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Receptor tyrosine kinases (RTKs) process extracellular cues by activating a broad array of signaling
proteins. Paradoxically, they often use the same proteins to elicit diverse and even opposing
phenotypic responses. Binary, ‘on–off’ wiring diagrams are therefore inadequate to explain their
differences. Here, we show that when six diverse RTKs are placed in the same cellular background,
they activate many of the same proteins, but to different quantitative degrees. Additionally, we find
that the relative phosphorylation levels of upstream signaling proteins can be accurately predicted
using linear models that rely on combinations of receptor-docking affinities and that the docking
sites for phosphoinositide 3-kinase (PI3K) and Shc1 provide much of the predictive information. In
contrast, we find that the phosphorylation levels of downstream proteins cannot be predicted using
linear models. Taken together, these results show that information processing by RTKs can be
segmented into discrete upstream and downstream steps, suggesting that the challenging task of
constructing mathematical models of RTK signaling can be parsed into separate and more
manageable layers.
Molecular Systems Biology 20 January 2009; doi:10.1038/msb.2008.72
Subject Categories: signal transduction; proteins
Keywords: partial least-squares regression; protein microarray; PTB domain; receptor tyrosine kinase;
SH2 domain

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence,
which permits distribution and reproduction in any medium, provided the original author and source are
credited. Creation of derivative works is permitted but the resulting work may be distributed only under the
same or similar licence to this one. This licence does not permit commercial exploitation without specific
permission.

Introduction

Receptor tyrosine kinases (RTKs) constitute a large family of
single-spanning membrane proteins found only in Metazoans
(Robinson et al, 2000). Their primary role is to mediate
intercellular communication by recognizing extracellular
ligands and translating that information into an appropriate
cellular response (Schlessinger, 2000). The intracellular region
of an RTK contains a tyrosine kinase domain as well as several
tyrosine residues that are phosphorylated upon receptor
activation. These phosphotyrosines act as relays for informa-
tion transmission, and the sequences surrounding these sites
define signal specificity. Intracellular signaling proteins bind to
these sites of tyrosine phosphorylation through Src homology
2 (SH2) or phosphotyrosine-binding (PTB) domains, initiating
a variety of signaling cascades within the cell.

RTKs can elicit diverse and even opposing phenotypic
responses, ranging from adhesion to migration, differentiation

to proliferation, and survival to apoptosis (Schlessinger, 2000;
Yarden and Sliwkowski, 2001). Although no two receptors
feature identical sequences surrounding their pTyr sites, there
is considerable qualitative overlap in the pathways they
activate (Fambrough et al, 1999; Simon, 2000). The ability of
RTKs to signal through common pathways, yet to induce
diverse phenotypic responses, has largely been attributed to
differences in cellular context, as signaling proteins are
differentially expressed in different cell types (Jordan et al,
2000; Simon, 2000). For example, fibroblast growth factor
receptor 1 (FGFR1) induces differentiation in neuronal cells,
but induces proliferation in fibroblasts (Marshall, 1995; Lin
et al, 1996). When expressed in the same cellular background,
however, different RTKs have also been shown to elicit different
phenotypic responses. For example, activation of epidermal
growth factor receptor (EGFR) induces proliferation in PC12
neuronal cells, whereas activation of FGFR1 induces differ-
entiation (Pollock et al, 1990; Lin et al, 1996). How,
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then, are intrinsic differences between RTKs manifested within
the same cell type? Where does the information reside that
defines these differences? How is that information processed?

To address these questions, we expressed six diverse RTKs in
the same cellular background and monitored their signaling
properties by quantitative immunoblotting. We found that
although they activated many of the same signaling proteins,
they did so to different degrees. We then used protein
microarrays to define a quantitative interaction map for each
receptor by measuring the affinity of almost every human SH2
and PTB domain for phosphopeptides representing pTyr sites
on the receptors. Using partial least-squares regression (PLSR),
we found that the relative phosphorylation levels of upstream
signaling proteins could be accurately predicted using linear
combinations of receptor-docking affinities, and that much of
the predictive information resides in the docking sites for two
central signaling proteins: phosphoinositide 3-kinase (PI3K)
and Shc1. We also found that the relative phosphorylation
levels of downstream proteins could not be predicted using
linear models, suggesting that RTK signaling can be segmented
into discrete upstream and downstream layers.

Results and discussion

To determine at a quantitative level how different RTKs behave
when placed in the same cellular background, we selected six
well-studied and phylogenetically diverse RTKs: EGFR,
FGFR1, insulin-like growth factor 1 receptor (IGF1R), hepato-
cyte growth factor receptor (MET), neurotrophic tyrosine
kinase receptor type 2 (NTRK2), and platelet-derived growth
factor receptor b (PDGFRb). Six stable cell lines were
generated by transfecting the full-length coding region for
each receptor into human embryonic kidney Flp-In-293 cells,
which do not normally express these receptors at appreciable
levels (Figure 1A). The resulting cell lines grew normally and,
in each case, the receptor was produced atB105 copies per cell
and activated by its cognate ligand in a dose-dependent
manner (Supplementary Figure S1).

To obtain a broad and quantitative view of how each
receptor activates intracellular signaling proteins, the six cell
lines were serum-starved for 24 h and stimulated for 5 min
with saturating levels of the appropriate ligand. This early time
point was chosen because many signaling proteins peak in
their phosphorylation levels within the first 10 min of
stimulation and because we wanted to capture immediate,
receptor-dependent signaling events without additional com-
plications arising from feedback loops and other forms of
network regulation. Quantitative immunoblotting was then
used to measure the relative phosphorylation levels of a wide
range of proteins that have previously been implicated in RTK
signaling (Figure 1B and C). In total, we queried 65 sites of
phosphorylation on 57 proteins and observed growth factor-
induced phosphorylation of 24 sites on 23 proteins (Supple-
mentary Table SI). To compare the phosphorylation levels of a
given protein across the six cell lines, lysate concentrations
were normalized, basal phosphorylation was subtracted, and
each level was calculated relative to the maximum observed
level for that site (Figure 1B; Supplementary Figure S2;
Supplementary information). Duplicate experiments were in
close agreement (r¼0.91; Supplementary Figure S3A). Inter-

estingly, each receptor induced a distinct pattern of phosphor-
ylation. Some proteins, such as SHP-2 and Cbl, were
phosphorylated in as few as two of the cell lines, while others,
such as CrkL and p90RSK, were phosphorylated in all six
(Figure 1B). For every site of phosphorylation, quantitative
differences were observed across the six cell lines and the rank
order varied depending on the site. Thus, although these six
receptors have previously been shown to activate many of the
same pathways, they do so to different degrees when placed in
the same cellular context. What, then, accounts for these
differences? As RTKs initiate signaling by recruiting proteins
to sites of tyrosine phosphorylation (Schlessinger, 2000),
we asked whether there was information in the recruitment
properties of the pTyr sites on these receptors that could
explain the observed differences.

Sites of tyrosine phosphorylation are recognized by either
SH2 (Sadowski et al, 1986) or PTB domains (Kavanaugh and
Williams, 1994). To obtain a genome-wide, unbiased, and
quantitative measure of the recruitment potential of each
receptor, we prepared protein microarrays comprising
nearly every SH2 and PTB domain encoded in the human
genome (Figure 1D; Supplementary Table SII) (Jones et al,
2006). We then probed these arrays with fluorescently labeled,
18-residue phosphopeptides with sequences derived from
every known site of tyrosine phosphorylation on each of the
six receptors (Supplementary Table SIII). Equilibrium disso-
ciation constants (KD values) were obtained by probing the
arrays with eight concentrations of each peptide and fitting the
resulting fluorescence data (Supplementary information) to an
equation that describes saturation binding (Figure 1D) (Jones
et al, 2006). In total, we queried 96 SH2 domains and 37 PTB
domains with 47 phosphopeptides and observed 652 interac-
tions with KDp2 mM (Supplementary Table SIV). Weaker
interactions could not be quantified using this approach.
When we repeated this process, duplicate KD measurements
were in close agreement (r¼0.85; Supplementary Figure S3B)
and the mean KD was used for subsequent analyses.

Of the 131 domains, 112 domains representing 74 different
proteins bound at least one phosphopeptide. As anticipated,
there was considerable qualitative overlap between the six
receptors: 50 of these proteins recognized peptides from at
least three receptors and 21 of them recognized peptides from
at least five receptors (Supplementary Figure S4). In general,
the domains that recognized the most receptors are those
found in well-studied signaling proteins, including the lipid-
modifying enzyme PI3K; the transcription factors Stat1 and
Stat2; the non-receptor tyrosine kinases Src and Abl1; the
guanine nucleotide exchange factor Vav2; the adaptor proteins
Crk, CrkL, and Nck; and the scaffold proteins Shc1 and Grb7.
Thus, if viewed in strictly binary terms, these phylogenetically
diverse receptors differ very little in their recruitment proper-
ties with respect to these core signaling proteins. At the
quantitative level, however, they differ substantially. For
example, although five of the six receptors feature docking
sites for the regulatory subunit of PI3K, there is only one low-
affinity site (KD¼590 nM) on IGF1R, but there are five sites,
including one high-affinity site (KD¼10 nM), on PDGFRb.
Quantitative differences in both the number of docking sites
and the binding affinities at these sites may therefore explain
the observed differences in signaling elicited by each receptor.
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To test this hypothesis, we represented each phosphopep-
tide as a row vector of association constants, KA, with each
element in the vector corresponding to a different SH2 or PTB
domain-containing protein (Figure 1E). For proteins that
contained two domains that bound the same peptide, the
larger KA was used. In addition, the three isoforms of the
regulatory subunit of PI3K were treated as a single protein as

their SH2 domains behaved similarly. The binding vector for a
given receptor was then defined as the sum of its phosphopep-
tide vectors to take into account the number of docking sites,
as well as the affinities at each site. The implicit assumption in
adding the phosphopeptide vectors is that multiple docking
sites for the same protein within a given receptor act
independently of each other. While this is probably not always
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Figure 1 Measurement of the intrinsic differences among six receptor tyrosine kinases. (A) The full-length coding regions for six RTKs were introduced into Flp-In-293
cells to generate stable cell lines. Each cell line was serum-starved for 24 h and stimulated for 5 min with a saturating concentration of the indicated growth factor. (B) Cell
lysates were analyzed by quantitative immunoblotting to determine the relative levels of 24 phosphorylation sites on 23 signaling proteins across the six cell lines.
Representative results are shown for four phosphorylation sites. Error bars indicate the range of biological duplicates. The other 20 bar graphs are provided in
Supplementary Figure S2. (C) Heat map illustrating the relative levels of the 24 phosphorylation sites across the six cell lines. The columns of this matrix, Y, constitute
relative phosphorylation vectors for each signaling event. (D) Protein microarrays comprising almost every human SH2 and PTB domain were printed in individual wells
of 96-well microtiter plates and probed with eight concentrations of each phosphopeptide, ranging from 10 nM to 5mM. Phosphopeptides were derived from established
sites of tyrosine phosphorylation on the six RTKs. For each domain–peptide interaction, a saturation-binding curve was obtained and the observed fluorescence, Fobs,
was fit to equation (1) to obtain an equilibrium dissociation constant, KD. (E) KD values were converted to KA values (KD¼1/KA) and each phosphopeptide was
represented as a vector of KA values. (F) Each receptor vector was defined as the sum of its constituent phosphopeptide vectors. The receptor-docking affinity matrix, X,
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true, it is the simplest way to combine the data and is a
reasonable approximation. In addition, the phosphopeptide
vectors were all weighted equally as the relative stoichiometry
of phosphorylation at each pTyr site was not known. Thus, the
intrinsic signaling capabilities of the six receptors was
captured in the matrix X, which comprises six rows, one for
each receptor, and 74 columns, one for each SH2 or PTB
domain-containing protein (Figure 1F). In a similar manner,
the cellular activity of the RTKs was captured in the matrix Y,
which comprises six rows, one for each receptor, and 24
columns (y1yy24), one for each phosphorylation site that was
monitored by immunoblotting (Figure 1C).

The simplest connection between the in vitro binding data
and the cellular phosphorylation data is a one-to-one relation-
ship in which the degree to which an SH2/PTB-containing
protein is phosphorylated correlates linearly with its docking
affinities. Of the eight proteins for which both microarray and
immunoblotting data were obtained, significant correlations
were observed for two: Shc1 (r¼0.82, P¼0.045) and PI3K
(r¼0.94, P¼0.0059) (Figure 2). These correlations depend
heavily on the number of Shc1- and PI3K-docking sites on each
receptor. If the number of docking sites is taken into account
but the affinities are ignored, the correlation actually improves
for Shc1 (r¼0.99, P¼0.0001), but gets slightly worse for PI3K
(r¼0.91, P¼0.013) (Figure 2). If the quantitative information is
ignored and the interactions are treated as binary, correlations
become meaningless as each protein recognized five of the six
receptors. These results are consistent with a model in which
Shc1 and PI3K interact directly with the activated receptors
and are not influenced substantially by other docking proteins.
For these two proteins, information processing is approxi-
mately linear and univariate.

The same is not true, however, for the other SH2/PTB-
containing proteins that were monitored by immunoblotting;
significant correlations were not observed (Figure 2). For these
proteins, the reductionist assumption that they bind directly to
the receptor and act independently is too simplistic. Some
proteins that contain SH2 or PTB domains have been shown to
compete with each other for the same pTyr sites (Zhang et al,
2003), and many have been shown to interact with each other
and with components of the cell membrane (Schlessinger and
Lemmon, 2003). Thus, it is likely that they are inextricably

interconnected. Are their relationships complex and nonlinear,
or can they be approximated using relatively simple models
that depend on combinations of docking affinities, rather than
on single affinities alone?

The simplest multivariate model is one in which the
phosphorylation levels of a given protein, yi, can be predicted
using a linear combination of docking affinities. As the number
of variables (docking affinities) exceeds the number of
observations (RTKs), we used PLSR to regress each yi against
X. PLSR reduces the dimensionality of X by decomposing it
into a small number of orthogonal components that capture
most of the covariance between X and yi. Each component is a
linear combination of docking affinities, weighted by how
much they contribute to predicting each immunoblot (yi). We
found that four components were sufficient to capture B90%
of the covariance with each yi. To guard against overfitting and
to assess the predictive value of the docking affinities, we built
our models using leave-one-out cross-validation: each model
was trained using data from five receptors and then used to
predict the immunoblotting data for the sixth receptor based
on its docking affinities. This procedure was performed in all
six combinations and the cross-validated residual between
these predictions and the observed data, Q2, was calculated. To
assess the significance of these predictions, we repeated our
calculations 2000 times for each phosphorylation site using
randomized X matrices and then calculated P-values for
each model. Models were built using all of the microarray data,
as well as subsets of the data that included only the SH2/PTB-
containing proteins that bound at least two receptors, at least
three receptors, at least four receptors, or at least five
receptors. Similar results were obtained in every case, but
the significance of the results increased as the number of
variables was reduced (Supplementary Figure S5). Most of the
information content in X resides in the 21 SH2/PTB-containing
proteins that recognize at least five receptors and hence the
results presented below are based on these data alone.

Of the 24 phosphorylation sites that we monitored by
immunoblotting, nine were accurately predicted using linear
combinations of docking affinities (Q2

X0.9; Figure 3A and B;
Supplementary Figure S6). Of these, six passed significance
testing (Pp0.05 and false discovery rate p0.1). Interestingly,
all nine of these sites are found on proteins that contain SH2 or
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PTB domains and therefore represent upstream signaling
events (Figure 3B; Supplementary Figure S6). Moreover, only
two phosphorylation sites that occur on SH2/PTB-containing
proteins had a Q2 value less than 0.9: pTyr239/240 of Shc1 and
pSer727 of Stat3. As noted earlier, the relative phosphorylation
levels of Shc1 can be explained using only the number of Shc1-
docking sites on each receptor (Figure 2); combinations of
docking affinities are not required. More interesting is pSer727
of Stat3 (Q2¼�0.33; P¼0.94; Figure 3A). This serine residue is
phosphorylated in a protein kinase C-dependent fashion and
so represents a downstream signaling event (Aziz et al, 2007).
In contrast, Tyr705 of Stat3 can be phosphorylated by the RTK
itself and so represents an upstream event (Hwang et al, 2003);
its phosphorylation is accurately predicted (Q2¼0.99; P¼0.03;
Figure 3A). Similar to pSer727 of Stat3, the other 13
downstream signaling events could not be predicted using
linear models (Figure 3B; Supplementary Figure S6). Thus, the
phosphorylation sites that we monitored by immunoblotting
naturally segregate into two groups: upstream phosphoryla-
tion events that are accurately predicted and downstream
phosphorylation events that are not. From this, we submit that
information processing by RTK signaling networks can be
segmented into an upstream layer comprising proteins that are
activated in an approximately linear manner through combi-
nations of receptor-docking affinities and a downstream layer
comprising proteins that are activated in a nonlinear manner.
We note, however, that this result does not prove that the
upstream step is linear mechanistically, but rather that this step
can be approximated using relatively simple linear models.

Both the number of docking sites and the docking affinities
are important for predicting upstream signaling events. If only
the number of docking sites is taken into account, the models
perform less well and the results are less significant
(Figure 3C). If only binary information is used (proteins are
described either to interact or not interact with a receptor), all
predictions fail as, at this level, the receptors are very similar
(X is close to singular). To determine where most of the
predictive information resides, we assessed the contribution of
each SH2/PTB-containing protein to each PLSR model by
calculating their variable importance in the projection (VIP;
see Materials and methods). Reduced models were then
prepared using only the most important variables. For all of
the upstream signaling events, reduced models that included
only the four most important variables performed almost as
well as the full PLSR models (Figure 3C). On average, the two
most important variables were PI3K and Shc1 (Figure 4A). In
other words, much of the information needed to predict the
relative phosphorylation levels of upstream signaling proteins
resides in the number and affinity of PI3K- and Shc1-docking
sites on the RTK.

As these models are statistical in nature, this observation
does not necessarily mean that PI3K and Shc1 have a causative
function in determining the strength of signaling through other
upstream proteins. PI3K- and Shc1-binding sites may have co-
evolved with some other feature of RTKs that determines their
ability to activate upstream proteins, such as kinase specificity
or localization of the receptors to different membrane
microdomains. Nevertheless, it is possible that these proteins
do have a causative function in determining the extent to
which other signaling proteins are activated.

This hypothesis cannot be tested by altering the abundance of
PI3K or Shc1, as altering the composition of the cell would
change the parameter values in the models. It is possible,
however, to alter the catalytic activity of PI3K without altering its
abundance using the small molecule inhibitor LY294002. If PI3K
activity has a causative function in determining the degree to
which upstream proteins are phosphorylated, we would expect
LY294002 treatment to have the largest effect on proteins that
have high PLSR coefficients for PI3K (Figure 4B), and on
receptors with the strongest recruitment potential for PI3K
(Figure 4C). We therefore stimulated all six cell lines in the
presence or absence of LY294002 and assessed the relative
phosphorylation levels of the upstream signaling proteins by
immunoblotting (Figure 4D and E; Supplementary Figure S7;
Supplementary information). Interestingly, the relative phos-
phorylation levels of Src, which has a low coefficient for PI3K
(Figure 4B), were minimally affected by LY294002 treatment
(Figure 4D), whereas the relative phosphorylation levels of
Stat3, which has a high positive coefficient for PI3K (Figure 4B),
were affected in a manner consistent with the number and
affinity of PI3K-docking sites on the six RTKs (Figure 4E). This
result suggests that, at least for Stat3, the contribution of PI3K in
the PLSR model is, in part, dependent on its kinase activity. The
same result was not observed, however, for all of the upstream
signaling proteins (Supplementary Figure S7). The Stat3 result is
not easily explained based on our current RTK wiring diagrams
and a mechanistic understanding of this observation will require
further investigation.

The overall importance of PI3K and Shc1 in RTK signaling
was recently highlighted in a comprehensive map of the
ErbB network, which revealed that a large fraction of
information converges on a small number of signaling
molecules, all of which can be modulated by PI3K and Shc1
(Oda et al, 2005). Interestingly, when we examined the
sequences surrounding all known sites of tyrosine phosphor-
ylation on human RTKs as reported in the Phospho.
ELM database (Diella et al, 2008), we observed a distinct
and significant (Po0.05) bias for sites that feature the
consensus binding sequences for the PTB domain of Shc1
(NPXpY) (Songyang et al, 1995) and the SH2 domains of
PI3K (pYXXM) (Songyang et al, 1993; Yaffe et al, 2001)
(Figure 5A and B). This bias is not observed in known sites of
tyrosine phosphorylation derived from all other human
proteins (Figure 5C and D). Thus, we find that, despite
activating many of the same proteins, intrinsic differences
between RTKs are manifested in the degree to which they
activate upstream signaling proteins and that much of this
information resides in the number and affinity of docking sites
for PI3K and Shc1. As these proteins lie upstream of the Akt
and MAP kinase signaling pathways, and as these two
pathways have been found repeatedly to have a central
function in RTK biology, it is likely that our observations are
not specific to HEK Flp-In-293 cells, but extend to more
physiological settings as well.

Recently, Miller-Jensen et al (2007) showed that the
phenotypic response of cells to external stimuli can be
predicted using models that rely on linear combinations of a
common set of downstream signaling proteins. Coupled with
our results, this suggests that different RTKs may be able to
elicit different phenotypic responses in the same cell type by
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activating a common set of signaling proteins, but to different
quantitative degrees. In addition, our study, coupled with
that of Miller-Jensen et al, supports a model in which
information processing by RTK signaling networks can be
segmented into three discrete layers: an upstream layer
comprising proteins that are activated in a linear manner
through combinations of receptor-docking affinities; an inter-

mediate layer in which these signals are processed in a
nonlinear manner; and a downstream layer in which
integrators of signaling combine in a linear manner to
determine cellular outcome. We submit that the difficult task
of constructing mathematical models of RTK signaling can be
parsed into discrete problems and that our greatest challenge
lies in dissecting the middle layer.
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Figure 4 Contribution of SH2 and PTB domains in predicting the relative phosphorylation levels of upstream signaling proteins. (A) Heat map showing the variable
importance in the projection (VIP) for each SH2 or PTB domain-containing protein in each PLSR model of upstream signaling events. The average across all 10 models
is shown to the right. (B) Bar graph showing the coefficients for PI3K, CPI3K, in the six statistically significant PLSR models. (C) Bar graph showing the sum of PI3K-
docking affinities for each RTK. (D, E) Relative phosphorylation levels for (D) Src pY416 and (E) Stat3 pY705 across the six cell lines, with and without PI3K inhibitor
LY294002 (100 mM). Bar graphs for the other eight upstream signaling events are provided in Supplementary Figure 7. Source data is available for this figure at the
Molecular Systems Biology website (http://www.nature.com/msb).
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Materials and methods

Cell culture, immunoblotting, ELISA, and protein
microarray experiments

Stable cell lines were generated by co-transfecting Flp-In-293 cells
(Invitrogen, Carlsbad, CA) with the plasmid pEF5/FRT/V5-DEST
bearing the open reading frame for each RTK and the accessory
plasmid pOG44 according to the manufacturer’s directions (Invitro-
gen). Cells were maintained in Dulbecco’s modified Eagle’s medium
supplemented with 10% (v/v) fetal bovine serum, 2 mM glutamine,
100 IU/ml penicillin, 100mg/ml streptomycin, and 150mg/ml hygro-
mycin B. All cell culture and immunoblotting experiments were
performed using standard procedures. Rabbit-derived primary anti-
bodies were from Cell Signaling Technologies (Beverly, MA; Supple-
mentary Table SI). For quantitative immunoblots, bands were detected
with IRDye 680-labeled goat–anti-rabbit IgG (LI-COR Biosciences,
Lincoln, NE) and imaged using an Odyssey Infrared Imaging System
(LI-COR Biosciences). Expression levels of the RTKs were determined
using ELISA kits from Invitrogen for EGFR and MET, and from R&D

Systems (Minneapolis, MN) for NTRK2 and PDGFRb. All protein
microarray experiments were performed as described earlier (Jones
et al, 2006; Kaushansky et al, 2008).

PLSR

To define the receptor-docking affinity matrix, X, the matrix
of KD values (Supplementary Table SIV) was converted to a matrix of
KA values (KA¼1/KD). If a protein contained two domains that bound
the same peptide, the higher KA value was used. Each phosphopeptide
was then expressed as a row vector of KA values:

pi ¼ ½KAi ! KAn� ð2Þ

and each receptor was defined as the sum of its constituent
phosphopeptide vectors:

ri ¼
XN
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pj ð3Þ
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Figure 5 Bias for PI3K- and Shc1-binding sites in human RTKs. (A) Heat map showing the bias for each of the 20 amino acids at each position relative to sites of
tyrosine phosphorylation in human RTKs. (B) Histogram of the observed/expected frequencies in (A). The line is a log-normal fit to the data. The red bars indicate
significant deviations (Po0.05) and reflect biases (red squares in (A)). The biases for Cys at positions �5 and þ 6 and for Trp at position þ 7 are likely due to the
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The raw receptor-docking affinity matrix, Xraw, was then assembled
from the six receptor vectors:

Xraw ¼
r1

#
r6

2
4

3
5 ð4Þ

The raw matrix was adjusted such that every SH2/PTB-containing
protein (i.e. every column) was mean-centred and weighted according
to its average affinity. This yielded the final receptor-docking affinity
matrix, X. For the models presented in Figure 3, proteins that bound
fewer than five receptors were removed from the matrix. Models
obtained using all of the data or increasingly smaller subsets are shown
in Supplementary Figure S5.

Relative phosphorylation levels of signaling proteins, as measured
by immunoblotting, were calculated by first subtracting the level
observed in the mock-treated, parental Flp-In-293 cell line and then
dividing each value by the maximum observed value for that site
across the six cell lines. Each phosphorylation site was treated as a
separate vector, y, and each y was mean-centred and variance-
normalized. A PLSR (Geladi and Kowalski, 1986) was then performed
separately on each y. For cross-validation, each receptor (row ‘i’) was
removed once from both X and y, the regression was performed, and
the resulting model was used to predict the value of yi. The residual,
Q2, of this prediction was then compared with residuals generated
from randomly shuffling X 2000 times. The distribution of these
residuals was used to calculate the P-value of the observed Q2.

The weighted sum of squares (also known as the VIP) for each
variable, k, was calculated according to equation (5):

VIPk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT

PA
a¼1

w2
a;kSSa

PA
a¼1

SSa

vuuuuuut ð5Þ

where KT is the total number of variables, a is the principal component,
and SSa is the sum of squares for that component.

Amino-acid frequencies near sites of tyrosine
phosphorylation

Experimentally determined sites of tyrosine phosphorylation in
human proteins were acquired from the Phospho.ELM database
(Diella et al, 2008). Of the 1397 identified sites, 196 were in RTKs and
1201 were in proteins other than RTKs. The amino-acid frequencies at
positions upstream and downstream of pTyr sites were calculated and
then normalized to the expected frequency of each amino acid in all
human proteins (Echols et al, 2002). The resulting histograms of
observed/expected frequencies were fit to a log-normal distribution
from which P-values were calculated. All analyses were performed
using MATLAB 7.4. (The MathWorks, Inc., Natick, MA). More detailed
protocols are provided in Supplementary information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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