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Abstract

MiRNAs are short non-coding RNAs of about 22 nucleotides, which play critical roles in

gene expression regulation. The biogenesis of miRNAs is largely determined by the

sequence and structural features of their parental RNA molecules. Based on these features,

multiple computational tools have been developed to predict if RNA transcripts contain miR-

NAs or not. Although being very successful, these predictors started to face multiple chal-

lenges in recent years. Many predictors were optimized using datasets of hundreds of

miRNA samples. The sizes of these datasets are much smaller than the number of known

miRNAs. Consequently, the prediction accuracy of these predictors in large dataset

becomes unknown and needs to be re-tested. In addition, many predictors were optimized

for either high sensitivity or high specificity. These optimization strategies may bring in seri-

ous limitations in applications. Moreover, to meet continuously raised expectations on these

computational tools, improving the prediction accuracy becomes extremely important. In

this study, a meta-predictor mirMeta was developed by integrating a set of non-linear trans-

formations with meta-strategy. More specifically, the outputs of five individual predictors

were first preprocessed using non-linear transformations, and then fed into an artificial neu-

ral network to make the meta-prediction. The prediction accuracy of meta-predictor was vali-

dated using both multi-fold cross-validation and independent dataset. The final accuracy of

meta-predictor in newly-designed large dataset is improved by 7% to 93%. The meta-predic-

tor is also proved to be less dependent on datasets, as well as has refined balance between

sensitivity and specificity. This study has two folds of importance: First, it shows that the

combination of non-linear transformations and artificial neural networks improves the predic-

tion accuracy of individual predictors. Second, a new miRNA predictor with significantly

improved prediction accuracy is developed for the community for identifying novel miRNAs

and the complete set of miRNAs. Source code is available at: https://github.com/xueLab/

mirMeta
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Introduction

MicroRNAs (miRNAs) are short non-coding RNA (ncRNA) sequences that are produced

mainly through a two-step proteolytic cleavage from primary miRNAs (pri-miRNAs) [1],

which are transcribed from genome at many types of locations, including genetic loci, intron

regions, intergenic regions, etc. Pri-miRNAs have normally several hundreds of nucleotides

and each forms a structure composed of several stem-loop motifs. One of the stem-loop motifs,

which should have about 70 nucleotides, is cleaved inside nucleus by RNase-III enzyme

Drosha [2]. The product has a two-nucleotide overhang at the 3’-end and is called precursor

miRNA (pre-miRNA). Pre-miRNA is then transported into cytoplasma and is further cleaved

by RNase-III protein Dicer to remove the loop region [3]. The final product is a miRNA:

miRNA duplex about 22 nucleotides long. One of the strands in the duplex is called guide

strand and is able to form base-pairing with mRNA in the presence of RNA-Induced Silencing

Complex (RISC) [4] to regulate the translation of that mRNA by blocking the translation or by

inducing mRNA degradation [5].

MiRNAs form the largest family of gene expression regulators [6]. In human genome, about

2000 miRNAs were reported [7] and these miRNAs were estimated to regulate ~60% of human

genes [8]. Clearly, characterizing the specific regulation between miRNAs and mRNAs is critical

for deciphering various gene expression profiles. The very first step for characterizing the regu-

lation of mRNA by miRNAs is to identify all the miRNAs in a genome. This is not a trivial task.

Although a fair amount of miRNAs have been observed, it is still largely unknown if or not

novel miRNAs could be found. This question becomes even more complicated when taking

into consideration that individual genomes may have significant amount of sequence variations,

such as SNPs [9, 10] and other mutations [11]. Many of these sequence variations in humans

are disease specific [12–16] and may have significant roles in the regulation of disease associated

genes [17–20]. However, it is not completely clear if or not and how these sequence variations

may impact the biogenesis of miRNAs. From a mechanistic point of view, these sequence varia-

tions may have profound influence on the transcription of DNA sequences, the structure of

RNA transcripts, and the interaction between RNA transcripts and other molecules. Conse-

quently, these sequence variations may influence the biogenesis and function of miRNAs [21,

22]. Therefore, to characterize the subtle influences of RNA sequences on the biogenesis of miR-

NAs, high-accuracy predictor is required. Nonetheless, developing high-accuracy methods to

predict miRNAs based on nucleotide sequence is still an open challenge in computational RNA

biology.

To predict miRNAs from large scale transcriptomic data, many computational tools have

been developed using different strategies. The first group of methods were built on sequence

homology and/or conserved stem-loop structures, such as miRscan [23], MiRseeker [24], miR-

Align [25], microHARVESTER [26], miREval [27]. The second group of methods introduced

various modifications or added additional filters to the methods in the first group. Examples

include: integrating sequence profile into homology search [28]; PalGrade combining thermo-

stability analysis [6]; RNAmico applying Support Vector Machine (SVM) as a secondary struc-

ture filter [29]; miRPred using linear genetic programming [30]. Methods in the third group

applied various machine learning techniques on sequential and/or structural features to pre-

dict miRNAs. This group of methods normally achieve higher prediction accuracy. Multiple

machine learning techniques have been used to build predictors of this group, such as support

vector machine used by triplet-SVM [31], MiRFinder (SVM) [32], and miRPara [33]; Bayes

networks adopted by BayesMiRNAFind [34]; random forest in MiPred [35]; and probability

model employed by ProMiR [36]. In all these computational tools, parameters of the tools

need to be optimized in pre-selected datasets. A popular dataset used by many predictors
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contained hundreds of samples [31–38]. However, since the actual number of human miRNAs

in current version of miRBase is reaching ~2000 [7], the relatively small size of the afore-men-

tioned dataset may be a concern for the application of those predictors. It is unclear if the pre-

dictors that have been developed using small training datasets are able to perform similarly

well on large dataset or not. This question is becoming critical in the big-data era. In addition,

many predictors may not have the preferred prediction accuracy that is high enough for direct

applications. Therefore, how to further improve the prediction accuracy becomes another

challenge.

Recently, the authors improved the prediction accuracy of protein intrinsic disorder using

meta-strategy [39, 40]. Meta-strategy (or consensus strategy) is a powerful strategy to improve

prediction accuracy by integrating different individual predictors. Very often, individual pre-

dictors are built using different techniques, input features, infrastructures, and datasets. Con-

sequently, the true positive, false positive, true negative and false negative predictions of

individual predictors are very different. Therefore, integrating these individual predictors is

able to combine their true predictions and to improve the final prediction accuracy [41]. The

meta-strategy has also been successfully applied in many other areas, such as protein fold rec-

ognition [42], protein secondary structure prediction [43, 44], protein interaction [45, 46],

protein subcellular locations [47, 48], post-translational modification [49], promoter predic-

tion [50], nucleosome organization [51], and mass-spectrometry analysis [52]. In addition to

meta-strategy, the authors also demonstrated that preprocessing of input data by shifting

angles improved the prediction accuracy of protein dihedral angles significantly [53]. The

angle-shift transformation changed the distribution of samples in the one-dimensional angular

space and therefore improved the prediction accuracy significantly. This angle-shift technique

is now a standard method in protein dihedral angle prediction [54]. Both of the meta-strategy

and the preprocessing of input features provide nonlinear transformation of the distribution

of samples in the phase space. In terms of non-linear transformation, meta-strategy and pre-

processing of input data are essentially the same as various deep learning techniques [55, 56]

that are becoming more and more appealing in the field of machine leaning.

Methods

Meta strategy

Different predictors may have different true predictions in the same set of samples. Therefore,

integrating different predictors may improve the overall prediction accuracy. This strategy is

known as meta-strategy. In this project, the predictive results of five miRNA predictors:

MiPred [35], MIReNA [38], miRPara [33], ProMiR [36], and triplet-SVM [31], were fed into

an Artificial Neural Network (ANN) as shown in Fig 1 to produce a new prediction. The rea-

sons for choosing these five predictors are as follows: (1) These five predictors are built using

various machine learning techniques that are usually able to generate high-accuracy predic-

tions; (2) These five predictors use different sequential, structural, and physicochemical fea-

tures of RNA sequences as input, and are therefore able to ensure the divergence of true

predictions on the same dataset; and (3) These five predictors have standalone versions. Since

meta-predictor is a combination of individual predictors and there are in total five individual

predictors, any number of individual predictors out of five can be used to compose a meta-pre-

dictor. Therefore, the total number of different types of combinations or the total number of

different meta-predictors is:

Cð5; 2Þ þ Cð5; 3Þ þ Cð5; 4Þ þ Cð5; 5Þ ¼ 26
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Artificial neural networks

As shown in Fig 1, the ANN has three layers: input layer, hidden layer, and output layer. The

number of nodes in the input layer is the same as the number of individual predictors com-

posed in the meta-predictor. In other words, the number of input nodes is two when two indi-

vidual predictors were used to make the meta-predictor. When all the five individual

predictors were used in the meta-predictor, the number of input nodes is five. The number of

nodes in the hidden layer is determined by error and try. Multiple numbers of hidden nodes

ranging from five to sixty were tested in the study. The final optimized meta-predictor mir-

Meta has 20 hidden nodes. The output layer has only one node. Logistic function was used as

the activation function in all the hidden nodes and output node. The final output of ANN is a

real number between 0 and 1. Output values larger than or equal to 0.5 were used to represent

positive predictions, while output values smaller than 0.5 were assigned to negative

predictions.

Preprocessing input features by non-linear transformation

The five individual predictors have two different types of output: binary output and real value

output. MiReNA and triplet-SVM have binary outputs, while MiPred, miRPara, and ProMiR

have numerical outputs. The ranges of the numerical outputs of these three predictors differ

significantly as shown in Table 1. Clearly, all the outputs need to be numericalized and

Fig 1. Infrastructure of the meta-predictor. Query sequence is input into each individual predictor. The

outputs of individual predictors are preprocessed and then fed into an ANN to make a new prediction, which is

the output of meta-predictor. Therefore, the meta-predictor is composed of individual predictors,

preprocessing modules, and ANN. The parameters of ANN will be trained using datasets containing both

positive and negative samples of miRNAs. Although five individual predictors were shown in the figure, the

meta-predictor could be made from any number of individual predictors out of five. The total number of

possible meta-predictors is 26. The final meta-predictor mirMeta contains all five individual predictors.

doi:10.1371/journal.pone.0168392.g001

Table 1. Possible outputs of five individual predictors.

MiPred MIReNA miRPara ProMiR TripletSVM

Positive Prediction 50 ~ 91 Yes 0.8 ~ 1 0.017 ~ 3240 1

Negative Prediction 0 No 0 10e-10 to ~10e-2, 0, NA NA

doi:10.1371/journal.pone.0168392.t001
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normalized before being fed into ANN. This process is called preprocess-I and includes the

following steps: (1) transform all the binary outputs into 1 (positive prediction) or -1 (negative

prediction); (2) normalize the outputs of each real-value predictor into the range (-1, 1). In our

previous studies, non-linear transformation of input feature has been demonstrated to

improve the prediction accuracy significantly [53]. Therefore, a specific transformation called

preprocess-II was designed in the following way by focusing on shuffling the distribution of

ProMiR predictions: (1) transform the outputs of the other four individual predictors except

ProMiR using preprocess-I; (2) transform ProMiR predictions using the following procedure:

(a) assign “-30” to all predictions labeled by “NA”; assign “-25” to all predictions with a numer-

ical value of 0. These numbers were chosen by error and try; (b) calculate the logarithm of all

positive numbers; (c) normalize the data into the range (-1,1). After taking this transformation,

the distribution of outputs of ProMiR prediction was shifted significantly as shown in Fig 2.

After using preprocess-II transformation, all the inputs can be further processed using the

eigenvector matrix obtained from Principal Component Analysis (PCA) of the input data.

This procedure is called preprocess-III and is described as follows: Assume there are N sam-

ples in the dataset and the meta-predictor comprises of M individual predictors (N>M, as we

would expect in almost all the cases). The outputs of N samples from M predictors make an

N�M output matrix. The eigenvector matrix E associated with this N�M output matrix has

M�M dimensions. Each sample in the training dataset has M predictive results Y = (y1, y2,. . .

yM), with each result from an individual predictor. For each sample, the predictive results Y

can then be transformed into Y’ = (y1’, y2’,. . .yM’) using Y’ = Y�E, where E is the eigenvector

Fig 2. Non-linear transformations change the distribution of ProMiR prediction scores of all the samples in the

D1679 dataset. The upper panels show the distribution of raw prediction scores of ProMiR for positive samples (a) and

negative samples (b). The inset in (b) is the distribution of scores for negative samples when x-axis is scaled using

logarithm. The intermediate panels present the distribution of prediction scores after preprocess-I transformation for

positive samples (I-a) and negative samples (I-b). The lower panels are scores after preprocess-II transformation for

positive samples (II-a) and negative samples (II-b).

doi:10.1371/journal.pone.0168392.g002
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matrix. Afterwards, y1’, y2’,. . .yM’ will be fed into ANN to train the predictor or to make meta-

prediction.

Performance evaluation

While individual predictors have either numerical or binary outputs, the meta-predictor has

only numerical output. Therefore, to ensure the consistency of comparison of prediction accu-

racy, the following four measures were used to evaluate the performance of predictors:

Sensitivity ðSENSÞ ¼ TP=ðTP þ FNÞ

Specificity ðSPECÞ ¼ TN=ðTN þ FPÞ

Accuracy ðACCÞ ¼ ðTPþ TNÞ=ðTP þ FPþ FN þ TNÞ

Matthews Correlation Coefficient ðMCCÞ

¼ ðTP� TN � FP� FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p

In above equations, TP, FP, TN, and FN stand for true positive, false positive, true negative,

and false negative rates of a predictor in a dataset, respectively. When optimizing meta-predic-

tors, ACC was monitored to train ANN. However, when comparing the performance of differ-

ent predictors, all four measures were used.

Datasets

An existing dataset of 331 samples that was used by multiple miRNA predictors, such as trip-

let-SVM [31], MiPred [35], and ProMiR [36], was also used in this project. This dataset con-

tains 163 non-redundant miRNA precursors obtained from an earlier version of miRBase [7]

and 168 non-redundant hairpin-like pseudo-miRNA sequences extracted from human CDS

regions. This dataset was named as D163 dataset in this study. The purpose of using the D163

dataset is to provide a common benchmark on which the newly developed meta-predictor can

be compared with other individual predictors.

Another large dataset was developed for this project using the most recent MiRBase [7] and

Rfam [57]. The current version of miRBase is the most prevailing and most comprehensive

database of miRNAs, containing 1881 human miRNA precursors. After removing all the 163

positive samples in the D163 dataset, all the other 1718 precursors were used as positive sam-

ples in the large dataset. Another 2000 step-loop containing sequences with sequence identity

less than 90% were selected randomly from Rfam to compose the negative samples. The RNA

secondary structures of these samples were predicted using RNAfold [58]. All the samples in

the dataset were predicted using five individual predictors. Samples with the same predictions

from all five predictors were treated as “duplicates”. In this case, only one sample in each

group of duplicates was selected randomly to compose the dataset. Finally, the dataset has

1679 real miRNAs and 674 pseudo miRNAs. This dataset was referred to as D1679 dataset.

Validation

The accuracy of meta-predictor was systematically tested using two validation strategies:

multi-fold cross-validation and validation on independent dataset. (1) Multi-fold cross-valida-

tion. When using multi-fold cross-validation, the dataset was divided randomly into multiple

subsets, with roughly the same numbers of both positive and negative samples in each subset.

Then, one subset was taken as the validation subset, another subset was selected as the test
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subset to prevent overfitting, and the rest subset(s) were used as training subset to optimize the

predictor. At the end of each epoch during which all the samples in the training subset were

used to optimize the predictor, the ACC value on the test subset was calculated and monitored.

When the ACC value on the test subset stopped increasing for 100 epochs, the value of ACC

on the validation subset was calculated as the validated accuracy of the meta-predictor. This

process is repeated multiple times until every subset has been used as a validation subset.

Finally, all the ACC values in all validation subsets were averaged to get the validated ACC

under multi-fold cross validation. The number of subsets or the number of folds used in

multi-fold cross-validation is determined by the size of the dataset. The D163 dataset was

divided into three subsets (three-fold cross-validation), while the D1679 dataset was split into

five subsets (five-fold cross-validation). The D1679 dataset was also split into three subsets to

test the difference between three-fold cross validation and five-fold cross validation. As

expected, the difference is negligible. (2) Validation on independent dataset. Since two inde-

pendent datasets (D163 and D1679) were used in this project, predictors trained in one dataset

were also validated using the other dataset as an independent test dataset.

Final meta-predictor

The final version of meta-predictor mirMeta is a five-component predictor. The outputs of

five individual predictors are processed using preprocess-III, which includes numericalization,

normalization, distribution-shift of ProMiR predictions, and PCA transformation of all five

individual predictions. The preprocessed data are then fed into an ANN, which has five input

node, twenty hidden node, and one output node. The final output of mirMeta is a real number

between 0 and 1. Values larger than 0.5 represent positive predictions and values less than 0.5

represent negative predictions.

Results

Performance of individual predictors in various datasets

Table 2 shows four different types of prediction accuracy (SENS, SPEC, ACC, and MCC) of

five individual predictors on both D163 and D1679 datasets. In the D163 dataset, ProMiR

achieved the best overall performance with ACC of 87.9% and MCC of 0.78. The other four

predictors have similar overall performance, with ACCs at around 70% and MCCs at about 0.5

or slightly less. When comparing the values of SENS and SPEC, MiPred has the highest SENS

of 99.4% but the lowest SPEC of 42.9%, ProMiR has the highest SPEC of 99.4% but the second

lowest SENS of 76.1%. The other three predictors also show the similar discrepancy between

the values of SENS and SPEC. MiRPara and triplet-SVM have high SENS of 91% and low

SPEC of 52%, MiReNA has low SENS of 47% but high SPEC of 96%. In the D1679 dataset,

MiPred becomes the top predictor with the highest ACC of 86.0% and the highest MCC of

0.65. These two values present significant increment of 16% and 0.14 compared to the values

of the same predictor in the D163 dataset. The ACC and MCC values of MiReNA, MiRPara,

and ProMiR in the D1679 dataset decrease significantly, compared to their values in the D163

dataset. Triplet-SVM gets similar ACC value but slightly decreased MCC value in the D1679

dataset compared to its values in the D163 dataset. In terms of SENS and SPEC, MiPred still

gets the highest SENS, although the value decreases by ~8% to 91.6% compared to that in the

D163 dataset. ProMiR has the highest SPEC of 99.1%, which is comparable to that in the D163

dataset. The other three predictors also show significantly decreased accuracies on either one

or both of SENS and SPEC values.

Clearly, the prediction accuracies of five individual predictors are dataset dependent. To

further examine the performance of predictors, the true predictions of five individual
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predictors for both positive and negative samples was analyzed in both D163 dataset (Tables 3

and 4) and D1679 dataset (Tables 5 and 6). The numbers in each of the anti-diagonal cells in

the tables represent the number of true predictions (above the slash) and the number of total

samples (below the slash). Clearly, MiPred, MiRPara, and triplet-SVM have higher ratios of

true prediction in positive samples, while MiReNA and ProMiR often have higher ratios of

true prediction in negative samples. In all the non-anti-diagonal cells, the numbers above the

slash specify the amount of true predictions overlapped between two predictors, while the

numbers below the slash indicate the total number of non-redundant true predictions coming

from two predictors. The number of overlapped true predictions indicates the similarity of

two predictors, while the number of total true prediction from two predictors implies the cov-

erage of true predictions of these two predictors in the dataset. For all the positive samples in

the D163 dataset, triplet-SVM has the higher similarity with most of the other predictors. The

next one that is similar to all other predictors is MiRPara, followed by MiPred and ProMiR.

MiReNA has the least similarity with all other predictors. For negative samples in the D163

dataset, only MiReNA and ProMiR present high similarity to each other. In terms of coverage,

all the binary combinations of five individual predictors are able to achieve high coverage for

both positive and negative samples in the D163 dataset. In the D1679 dataset, MiPred, Triplet-

SVM, and MiRPara have higher similarity with other predictors than ProMiR and MIReNA

for positive samples. For negative samples in the D1679 dataset, only three pairs of predictors,

which are MiPred and MiReNA, MiReNA and MiRPara, MiReNA and ProMiR, have over

50% of similarity. Therefore, MiReNA becomes the only predictor that has reasonably high

similarity with all other predictors. In terms of coverage, MiPred has the largest coverage with

any of the other predictors in both positive and negative samples in the D1679 dataset. The

maximal coverage from two individual predictors for positive samples in the D1679 dataset is

1608, which comes from MiPred and MiRPara. The maximal coverage on negative samples in

the same dataset is 664, which is obtained from MiPred and MiReNA. These two coverage

Table 2. Prediction accuracies of five individual predictors in the D163 and D1679 datasets.

D163 D1679

SENS SPEC ACC MCC SENS SPEC ACC MCC

MiPred 99.4% 42.9% 70.7% 0.51 91.6% 72.0% 86.0% 0.65

MIReNA 47.2% 96.4% 72.2% 0.50 46.7% 69.3% 53.2% 0.15

MiRPara 91.4% 51.8% 71.3% 0.47 73.6% 38.6% 63.6% 0.12

ProMiR 76.1% 99.4% 87.9% 0.78 49.4% 99.1% 63.7% 0.46

Triplet-SVM 91.4% 51.8% 71.3% 0.47 84.8% 49.7% 74.8% 0.36

doi:10.1371/journal.pone.0168392.t002

Table 3. Comparison of true predictions between every two individual predictors for all the 163 positive samples in the D163 dataset.

MiPred MIReNA MiRPara ProMiR Triplet-SVM

MiPred (162/163) 77/162 149/162 77/163 149/162

MIReNA --- (77/163) 65/161 60/141 71/155

MiRPara --- --- (149/163) 115/158 137/161

ProMiR --- --- --- (124/163) 118/155

TripSVM --- --- --- --- (149/163)

In each of the diagonal cells, the number above the slash is the number of true positive (TP) of that predictor, while the number below the slash shows total

number of samples. In each of the non-anti-diagonal cells, the number above the slash represents the number of overlapped TP predictions between two

predictors, while the number below the slash is the total number of non-redundant TP prediction of two predictors.

doi:10.1371/journal.pone.0168392.t003
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values stand for 95.8% of SENS and 98.5% of SPEC, or in general 96.6% of ACC in the D1679

dataset. However, the highest SENS, SPEC, and ACC of five individual predictors in the

D1679 dataset as shown in Table 2 are only 91.6%, 72.0%, and 86.0%, respectively. These num-

bers indicate that the combination of these individual predictors may improve prediction

accuracy in the D1679 dataset.

Integration of meta-strategy and simple numericalization transformation

As outlined in Fig 1, meta-strategy was applied to build meta-predictors based on all 26 combi-

nations of five individual predictors. Since these five individual predictors have both numerical

and binary outputs, their outputs were transformed using preprocess-I transformation. The

accuracies (ACCs) of these meta-predictors under multi-fold cross validation in both the D163

and the D1679 datasets were presented in Fig 3. As shown in this figure, the lowest prediction

accuracy of meta-predictors is always higher than the lowest of the individual predictors, and

the highest accuracy of meta-predictors is always higher (or at least not lower) than the highest

of the individual predictors. In addition, adding more component predictors into a meta-pre-

dictor may generally improve the prediction performance of the meta-predictor. These obser-

vations strongly substantiate that the meta-strategy improves the prediction accuracy. By

comparing Fig 3(A) with 3(B), it can also be seen that all the meta-predictors trained in the

D1679 dataset have lower accuracies than the meta-predictors trained in the D163 dataset. The

reason is that the accuracies of individual predictors are normally lower in the D1679 dataset

than in the D163 dataset. The highest accuracy (ACC) of meta-predictors in the D163 dataset

was achieved by a combination of four individual predictors including: MiPred, MIReNA,

miRPara, and ProMiR. The accuracy of this meta-predictor is 96.1±2.2% under three-fold

Table 4. Comparison of true predictions between every two individual predictors for all the 168 negative samples in the D163 dataset.

MiPred MIReNA MiRPara ProMiR Triplet-SVM

MiPred (72/168) 70/164 45/141 72/168 68/158

MIReNA --- (162/168) 87/162 161/168 83/166

MiRPara --- --- (87/168) 87/168 35/139

ProMiR --- --- --- (167/168) 86/168

TripSVM --- --- --- --- (154/168)

In each of the diagonal cells, the number above the slash is the number of true negative (TN) of a predictor, while the number below the slash shows total

number of samples. In each of the non-anti-diagonal cells, the number above the slash represents the number of overlapped TN predictions between two

predictors, while the number below the slash is the total number of non-redundant TN predictions of two predictors.

doi:10.1371/journal.pone.0168392.t004

Table 5. Comparison of true predictions between every two individual predictors for all the 1679 positive samples in the D1679 dataset.

MiPred MIReNA MiRPara ProMiR Triplet-SVM

MiPred (1538/1679) 748/1575 1166/1608 777/1591 1368/1594

MIReNA --- (785/1679) 553/1468 494/1121 743/1466

MiRPara --- --- (1236/1679) 625/1441 1127/1533

ProMiR --- --- --- (830/1679) 782/1472

TripSVM --- --- --- --- (1424/1679)

In each of the diagonal cells, the number above the slash is the number of true positive (TP) predictions of a predictor, while the number below the slash

shows total number of samples. In each of the non-anti-diagonal cells, the number above the slash represents the number of overlapped TP predictions

between two predictors, while the number below the slash is the total number of non-redundant TP predictions of two predictors.

doi:10.1371/journal.pone.0168392.t005
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cross validation in the D163 dataset. This value is about 8% higher than the highest ACC value

in the same dataset achieved by a single predictor, which is 87.9% by ProMiR (Table 2). This

meta-predictor is called Meta-I-4S in the following discussion. Here, “I” stands for preprocess-

I, “4” indicates there are four individual predictors in the meta-predictor, and “S” shows that

the meta-predictor was trained in the D163 dataset. In the D1679 dataset, the highest accuracy

was achieved by the meta-predictor composed of all five individual predictors. The accuracy is

86.6% under five-fold cross-validation in the D1679 dataset. This accuracy is slightly higher

than the highest ACC value of individual predictors in the D1679 dataset, which is 86% by

MiPred (Table 2). This meta-predictor is named after Meta-I-5L, where “I” stands for

Table 6. Comparison of true predictions between every two individual predictors for all the 674 negative samples in the D1679 dataset.

MiPred MIReNA MiRPara ProMiR Triplet-SVM

MiPred (485/674) 288/664 120/625 482/668 171/536

MIReNA --- (467/674) 251/476 462/673 197/492

MiRPara --- --- (260/674) 258/670 137/345

ProMiR --- --- --- (668/674) 221/669

TripSVM --- --- --- --- (222/674)

In each of the diagonal cells, the number above the slash is the number of true negative (TN) predictions of a predictor, while the number below the slash

shows total number of samples. In each of the non-anti-diagonal cells, the number above the slash represents the number of overlapped TN predictions

between two predictors, while the number below the slash is the total number of non-redundant TN predictions of two predictors.

doi:10.1371/journal.pone.0168392.t006

Fig 3. Prediction accuracies of meta-predictors made from various combinations of five individual predictors in the (A) D163 and (B)

D1679 datasets. The input of ANN in the meta-predictor were preprocessed using preprocess-I transformation. X-axis shows the number of

individual predictors in the meta-predictor, while y-axis shows the prediction accuracy (ACC) under three-fold cross validation (A) and five-fold

cross validation (B). In the case that x equals to 1, y-axis shows the prediction accuracies of five individual predictors. The numbers of meta-

predictors composed of 2, 3, 4, and 5 individual predictors are 10, 10, 5, and 1, respectively.

doi:10.1371/journal.pone.0168392.g003
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preprocess-I, “5” indicates the meta-predictor has five individual predictors, and “L” denotes

that the predictor has been trained in the D1679 dataset. Three-fold cross validation was also

applied to all the meta-predictors trained in the D1679 dataset. However, the differences from

the results in the five-fold cross validation are neglectible.

In addition to the ACC values under multi-fold cross-validation, the other three types of

accuracy for Meta-I-4S and Meta-I-5L under multi-fold cross-validation, as well as the accura-

cies of Meta-I-4S and Meta-I-5L in the independent dataset were tested and presented in

Table 7. For Meta-I-4S, the accuracies under three-fold cross validation in the D163 dataset

have been significantly improved over the accuracies of ProMiR, which is the top predictor in

the D163 dataset. The values of SENS, SPEC, ACC, and MCC for Meta-I-4S are 93.3%, 98.8%,

96.1%, and 0.92, with increments of 17%, -1%, 8%, and 0.14 over the corresponding values of

ProMiR. When comparing different types of accuracies of Meta-I-4S to the highest values of

individual predictors that are shown in Table 2, Meta-I-4S still has considerable advantages.

Although it is 6% behind MiPred in SENS and 1% lower than the SPEC of ProMiR, Meta-I-4S

has 55% higher SPEC than MiPred and 17% higher SENS than ProMiR. In addition, Meta-I-

4S is 8% and 25% higher in ACC than the values of ProMiR and MiPred, and has increments

of 0.14 and 0.41 in MCC compared to that of ProMiR and MiPred. In terms of accuracies in

independent dataset, the performance of Meta-I-4S in the D1679 dataset decreased consider-

ably compared to the values under three-fold cross validation in the D163 dataset with decre-

ments of 5%, 6%, 7%, and 0.16 for SENS, SPEC, ACC, and MCC, respectively. Even though,

the accuracies of Meta-I-4S in the D1679 dataset are still in general higher than the accuracies

of MiPred that has achieved the best prediction accuracy in the D1679 dataset, by -3%, 20%,

10%, and 0.27 for SENS, SPEC, ACC, and MCC, accordingly. For Meta-I-5L, the accuracies

under five-fold cross validation in the D1679 dataset are 79%, 94%, 87%, and 0.74, for SENS,

SPEC, ACC, and MCC, respectively. These values are lower than the accuracies of Meta-I-4S

under three-fold cross validation in the D163 dataset. In addition, the accuracies of Meta-I-5L

in D1679 under five-fold cross validation are also lower than those of Meta-I-4S in the D1679

dataset as an independent test. Nonetheless, the performance of Meta-I-5L in the independent

test dataset D163 is comparable to the accuracies of Meta-I-4S under three-fold cross valida-

tion in the D163 dataset. In brief, although the performances of meta-predictors vary a lot, the

meta-predictors achieve better balance between SENS and SPEC, improve the overall predic-

tion accuracy, and reduce the dependence on dataset.

Table 7. Performance of meta-predictors using preprocess-I transformation under multi-fold cross validation and in independent dataset.

Predictor Dataset SENS SPEC ACC MCC

Meta-I-4S D163* 93.3 ± 2.8% 98.8 ± 1.6% 96.1 ± 2.2% 0.92 ± 0.04

D1679** 88.1 ± 2.4% 92.9 ± 0.1% 89.5 ± 1.7% 0.76 ± 0.03

Meta-I-5L D1679* 79.4 ± 4.4% 94.0 ± 1.3% 86.6 ± 1.6% 0.74 ± 0.03

D163** 98.9 ± 0.4% 93.2 ± 3.3% 96.0 ± 1.4% 0.92 ± 0.03

(*) Meta-I-4S is composed of four individual predictors: MiPred, miReNA, MiRPara, and ProMiR. The predictor was optimized in the D163 dataset using

three-fold cross validation; Meta-I-5L is composed of five individual predictors: MiPred, miReNA, MiRPara, ProMiR, and TripSVM. It was trained in the

D1679 dataset using five-fold cross validation.

(**) The performance of these two predictors in independent dataset, which was D1679 for Meta-I-4S and D163 for Meta-I-5L, was averaged over three- or

five-iterations of prediction that correspond to three- or five-fold cross validation. Errors were standard errors calculated from either three- or five-iterations

of prediction.

doi:10.1371/journal.pone.0168392.t007
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Integration of meta-strategy and distribution-shift transformation

To further improve the accuracies of meta-predictors, preprocess-II transformation was

applied on the input of meta-predictors. This time, a meta-predictor composed of MiPred and

ProMiR achieved the highest accuracy in the D163 dataset under three-fold cross validation,

and another meta-predictor made of all five individual predictors achieved the highest accu-

racy under five-fold cross validation in the D1679 dataset. These two meta-predictors were

called Meta-II-2S and Meta-II-5L, respectively. These two meta-predictors were also tested in

independent dataset as well. The results for the accuracies of these two predictors under multi-

fold cross validation and in independent dataset were shown in Table 8. When comparing the

results of Table 8 to that in Table 7, it can be seen that the application of preprocess-II transfor-

mation has improved the accuracies of meta-predictors under multi-fold cross validation by at

least 2–3%. The SENS, SPEC, ACC, and MCC values of Meta-II-2S in the D163 dataset under

three-fold cross validation are 96%, 100%, 98%, and 0.96, with increments of 3%, 1%, 2%, and

0.04 over the accuries of Meta-I-4S in the same dataset under three-fold cross validation. How-

ever, in the independent dataset D1679, the performance of Meta-II-2S decreases obviously

compared to the performance of Meta-I-4S in the D1679 dataset. The decrements are 14%,

-2%, 10%, and 0.14 for SENS, SPEC, ACC, and MCC, accordingly. In terms of Meta-II-5L, the

SENS, SPEC, ACC, and MCC values under five-fold cross-validation in the D1679 dataset are

increased by 3%, 1%, 2%, and 0.04, compared to the values of Meta-I-5L under five-fold cross

validation in the same dataset. When using the D163 dataset as an independent dataset, the

performance of Meta-II-5L is about 1~2% lower than Meta-I-5L in the D163 dataset. By com-

paring to the accuracies of individual predictors in Table 2, the advantages of the combination

of meta-strategy and preprocess-II transformation becomes obvious. Meta-II-2S exceeds all

the individual predictors in the D163 dataset in almost all types of accuracy. The only excep-

tion is the SENS of Meta-II-2S, which is 96% and is 3% lower than that of MiPred. However,

the other types of accuracy of MiPred are much lower than those of Meta-II-2S. In the D1679

dataset when performing the independent test, Meta-II-2S is still comparable to MiPred, the

best individual predictor that has achieved the highest prediction accuracy in the D1679 data-

set. For Meta-II-5L, the advantages over individual predictors are more evident. The ACC and

MCC values of Meta-II-5L under five-fold cross validation in the D1679 dataset are 88.7% and

0.78, which are about 2% and 0.13 higher than those of MiPred in the same dataset. The SENS

of Meta-II-5L in the D1679 dataset under five-fold cross validation is 9% lower than that of

MiPred, but the SPEC of Meta-II-5L is 23% higher than that of MiPred. In the D163 dataset

Table 8. Performance of meta-predictors under multi-fold cross validation and in independent dataset under preprocess-II transformation

strategy.

Predictor Dataset SENS SPEC ACC MCC

Meta-II-2S D163* 96.3 ± 1.2% 1.0 ± 0.0% 98.2 ± 0.6% 0.96 ± 0.01

D1679** 73.8 ± 4.5% 94.6 ± 1.0% 79.8 ± 2.9% 0.62 ± 0.04

Meta-II-5L D1679* 82.5 ± 1.9% 95.0 ± 1.7% 88.7 ± 0.6% 0.78 ± 0.01

D163** 99.4 ± 0.0% 90.5 ± 0.6% 94.9 ± 0.3% 0.90 ± 0.01

(*) Meta-II-2S is composed of MiPred and ProMiR. The predictor was optimized in the D163 dataset using three-fold cross validation; Meta-II-5L is

composed of all the five individual predictors including: MiPred, miReNA, MiRPara, ProMiR, and TripSVM. It was trained in the D1679 dataset using five-

fold cross validation.

(**) The performance of these two predictors in independent dataset, which was D1679 for Meta-II-2S and D163 for Meta-II-5L, was averaged over three-

or five-iterations of prediction that correspond to three- or five-fold cross validation. Errors were standard errors calculated from either three- or five-

iterations of prediction.

doi:10.1371/journal.pone.0168392.t008
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during independent test, the accuracies of Meta-II-5L are systematically higher than the num-

bers of individual predictors in the same dataset. The SENS of Meta-II-5L is the same as

MiPred, and the SPEC, ACC, and MCC values of Meta-II-5L are higher than those of MiPred

by 47%, 24%, and 0.39 in the D163 dataset. When comparing with ProMiR in the D163 data-

set, Meta-II-5L’s SPEC is lower by 9%, but the SENS, ACC, and MCC values of Meta-II-5L are

higher by 23%, 7%, and 0.12, respectively. Therefore, a large training dataset is also helpful in

improving the prediction accuracy of meta-predictors.

Integration of meta-strategy, distribution-shift transformation, and PCA

transformation

Preprocess-III transformation was then incorporated in the meta-predictors. The selected

meta-predictors with the highest accuracies under multi-fold cross-validation in the D163 and

D1679 datasets are Meta-III-5S and Meta-III-5L, respectively. Their accuracies were compared

in Table 9. For Meta-III-5S, the accuracies under three-fold cross validation in the D163 data-

set are slightly lower than those of Meta-II-2S in the D163 dataset, but are essentially the same

as those of Meta-I-4S in the D163 dataset (Table 7). In addition, the performance of Meta-III-

5S in the D1679 dataset as an independent test is slightly lower than those of Meta-I-4S in the

D1679 dataset, and is generally better than that of Meta-II-2S in the D1679 dataset. For Meta-

III-5L, the SENS, SPEC, ACC, and MCC values under five-fold cross validation in the D1679

dataset are 89%, 98%, 93%, and 0.87, which are improved by 7%, 2%, 5%, and 0.09 compared

to the accuracies of Meta-II-5L in the D1679 dataset (Table 8). In the independent test dataset

D163, the accuracies of Meta-III-5L are the same as those of Meta-II-5L in the D163 dataset

and are comparable to those of Meta-I-4S in the D163 dataset. When comparing to individual

predictors, both Meta-III-5S and Meta-III-5L demonstrate significantly improved perfor-

mance compared to individual predictors. When comparing Meta-III-5S to Meta-III-5L, it is

clear that the ACC values of Meta-III-5L are higher and more consistent in different datasets

than those of Meta-III-5S.

Comparison with existing predictor

The infrastructure of Meta-III-5L was used to build the final meta-predictor mirMeta. The

performance of mirMeta was compared with HeteroMirPred, which is another well-designed

meta-predictor and the only existing meta-predictor for miRNA to the best of our knowledge.

The biggest differences between mirMeta and HeteroMirPred in terms of overall strategy are:

Table 9. Performance of meta-predictors under multi-fold cross validation and in independent dataset under preprocess-III transformation

strategy.

Predictor Dataset SENS SPEC ACC MCC

Meta-III-5S D163* 93.1 ± 2.1% 1.0 ± 0.0% 96.6 ± 1.0% 0.93 ± 0.02

D1679** 91.4 ± 0.1% 83.7 ± 0.1% 89.2 ± 0.1% 0.74 ± 0.00

Meta-III-5L D1679* 89.1 ± 3.2% 97.7 ± 0.4% 93.4 ± 1.7% 0.87 ± 0.03

D163** 99.4 ± 0.0% 90.1 ± 0.1% 94.7 ± 0.7% 0.90 ± 0.01

(*) Meta-III-5S and Meta-III-5L are composed of five individual predictors, which are: MiPred, miReNA, MiRPara, ProMiR, and TripSVM. Meta-III-5S was

optimized in the D163 dataset using three-fold cross validation, while Meta-III-5L was trained in the D1679 dataset using five-fold cross validation.

(**) The performance of these two predictors in independent dataset, which was D1679 for Meta-III-5S and D163 for Meta-III-5L, was averaged over three-

or five-iterations of prediction that correspond to three- or five-fold cross validation. Errors were standard errors calculated from either three- or five-

iterations of prediction. Meta-III-5L has the best overall performance, and is therefore used as the final meta-predictor mirMeta.

doi:10.1371/journal.pone.0168392.t009
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(1) mirMeta used ANN to combine the predictive results of individual predictors. As a com-

parison, HeteroMirPred used majority-voting; (2) the predictive results of individual predic-

tors were preprocessed by various non-linear transformations before being fed into ANN. In

HeteroMirPred, the results of individual predictors were used directly for the next step. Due to

these differences, mirMeta outperformed HeteroMirPred in multiple aspects as shown in

Table 10. In small dataset D163, the SPEC, ACC, and MCC values of mirMeta are lower than

those of HeteroMirPred by small numbers, although the SENS value of mirMeta is still higher

than that of HeteroMirPred. In large dataset D1679, the performance of mirMeta is clearly

much better that that of HeteroMirPred.

Discussion

With the fast development of RNAseq techniques in recent years, identifying functional non-

coding RNAs becomes more and more critical for biological and biomedical studies. MiRNAs,

being the largest category of gene expression regulators, have been given more and more atten-

tions. In this field, although more than 2,000 miRNAs have been validated in human, it is still

not clear if or not novel human miRNAs can be discovered. From a mechanistic point of view,

the biogenesis of miRNAs is determined by the sequential and structural features of the pre-

cursor miRNAs. Therefore, SNPs and other mutations on the precursor miRNAs may influ-

ence the production of miRNAs. Since SNPs and mutations are prevalent and may vary

among individuals, tissues, and diseases, identifying novel miRNAs becomes possible and crit-

ical. From the systematical point of view, identifying the complete set of miRNAs that are spe-

cific to a certain condition is even more critical. However, state of the art miRNA predictors

may not be able to perform well for this specific objective due to issues in their training process

and in their performances.

Computational predictors are optimized using specific training datasets. Therefore, the per-

formances of the same predictor in different datasets may be different as shown in Table 2.

This is the dataset dependence of predictors. Many state of the art miRNA predictors were

optimized using small training dataset of several hundreds of samples. Therefore, the perfor-

mance of these predictors in large dataset becomes a concern. In addition, the computational

predictors are often designed using different computational strategies and input features. Con-

sequently, different predictors may have very different prediction accuracies on the same data-

set. Moreover, these predictors may be optimized for high sensitivity or high specificity as

shown in Table 2, in which the values of SENS, SPEC, ACC, and MCC for MiPred, MiReNA,

MiRPara, ProMiR, and Triplet-SVM in the D163 and D1679 datasets change significantly.

These issues are critical for not only miRNA predictors, but also all other computational tools

based on supervised training. Therefore, how to improve the robustness of prediction accuracy

of predictors in different datasets, to improve the balance between SENS and SPEC, and to

Table 10. Comparison between mirMeta and HetroMirPred.

Predictor Dataset SENS SPEC ACC MCC

mirMeta D1679(a) 89.1 ± 3.2% 97.7 ± 0.4% 93.4 ± 1.7% 0.87 ± 0.03

D163(b) 99.4% 90.1% 94.7% 0.90

HeteroMirPred D1679(b) 78.1% 52.5% 69.6% 0.29

D163(b) 98.7% 96.6% 97.6% 0.95

(a) The accuracies of mirMeta in D1679 were obtained from five-fold cross-validation. The values are the same as those in Table 9.
(b) The accuracy were calculated using D163 dataset as an independent dataset.

doi:10.1371/journal.pone.0168392.t010
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further improve the prediction accuracy become very critical in the field of computational

biology.

By analyzing the true predictions in both positive and negative samples between every two

individual miRNA predictors, it was found that some pairs of predictors have high overlap of

true predictions in the same set of samples. The high level of overlap between two predictors

suggests that these two predictors are similar to each other in terms of the output of prediction.

When comparing total number of non-redundant true predictions generated by each pair of

predictors, some pairs of individual predictors showed higher numbers of non-redundant true

predictions in the positive samples, negative samples, or both of them. The total number of

non-redundant true predictions from a pair of predictors provides a measure of the coverage

of true predictions in a specific dataset. This coverage specifies theoretically the highest predic-

tion accuracy that can be achieved by using both of the predictors simultaneously. As shown

by the data in Tables 3–6, the highest values of coverage in different datasets are much higher

than the highest prediction accuracy of individual predictors in that dataset. Therefore, com-

bining different predictors to get better prediction becomes a natural choice. This strategy has

been well known as meta-strategy, and the predictor developed using this strategy is called

meta-predictor. In this project, ANN was used to integrate different individual predictors, the

parameters of ANN were optimized in large datasets, and the performances of meta-predictors

were evaluated using multi-fold cross validation and using independent dataset. The results

have demonstrated that meta-predictors exceed individual predictors in the following three

aspects: (1) Meta-predictor is able to achieve higher prediction accuracy; (2) Meta-predictor

has much better balanced values between SENS and SPEC; (3) The accuracy of meta-predictor

is more dataset-independent compared to individual predictors; and (4) Meta-predictor

trained in large dataset is normally more dataset-independent and therefore is able to provide

more reliable predictions.

The meta-predictors take the output of individual predictors as input. The predictive results

of different individual predictors in the same set of samples may have different distributions.

As being observed in previous projects, the distribution may influence the prediction accuracy

of meta-predictor. To evaluate the influence, we designed three different transformations

named after preprocess-I, II, and III. Basically, preprocess-I is a binary-numerical transforma-

tion, preprocess-II incorporates nonlinear transformation to change the distribution of out-

puts of individual predictors, preprocess-III integrates principal component analysis into the

transformation based on the outcome of preprocess-II. These transformations have significant

influence on the prediction accuracy of meta-predictors. As shown by the data in Tables 7–9,

the combination of meta-strategy and preprocess-I barely improves the prediction accuracy in

terms of ACC value. However, replacing preprocess-I by preprocess-II in the meta-predictor is

able to improve the prediction accuracy by ~3%. Furthermore, integrating meta-strategy and

preprocess-III increases the prediction accuracy to 93%, which represents an increment of 7%

compared to the highest accuracy of individual predictors.
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