have antibacte-
rial activity. CS is a natural biopolymer that resembles hyaluronic acid in structure, which
has the inherent antibacterial ability and can disrupt cytomembrane structure, cellular
energy metabolism, and protein synthesis [174,178,179]. According to the findings of this
study, CS promoted the expression of calcium-binding and mineralization genes, including
osteocalcin, osteonectin, osteopontin, and collagen type I alpha 1 (COL1A1) [180]. Typically,
CS is frequently mixed with osteogenic agents to form hybrid composites suitable for or-
thopedic biomedical implants, such as RGD ligand [181]. RGD-modified CS decreased the
adhesion of S. epidermidis and S. aureus by 85% and 67%, respectively. Additionally, it pro-
moted the expression of osteogenic markers. Hydroxypropyltrimethyl ammonium chloride
chitosan (HACC), a new water-soluble CS derivative, has a broad-spectrum antibacterial ac-
tivity and has been effectively utilized in bone regeneration as an antibacterial agent. Wang
et al. developed the HACC/BMP2-BioCaP complex, which was capable of quickly releasing
HACC, accompanied by a sustained release of BMP-2 in critical-sized IBDs [12]. Huang
et al. used a photo-crosslinking approach to incorporate hydroxyapatite (HAp)@PDA-F
nanoparticles with the quaternized and methacrylated CS (CS/HAp@PDA-F) [182]. The
hydrogel system preserved osteogenic differentiation potency and provided an excellent
antibacterial activity.

Some chitosan-based composites have been modified to improve their mechanical
qualities and antibacterial activity, such as grafting PEI onto chitosan, grafting chitosan
onto PEI, or creating a chitosan-PEI composite [183]. PEI includes a 1:2:1 ratio of primary,
secondary, and tertiary amino groups. It is known that PEI can improve the bactericidal
efficacy of both hydrophilic and hydrophobic antibacterial agents, and it is also a frequently
used microbicidal component in its own right in microbiology [184]. They possess per-
meabilizing properties and are capable of damaging the membranes of bacteria [185,186].
Li et al. reported a self-healing bioactive antibacterial nanocomposite hydrogel based
on crosslinking poly polyacrylate/aldehyde-hyaluronic acid (AHA)/PEI/bioactive glass
nanoparticles (BGN) (PAPB) in a triple-network configuration. The hydrogel showed
favorable biomineralization activity, which facilitated the reconstitution of skull defects
(Figure 5) [187].
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Figure 5. Schematic illustration showing the synthesis process of multifunctional PAPB hydrogel and
the effective application. (A) The synthesis process of multifunctional PAPB hydrogel, (B) potential
biomedical applications of multifunctional PAPB hydrogel; (C) Intuitive optical images of before and
after gelation; (D) Intuitive optical images of bending and elongation; (E) Intuitive optical images of
before and after swelling. AA, acrylic acid (Reprinted with permission from Ref. [187] Copyright
2022 Elsevier).

6. Summary and Challenges

To prevent the bone substitutes from being infected during repair, osteoconductive
scaffolds that maintain the release of antibacterial agents over the 4 to 6 week duration for
complete vascularization are necessary [188]. As a result, there is an immediate require-
ment for the development of bone-implant materials that provide long-lasting antibacterial
activity and stimulate bone repair [189]. The present review summarizes the current devel-
opment of the hybrid hydrogel with inorganic, organic, and natural antibacterial agents.
Table 1 summarizes the advantages and disadvantages of different antibacterial agent
hybrid hydrogels. Although adding antibiotics to hydrogel can enhance the antibacterial
properties of materials and increase the speed of bone repair, insufficient long-lasting an-
timicrobial capability and insufficient osteogenesis properties result in unsatisfactory tissue
regeneration [189]. Antibiotics and antibacterial metals, such as Ag, Cu, and Au, have
already been implemented into hydrogels to treat and prevent bone infection. However,
the risk of antibiotic resistance and tissue toxicity from metal ion release may limit their
clinical use [190,191]. Light-mediated antibacterial agents offer a solution to the problem of
bacterial resistance and tissue toxicity through their unique antibacterial mechanism.

Recent research indicates that PTT or PDT can promote the proliferation of cells and
osteogenesis differentiation, and some nanomaterials possess intrinsic or light-triggered
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bactericidal properties. Furthermore, the photothermal treatment kills microorganisms
by raising the local temperature, causing physical damage to bacteria, and preventing the
development of antibiotic resistance. Although light-mediated antibacterial mechanisms
have been recognized as one of the most effective antibacterial approaches, their ability to
target organisms, oxygen-deprivation-infected tissues, as well as photocatalytic efficiency
are still significant variables restricting their antimicrobial effectiveness [192]. To satisfy
the future requirements of light-mediated antibacterial agents, it is expected to develop
innovative light-mediated antibacterial agents with adequate size, excellent photostability,
high photothermal conversion efficiency, and low toxicity for effective PTT and PDT for
infection treatment and bone repair. Furthermore, in comparison to PTT or PDT alone,
the combination treatment exhibited a synergistic effect, leading to increased efficacy
of treatment without noticeable toxic consequences on normal tissues [193]. Therefore,
combined PTT and PDT hold desired promise for the treatment of IBDs.

It is to be regretted that the cell and animal investigations of antibacterial agents hybrid
hydrogels mentioned above have not yet been applied in clinic. To date, no investigations
have described the use of antibacterial hybrid hydrogels for the clinical treatment of IBDs.
It is difficult to directly apply the results of successful in-human cell or animal studies to
clinical experience. As a result, clinical trials evaluating the safety and functional effective-
ness of hybrid hydrogels with antibacterial agents are required in the future. Additionally,
a promising future direction is the use of multifunctional materials paired with systemic
and local therapy for the treatment of IBDs, and different methods of treatment should be
used wherever possible, including multiple drugs, co-delivery, and hyperthermia [194].

In conclusion, antibacterial agents such as antibiotics, metal particles, and AMPs are
usually incorporated into hydrogels to endow them with antibacterial activity. For some
hydrogels with inherent antibacterial capability, it is convenient to adjust the biocompati-
bility and antibacterial activity of the hydrogels via chemical modification in various ways.
The promising way to treat IBDs is to create a bone graft with antimicrobial and osteogene-
sis properties in sequential order. Despite significant progress, hydrogels possessing the
activities of anti-inflammatory, antibacterial, osteogenic, and angiogenic are desperately
needed to treat IBDs.
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Table 1. Summary of different antibacterial agents hybrid hydrogels for infected bone repair.

Category Representative Agent Antibacterial Mechanism Effect on Bone Repair Advantages Disadvantages Ref.

Hydrogels with
metal nanomaterials AgNPs

Attach onto the cell wall and
membrane, damage intracellular

biomolecules and structures

Promote the expression and
mineralization of osteogenic

proteins, alter microRNA expression
associated with bone formation

Broad-spectrum antimicrobial
properties, stimulate bone growth

Long-term use produces
multidrug-resistant bacteria and is

difficult to biodegrade
[51,195]

Light-mediated inorganic
antibacterial nanoparticle

hybrid hydrogels
rGO

Mechanical breakage of the cell
membrane results in intracellular

substance leakage

Promote cell proliferation
and differentiation Do not elicit bacterial resistance Low photothermal conversion

efficiency, non-biodegradable nature [196,197]

Hydrogels with organic
antibacterial agent Quaternary ammonium salts Binding to the cell membrane,

bacteria lysis
Promote more

osteogenic differentiation
Can be used as a

modification factor

Short-term functionality,
environmental toxicity, rapid
antimicrobial resistance, and

skin penetration

[96,97,198]

Hydrogel with MOFs ZIF-8
Synergistic action, such as Zn2+ and

ligand release, ROS production,
photothermal effect

Activate the ERK pathway
primarily, activates MAPK signaling

eventually, and promotes the
osteogenesis of rBMSCs

Can be used as carriers and have
electrostatic interaction with

negatively charged bacterial cells

Excess metal ions may be harmful to
host tissues [112,199]

Light-mediated organic
antibacterial agent
hybrid hydrogels

ICG
Combination of PTT and PDT to kill

bacteria through ROS generation
and thermal ablation

Increase ALP activity and enhanced
mineralization of osteoblasts

Water-soluble, very
low cytotoxicity

Rapid clearance from the body,
instability in aqueous solutions,

an photobleaching
[200–205]

Hydrogels with
microorganisms origin natural

antibacterial agents
Doxycycline Interfere with prokaryotic protein

synthesis at the ribosome level
Promote by low concentration, but

inhibit by high concentration
Broad-spectrum

antibacterial drug
Antibiotic-resistant bacteria, toxic to

mammalian cells [140,141,206]

Hydrogels with plant origin
natural antibacterial agents Cur

Target the bacterial DNA, protein,
cell membrane, cell wall, and other

biological components

Enhance osteoblast proliferation,
and induce osteogenesis-related

gene expression

Wide sources and
good biodegradability Poor solubility and bioavailability [149–151,155]

Hydrogels with animal origin
natural antibacterial agents LL37 Induce membrane rupture

Enhance proliferation, migration,
and osteogenic differentiation of
MSCs and block bone resorption

Broad-spectrum activity against Insufficient antimicrobial activities or
unstable antimicrobial activities [176,207,208]

Hydrogels with inherent
self-antibacterial ability CS

Disrupt cytomembrane structure,
cellular energy metabolism, and

protein synthesis

Up-regulate genes associated with
calcium binding and mineralization

Environmentally friendly agent
and cytocompatibility

Limited bacterial activity against
Gram-negative bacteria [209,210]
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