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Abstract: Analysis of the Framingham data has shown that the risk of heart failure is increased substantially among dia-

betic patients, while persons with the metabolic syndrome have an increased risk of both atherosclerosis and diabetes mel-

litus. Sleep apnea may be related to the metabolic syndrome and systemic inflammation through hypoxia, which might 

also cause the cardiac remodeling by increased oxidative stress. On the other hand, the renin-angiotensin system is acti-

vated in diabetes, and local angiotensin II production may lead to oxidative damage via the angiotensin II type 1 receptor. 

Basic and clinical data indicate that angiotensin II receptor blockers have the potential to preserve left ventricular function

and prevent cardiac remodeling that is exaggerated by oxidative stress in patients with diabetes. Thus, alleviation of oxi-

dative stress might be one possible strategy in the treatment of diabetic patients associated with sleep apnea. 
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INTRODUCTION  

Diabetes mellitus is a leading cause of morbidity and 
mortality because of its vascular complications [1,2]. Al-
though type 1 diabetes is an important clinical problem with 
numerous long-term complications [3], the vast majority of 
diabetic patients with vascular complications have type 2 
diabetes [4,5]. Diabetes mellitus currently affects 171 million 
persons worldwide, and there are predicted to be 366 million 
diabetic patients by the year 2030. In fact, the prevalence of 
type 2 diabetes is projected to double, especially in develop-
ing countries [6]. 

 The most common cause of death among patients with 
diabetes is atherosclerotic cardiovascular disease. Current 
theories suggest that the initial event in atherogenesis is en-
dothelial cell dysfunction, which can be induced by various 
insults, including diabetes, hyperlipidemia, hypertension, and 
smoking [7-10]. It has been suggested that hyperglycemia, 
hyperinsulinemia and insulin resistance, glycation of pro-
teins, oxidative stress, inflammation, and many other factors 
may be related to atherogenesis in diabetes [11].  

 Recently, obstructive sleep apnea syndrome (OSAS), 
which is often found in obese people, has been identified as 
an independent risk factor for cardiovascular disease [12,13]. 
We have reported that intermittent hypoxia increases oxida-
tive stress and induces left ventricular remodeling in an ex-
perimental model of sleep apnea [14]. The present review 
focuses on the role of oxidative stress in diabetes mellitus 
and its regulation from the viewpoint of cardioprotection. 

OXIDATIVE STRESS AND CARDIOVASCULAR 
DISEASE IN DIABETES  

Increased Oxidative Stress in Diabetics 

 Hyperglycemia seems to promote an imbalance between 
the generation and elimination of reactive oxygen species  
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(ROS). Oxidative stress in diabetes could arise from a vari-
ety of mechanisms, such as excessive production of ROS 
from the auto-oxidation of glucose, glycation of proteins, 
and glycation of antioxidant enzymes (limiting their capacity 
to detoxify ROS). These changes could result in damage to 
cellular organelles and membranes, which may lead to dia-
betic complications [15].  

 Hyperglycemia is a key clinical manifestation of diabetes 
mellitus, and it stimulates several pathways. The polyol 
pathway is one of the pathways by which ROS increase in 
hyperglycemia: it involves conversion of glucose to sorbitol 
by aldose reductase and consumes NADPH, which acts as a 
coenzyme in the production of reduced glutathione, with the 
resulting depletion of NADPH causing an increase of oxida-
tive stress through inadequate catalysis of H2O2 [16]. Also, 
increased conversion of sorbitol to fructose by sorbitol dehy-
drogenase leads to an increase of diacylglycerol (DAG), and 
activates protein kinase C (PKC), which might in turn induce 
the activation of NADPH oxidase and increase oxidative 
stress by decreasing the NAD+/NADH ratio [17].  

 Increased production of fructose, the end production of 
the polyol pathway, leads to an increase of advanced glyca-
tion end-products (AGEs), and ROS might also be produced 
during the creation of AGEs [18]. AGEs could generate ROS 
directly or via the receptors for AGEs (RAGE) [19,20]. In 
addition, AGEs promote the migration, proliferation, and 
differentiation of smooth muscle cells, the production of 
several cytokines, induction of adhesion molecule expres-
sion, and production of extracellular matrix (ECM) through 
RAGE or the scavenger receptor.  

 Recently, it has been shown that vascular smooth muscle 
cells and endothelial cells can produce ROS through activa-
tion of NADPH oxidase, which seems to be the most impor-
tant source of ROS in intact arteries rather than enzymes 
involved with arachidonic acid (xanthine oxidase) or release 
from mitochondrial sources [21,22]. Inoguchi et al. [23] have 
shown that a high glucose level stimulates ROS production 
through activation of PKC-dependent NADPH oxidase in 
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both vascular smooth muscle cells and endothelial cells, and 
they have also shown that the increase of ROS production by 
high glucose is completely reversed by diphenylene io-
donium, an NADPH oxidase inhibitor. The increase of free 
radical production by exposure to high glucose was also 
completely blocked by a specific PKC inhibitor, suggesting 
that there was PKC-dependent activation of NADPH oxi-
dase. On the other hand, Nishikawa et al. [24] reported that 
normalizing mitochondrial superoxide production blocks 
glucose-induced activation of PKC, increases the formation 
of AGEs, and promotes the polyol pathway. Thus, oxidative 
stress is increased in patients with diabetes mellitus through 
many pathways, and which of these should become the 
therapeutic target remains controversial. 

Vascular Damage by Oxidative Stress 

 Oxidative stress in diabetics induces thrombogenesis, 
endothelial dysfunction, and vascular inflammation [25]. 
Nitric oxide (NO) has an important role in protecting the 
vasculature against atherosclerosis, and endothelial NO syn-
thase (eNOS) is responsible for most vascular NO produc-
tion. Superoxide reacts with vascular NO to form peroxyni-
trite, and the cofactor tetrahydro-L-biopterin (BH4) is highly 
sensitive to oxidation by peroxynitrite. A decrease of the 
BH4 level promotes superoxide production by eNOS [26]. 
Both mechanisms lead to the loss of NO bioactivity, which 
might induce endothelial dysfunction and atherosclerosis 
[27].  

 ROS are reported to induce the expression of various 
growth-related genes, including c-fos, c-myc, and c-jun [28-
30]. Furthermore, ROS production via NADPH oxidase has 
been implicated in the pathogenesis of angiotensin II-
induced hypertension and vascular smooth muscle hypertro-
phy.  

 In endothelial cells, cytokine-induced expression of vas-
cular cell adhesion molecule-1 (VCAM-1) has been reported 
to involve mobilization of nuclear factor-kappa B (NF- B) 
through ROS and can be blocked by an antioxidant. Expres-
sion of VCAM-1 promotes the adhesion of monocytes to 
endothelial cells and may be important in the development of 
atherosclerosis. These findings suggest that an increase of 
ROS production via NADPH oxidase in vascular cells may 
contribute to the acceleration atherosclerosis in patients with 
diabetes.  

Myocardial Damage by Oxidative Stress 

 Oxidative stress related to hyperglycemia has been impli-
cated as a major factor in the pathogenesis of cardiac hyper-
trophy and diabetic cardiomyopathy [15], which is not ac-
companied by either hypertension or coronary artery disease 
[31]. Diabetes is a well-known risk factor for the develop-
ment of heart failure. Indeed, the Framingham Heart Study 
showed that the frequency of heart failure is twice as high in 
diabetic men and five times as high in diabetic women com-
pared with age-matched control subjects [32]. Gonzalez-
Vlilchez et al. [33] reported that diabetics developed concen-
tric left ventricular hypertrophy and with impaired systolic 
and diastolic function. Diabetic cardiomyopathy is a major 
reason for the high morbidity and mortality of diabetics. Fac-
tors that are involved in the development of diabetic cardio-

myopathy include impaired calcium homeostasis, upregula-
tion of the renin-angiotensin system (RAS), increased oxida-
tive stress, altered substrate metabolism, and mitochondrial 
dysfunction [31]. Several groups have shown that overpro-
duction of ROS occurs in both type 1 and type 2 diabetes 
[31].  

 Recently, it was suggested that myocardial dysfunction 
may play an important role in the pathogenesis of impaired 
cardiac contractility in diabetics [34]. Boudina et al. [35] 
reported that decreased mitochondrial respiration and re-
duced expression of proteins involved in oxidative phos-
phorylation were observed in obese type 2 diabetic mice, and 
stated that such changes might contribute to cardiac dysfunc-
tion via reduced ATP production. Under physiological con-
ditions, most of the ROS generated within a cell come from 
the mitochondria. Increased mitochondrial generation of 
ROS has been demonstrated in various tissues exposed to 
hyperglycemia [36]. Nitration of mitochondrial proteins (an 
index of oxidative damage) is increased in the hearts of dia-
betic mice [37]. Because mitochondrial hydrogen peroxide 
production is increased and glutathione levels are reduced in 
diabetic hearts, the source of ROS has been suggested to be 
the mitochondria [38]. Non-mitochondrial sources of ROS, 
including increased AGE formation, increased PKC isoform 
expression, and increased hexosamine pathway flux, have 
also been suggested to play a role in the diabetic heart [39]. 
Increased ROS generation activates maladaptive signaling 
pathways, which might lead to cell death and thus contribute 
to the development of diabetic cardiomyopathy.  

 Increased ROS generation activates maladaptive signal-
ing pathways, which might lead to cell death and thus con-
tribute to the development of diabetic cardiomyopathy. An 
increase of apoptosis, an increase of DNA damage, and re-
duced activity of the DNA repair pathway have been re-
ported in diabetic animals [40]. ROS activate NF- B, which 
plays a crucial role in mediating the immune and inflamma-
tory responses, as well as apoptosis. The c-jun NH(2)-
terminal kinases (JNK) and p38 MAPKs, which are members 
of the complex superfamily of MAP serine/threonine protein 
kinases, are stimulated by ROS. The pathways mediated by 
NF- B, JNK, and p38 MAPK are potential stress-signaling 
systems that could have a role in the late complications of 
diabetes [39].  

SLEEP APNEA SYNDROME AND DIABETES  

 Obstructive sleep apnea syndrome (OSAS) is character-
ized by recurrent episodes of upper airway obstruction during 
sleep that induce hypoxia. Coughlin et al. [41] reported that 
OSAS was closely associated with an increased prevalence 
of metabolic syndrome. Metabolic syndrome is a cluster of 
risk factors for atherosclerotic cardiovascular disease, and 
this syndrome contributes to the development of diabetes 
mellitus [2]. In addition, we previously reported that con-
tinuous exposure to hypoxia causes the acceleration of myo-
cardial degeneration in diabetic rats [42] (Figs. 1 and 2). 
These findings suggest that a strong relationship may exist 
between OSAS and diabetes.  

 OSAS patients have significantly higher fasting blood 
glucose and insulin levels compared with obese controls 
[43]. Polotsky et al. [44] have shown that intermittent hy-
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poxia due to OSAS exacerbates insulin resistance and glu-
cose intolerance associated with obesity in the presence of 
leptin deficiency. On the other hand, several studies have 
demonstrated that OSAS is associated with insulin resistance 
and glucose intolerance independently of obesity [45-47]. 
Intermittent hypoxia due to OSAS rather than obesity might 
play an important role in the development of diabetes by 
inducing insulin resistance and glucose intolerance. Patients 
with OSAS have elevated plasma levels of TNF-  and IL-6 
[48,49], and such inflammatory cytokines may be responsi-
ble for the development of diabetes. In particular, TNF-  has 
been reported to inhibit insulin signaling [50,51]. Therefore, 

TNF-  is likely to be crucial for the pathogenesis of diabetes
in patients with OSAS. Further studies are needed to better 
clarify the role of inflammatory cytokines in both OSAS and 
diabetes. 

HYPOXIA AND REACTIVE OXYGEN SPECIES  

 The hyperglycemic state contributes to cardiovascular 
complications in patients with OSAS. Intermittent hypoxia 
due to OSAS is known to be an independent risk factor for 
cardiovascular disease, including hypertension, congestive 
heart failure, and stroke [52]. We previously reported that 
hypoxia induced LV remodeling in diabetic rats and athero-

Fig. (1). Representative macrographs (A, B) and light micrographs (C, D) of hearts from the diabetic rats. The diabetic rats kept under nor-

moxia exhibited nearly normal morphology (A, C). Hypoxia caused cardiac hypertrophy, disarrangement of myofibers, and increased inter-

stitial fibrosis (B, D). original magnification; x 100. 

Fig. (2). Electron micrographs of the left ventricular (LV) myocardium in diabetic rats. In diabetic rats kept under normoxia, mild deformity 

of mitochondria was observed. Hypoxia induced ballooning and loss of cristae in many mitochondria (arrows). Treatment with angiotensin-II 

receptor blocker (ARB) preserved the fine structure of the LV myocardium. Reproduced from Inamoto S, Hayashi T, Tazawa N, et al. An-

giotensin-II receptor blocker exerts cardioprotection in diabetic rats exposed to hypoxia. Circ J 2006; 70: 787-792. 
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genic mice [42, 53]. In addition, hypoxia accelerates the pro-
gression of atherosclerosis in atherogenic mice [54].

 Overproduction of ROS causes oxidative stress, and has 
been implicated in the pathophysiology of cardiovascular 
disease. Recent studies have revealed that intermittent hy-
poxia increases ROS production [55], lipid peroxidation, and 
isoprostane levels [56] in the brains of experimental animals. 
In addition, Chen et al. [57] demonstrated an increase of 
oxidative stress in the hearts of rats exposed to intermittent 
hypoxia. These results suggest that oxidative stress may play 
a crucial role in the development of cardiovascular disease 
among patients with OSAS.  

 NADPH oxidase is a major producer of ROS. This en-
zyme is composed of two membrane-bound subunits (gp91 
phox and p22phox), as well as four cytosolic subunits 
(p40phox, p47phox, p67phox, and rac-1). Both angiotensin II 
and inflammatory cytokines have already been shown to 
stimulate NADPH oxidase, while hypoxic stress may be 
similarly important for its activation. In fact, Zhan et al. [58] 
reported that NADPH oxidase-derived ROS contribute to 
oxidative injury in the brains of mice exposed to intermittent 
hypoxia. Moreover, we have shown that hypoxia increases 
ROS production by NADPH oxidase in the aorta and LV 
myocardium, and consequently accelerates both atheroscle-
rosis and LV remodeling [53,54]. Thus, intermittent hypoxia 
might enhance oxidative stress at least partly through activa-
tion of NADPH oxidase. Oxidative stress is also responsible 
for the activation of NF- B [59,60], which regulates the ex-
pression of inflammatory cytokines and mediates monocyte-
endothelial cell adhesion. We observed that hypoxia acti-
vates NF- B in the LV myocardium of atherogenic mice 
[53]. This raises the possibility that NF- B is an essential 
factor for the development of cardiovascular disease associ-
ated with hypoxic states. Taken together, these findings sug-
gest that cardiovascular disease might be promoted by oxida-
tive stress related to intermittent hypoxia (Fig. 3). In addi-
tion, NADPH oxidase might be a useful target for therapeu-
tic intervention to prevent cardiovascular disease in patients 
with OSAS.

NOVEL THERAPEUTIC STRATEGIES FOR OXIDA-

TIVE STRESS  

 Oxidative stress has now been proved to play an impor-
tant role in the development and progression of myocardial 
remodeling in patients with diabetes [61-63] (Fig. 3). There 
is a growing body of evidence suggesting that antioxidants 
exert a protective effect in experimental model of heart fail-
ure [63-65]. Studies on myocardial ischemia-reperfusion 
injury have demonstrated the potential therapeutic value of 
radical scavengers, antioxidant extracts from a variety of 
plants, and polyphenols from food and wine, as well as vita-
min E, vitamin C, and beta-carotene [66-69].  

 Haidara et al. [63] reviewed this area and concluded that 
administration of antioxidants might have a cardioprotective 
effect in the experimental setting and might protect against 
endothelial dysfunction associated with atherosclerosis, thus 
providing an effective means of reducing cardiovascular 
complications in diabetics.  

 In the clinical trials performed so far, however, the effi-
cacy of treatment with antioxidants has been variable, proba-
bly due to inadequate doses and incorrect protocols, so these 
agents might still be promising [70-73]. Achieving the same 
beneficial outcome in the clinical setting might require a 
different approach that targets more specific intracellular 
pathways, in addition to the scavenging of excess oxygen 
radicals.  

 It has been shown that intensified multifactorial interven-
tion with tight glucose regulation, renin-angiotensin system 
blockers, aspirin, and lipid-lowering agents can reduce the 
risk of nonfatal cardiovascular disease in patients with type 2 
diabetes [74-76]. Recently, Gæde et al. [77] reported that 
intensive intervention with multiple drugs and behavior 
modification had a sustained beneficial effect on vascular 
complications, as well as reducing the all cause death rate 
and the cardiovascular death rate. Thus, it is obvious that 
more research is required to evaluate the efficacy of antioxi-
dants in patients with diabetes. 

Fig. (3). Role of oxidative stress in the progression of cardiovascular diseases accompanied by diabetes mellitus. Diabetes mellitus induced 

oxidative stress at least partly through NADPH oxidase activation, and consequently accelerated the progression of cardiovascular diseases. 

In addition, hypoxia might be implicated in the development of diabetes mellitus and production of reactive oxygen species (ROS), associ-

ated with the insult to mitochondria in cardiomyocytes by hypoxia itself. 
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Angiotensin-converting Enzyme (ACE) Inhibitors and 

Angiotensin-II Receptor Blockers (ARB) 

 Activation of RAS and the subsequent increase of angio-
tensin II and aldosterone levels contribute to changes of the 
insulin/IGF-1 signaling pathway and promote the formation 
of ROS that induce endothelial dysfunction and cardiovascu-
lar disease [78]. Angiotensin-II is known to increase the ex-
pression of adhesion molecules, cytokines, and chemokines 
and it exerts a proinflammatory effect on leucocytes, endo-
thelial cells, and vascular smooth muscle cells. The inflam-
matory cascade is initiated by angiotensin-II via its type 1 
receptor, followed by increased production of ROS and acti-
vation of NF- B, which mediates the transcription and ex-
pression of various genes [79]. 

 RAS activation is important for the progression of car-
diovascular pathology along the continuum from the exis-
tence of hypertension and other risk factors to end-stage car-
diovascular disease [80]. Many studies have shown that 
blockade of angiotensin-II significantly reduces the levels of 
proinflammatory mediators and oxidative stress products in 
various models of inflammation. We previously reported that 
administration of the ARB candesartan intraperitoneally via
an osmotic minipump prevented microangiopathy and pre-
served diastolic function in diabetic rats [81]. Candesartan 
was also effective for improving cardiomyocyte diameter 
and decreasing the levels of inflammatory cytokines, such as 
IL-1 and IL-6. Transmission and scanning electron micros-
copy clearly showed the cardioprotective effect of ARB 
therapy (Fig. 4). 

 Recently, we reported that ARBs could reduce oxidative 
stress and ameliorate hypoxia-induced left ventricular re-

modeling, partly through the inhibition of NF- B and matrix 
metalloproteinase (MMP)-9, in diabetic rats and atherogenic 
mice [42,53]. Thus, ARBs might provide effective cardio-
protection even under hypoxic conditions, such as in diabetic 
patients with sleep apnea.  

 In clinical trials, blocking angiotensin-II by treatment 
with ACE inhibitors or ARBs has been found to be benefi-
cial for patients with various inflammatory diseases [82]. 
RAS blockade delays or avoids the onset of type 2 diabetes, 
and also prevents cardiovascular or renal events in diabetic 
patients [83-85]. Furthermore, recent studies have shown that 
ARB therapy reduces the frequency of atrial fibrillation and 
stroke [86-88]. Thus, inhibition of the RAS by administra-
tion of ACE inhibitors or ARBs represents first-line treat-
ment for hypertensive target organ damage and progressive 
cardiovascular disease [89].  

Statin Therapy 

 Statins reduce the plasma cholesterol level by inhibiting 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) re-
ductase. Besides lowering cholesterol, statins are known to 
modify endothelial function and atherogenesis, stabilize 
atherosclerotic plaques, and reduce inflammation and throm-
bosis [90,91]. Recent studies have shown that intermediate 
products of the mevalonate pathway cause the activation of 
Rac1, a subunit of NADPH oxidase, leading to the produc-
tion of ROS [92]. Accordingly, statins reduce oxidative 
stress by inhibiting NADPH oxidase.  

 In animal models, statins have been shown to ameliorate 
oxidative stress, prevent the progression of cardiac hypertro-
phy, and improve left ventricular function, which are all ac-
tions that might be beneficial in patients with heart failure 

Fig. (4). Representative scanning (above) and transmission (below) electron micrographs. Compared with normal rats, increased interstitial

fibrosis (white arrow) and thickened basement membrane (black arrow) of capillary (Cap) were observed in diabetic (DM) rats. Treatment 

with angiotensin-II receptor blocker (ARB) suppressed the interstitial fibrosis and preserved the capillary basement membrane thickness. 

Scale bar=1 m. Reproduced from Hayashi T, Sohmiya K, Ukimura A, et al. Angiotensin II receptor blockade prevents microangiopathy and 

preserves diastolic function in the diabetic rat heart. HEART 2003; 89: 1236-42. 
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[93]. Horiuchi et al. [94] reported that a combination of low-
dose ARB and low-dose statin therapy acted synergistically 
to block neointimal growth. These “pleiotropic” properties of 
statins may have important clinical implications in addition 
to their use for lowering cholesterol levels. 

 Several clinical studies have demonstrated an increase of 
AT1 receptor expression in hypercholesterolemic men [95]. 
Subgroup analysis of the Heart Outcomes Prevention 
Evaluation (HOPE) study indicated that a beneficial effect of 
ACE inhibition was more evident in patients with concomi-
nant statin therapy [96]. Nickenig [91] has suggested that a 
combination of ARB and statin could be beneficial for pa-
tients with type 2 diabetes. Thus, further studies are war-
ranted to confirm the beneficial impact of ARBs and statins 
through potentially synergistic modes of action, since these 
drugs could be used for potent and effective combination 
therapy in a variety of patient populations.

Other Agents (Acarbose, Edaravone, and Calcium 

Channel Blockers) 

 Hyperglycemia may induce the generation of free radi-
cals such as superoxide (O2

-
) and the hydroxyl radical. The 

interaction of glycated proteins with their cell surface bind-
ing sites may also lead to oxidative stress. Treatment with an 

glucosidase inhibitor might not only be useful for prevent-
ing postprandial hyperglycemia but also for suppressing oxi-
dative stress in diabetics. Large-scale clinical trials have 
shown an impressive vasculoprotective effect of acarbose 
[97,98]. Recently, Rösen et al. [99] reported that treatment of 
insulin-resistant rats with acarbose prevented an excessive 
rise of the plasma glucose level and the initiation of a reac-
tion starting with the generation of ROS and spreading to 
affect the whole cell. 

 Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a 
free radical scavenger that traps hydroxyl radicals, as indi-
cated by its inhibition of the formation of hydroxylated sali-
cylate. Edaravone has been reported to exert a protective 
effect against cerebral and myocardial ischemia in rats. We 
have also reported that edaravone effectively decreased the 
activity of inducible nitric oxide synthase in the left ventricu-
lar myocardium of type 2 diabetic rats and preserved the 
ultrastructure of the mitochondria [100]. Thus, edaravone has 
a modest cardioprotective effect on the hearts of diabetic 
animals.  

 Both clinical studies and basic research have revealed 
that calcium antagonists not only protect the endothelium 
through their hypotensive action, but also improve endothe-
lial function through stimulation of NO production [101]. 
Although the precise vasoprotective mechanisms of calcium 
channel blockers are still obscure, recent studies have sug-
gested that nifedipine might stimulate SOD expression in 
endothelial cells via enhancement of VEGF expression by 
vascular smooth muscle cells, and thus might reduce oxida-
tive stress and increase NO production [102].  

 Therefore, glucosidase inhibitors, free radical scaven-
gers, and calcium channel blockers should also be included 
as candidates for antioxidant therapy in the treatment of pa-
tients with diabetes. 

CONCLUSION 

Of course, meticulous glycemic control is important to 
prevent cardiovascular remodeling in diabetes. As reviewed 
above, oxidative stress has also been proved to play an im-
portant role in the development and progression of cardio-
vascular remodeling. New insights into the mechanisms that 
increase oxidative stress in diabetes might lead to novel 
treatment strategies. In conclusion, alleviation of oxidative 
stress should be taken into consideration as one of the possi-
ble strategies for the treatment of patients with diabetes, es-
pecially when they are exposed to intermittent hypoxia due 
to the presence of sleep apnea. 
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