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Abstract: Neuroendocrine neoplasms (NENs) and tumors (NETs) are rare neoplasms that may
affect any part of the gastrointestinal system. In this scoping review, we attempt to map existing
evidence on the role of artificial intelligence, machine learning and deep learning in the diagnosis and
management of NENs of the gastrointestinal system. After implementation of inclusion and exclusion
criteria, we retrieved 44 studies with 53 outcome analyses. We then classified the papers according
to the type of studied NET (26 Pan-NETs, 59.1%; 3 metastatic liver NETs (6.8%), 2 small intestinal
NETs, 4.5%; colorectal, rectal, non-specified gastroenteropancreatic and non-specified gastrointestinal
NETs had from 1 study each, 2.3%). The most frequently used AI algorithms were Supporting
Vector Classification/Machine (14 analyses, 29.8%), Convolutional Neural Network and Random
Forest (10 analyses each, 21.3%), Random Forest (9 analyses, 19.1%), Logistic Regression (8 analyses,
17.0%), and Decision Tree (6 analyses, 12.8%). There was high heterogeneity on the description of the
prediction model, structure of datasets, and performance metrics, whereas the majority of studies did
not report any external validation set. Future studies should aim at incorporating a uniform structure
in accordance with existing guidelines for purposes of reproducibility and research quality, which are
prerequisites for integration into clinical practice.

Keywords: neuroendocrine tumors; neuroendocrine neoplasms; carcinoid; gastroenteropancreatic;
GEP-NETs; Pan-NENs; SI-NETS; artificial intelligence; machine learning; deep learning

1. Introduction

Neuroendocrine neoplasms (NENs) of the gastrointestinal tract and the pancreas are
rare tumors that tend to be diagnosed incidentally but with an increasing frequency [1,2].
GEP-NENs arise from the neural crest and may be located in the stomach, the small in-
testine, the appendix, the colon, the rectum, the pancreas, the ampulla of Vater, and the
extrahepatic bile ducts, as well as the liver in the form of metastases. For the purposes
of this review, we will focus on the former group of organs. For purposes of systemati-
zation, NENs can be divided into well differentiated neuroendocrine tumors (NETs) and
poorly differentiated neuroendocrine carcinomas (NECs), the latter representing 10–20% of
NENs [3]. This classification is not arbitrary, as NETs and NECs represent two genetically
and biologically separate entities. NETs may be further classified into NETs arising from
the gastrointestinal tract (GI-NETs, also known as carcinoids; ~50% of GEP-NETs) and ones
affecting the pancreas (Pan-NENs; ~30% of GEP-NETs). NENs may or may not be func-
tional. Nonfunctioning NENs are usually asymptomatic (especially early-stage ones), but
may cause gastrointestinal bleeding and anemia, as well as obstructive effects which may
present as jaundice, small bowel obstruction, intussusception, appendicitis and palpable
abdominal mass depending on their anatomic location. Functioning GI-NENs may cause
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flushing, diarrhea, endocardial fibrosis and wheezing, owing to the synergistic effect of se-
creted vasoactive substances such as prostaglandins, kinins, serotonin and histamine. These
symptoms signal the so-called carcinoid syndrome and usually herald liver metastases,
because normally the liver inactivates products secreted into the portal circulation [4]. On
the other hand, functioning Pan-NENs cause distinctive syndromes depending on the se-
creted product (i.e., gastrinoma–Zollinger-Ellison syndrome (ZES), insulinoma–Whipple’s
triad, glucagonoma–necrolytic erythema and hyperglycemia, VIPoma–watery diarrhea-
hypokalemia-achlorhydria syndrome, somatostatinoma–diabetes, gallstone formation and
steatorrhea etc) [1,2]. Gastric NETs merit special mention, as they may manifest with atypi-
cal symptoms that are not related to hormone secretion [1]. Type 1 gastric NETs (70–80%
of gastric NETs) are related to atrophic gastritis that leads to secondary hypergastrinemia,
which in turn causes hyperplasia of the enterochromaffin-like (ECL) cells. With continuous
stimulation, ECLs give rise to aggregates which constitute foci of NETs. Type 2 gastric
NETs (approximately 30%) are associated with ZES and multiple endocrine neoplasia type
1 (MEN-1). Type 3 gastric NETs are not related to other syndromes, are sporadic and are the
most aggressive, as they tend to metastasize in 50–100% of the cases. Finally, type 4 gastric
NETs are poorly differentiated and typically non-amenable to surgical manipulations.

Various biomarkers (mainly in immunohistochemistry) serve different purposes in the
spectrum of NENs: Ki-67 is the most well-known among them, it has a prognostic relevance
and is an essential component of the WHO grading of NENs [5]; SSTR-2/5 are useful for
the detection of somatostatin receptors when functional imaging (with 68Ga-DOTATATE
PET/CT) is not possible; DAXX/ATRX has a prognostic relevance for Pan-NETs and is use-
ful for distinguishing between NETs and NECs; p53/pRb are used for the classification of
poorly differentiated NECs and the distinction from G3 NETs; and MGMT has a predictive
response for the chemotherapeutic temozolomide [3]. Chromogranin A (CgA) is a useful
circulating biomarker, especially for the diagnosis of asymptomatic NETs [1]. The NETest
is a multigene mRNA assay that provides a broad molecular characterization GEP-NENs
with high sensitivity and specificity and better diagnostic accuracy when compared to
isolated biomarkers such as CgA [2]. Functional imaging with 68Ga-DOTATATE, which
binds to somatostatin receptors (SSRTs), is the cornerstone of diagnosis (and particularly
localization and staging) of NETs, especially in the cases of small intestinal NETs (SI-NETs),
large NETs and metastatic NETs [1].

Artificial intelligence (AI) is the process of simulating human learning by a machine,
in the context of which large quantities of digitized data (input) are fed to a computer,
the computer processes them with the aid of AI algorithms, and it ultimately reaches
conclusions, makes decisions, or adjusts its function (output). Input data may derive from
electronic health records (EHRs) and large databases, such as the Surveillance, Epidemiol-
ogy, and End-Results Program (SEER) registry, digitized histology samples and whole slide
images (WSIs), digital imaging studies (computed tomography—CT, magnetic resonance
imaging—MRI, endoscopic ultrasonography—EUS, positron emission tomography—PET
etc.), endoscopic study videos and so forth. AI is an umbrella term and includes supervised
machine learning (ML), unsupervised machine learning, deep learning (DL) and reinforce-
ment learning [6]. Each discipline differs from the preceding one in that it entails a greater
degree of autonomy from the operator’s supervision. AI with its subcategories is gradually
entering healthcare and pertinent studies have had an exponential publication rate over
the last five years, with various applications being integrated into clinical practice [7]. For
the non-familiar clinician, AI should not be deemed as a substitute to their pivotal role
in the patient care continuum or as an incomprehensible field belonging exclusively to
computer experts but should rather be approached as a valuable tool in the process of
decision-making, as well as a novel statistical method which, unlike traditional ones, may
reveal hidden relationships between causes of disease and diagnosis, management and
potentially cure.

With the present study we attempt to map the current status of AI and its applications
in the diagnosis and management of gastroenteropancreatic NENs (GEP-NENs). Given on
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the one hand that NENs are relatively rare entities and on the other hand that AI, ML and
DL are novel in the field of Medicine, we deemed it a rather uncharted area of interest and
opted for a scoping review.

2. Materials and Methods

This review was performed according to the PRISMA extension for scoping reviews [8].
We performed literature search using the PubMed database in January 2021. The com-
bined search terms were [artificial intelligence; machine learning; deep learning] AND
[neuroendocrine; NET; NEN; carcinoid; insulinoma; glucagonoma; gastrinoma; VIPoma]
AND [gastrointest*; GI; small intest*; appendi*; colon*; rect*; colorect *; stomach; gas-
tric; duoden*; pancrea*; biliary; bile duct; Vater; ampulla; liver; hepa*]. There was no
chronological restriction. Included articles had to have study populations with diagnosed
NEN or NEN should be included in the differential diagnosis. They should also have at
least 1 ML/DL algorithm for the process of their data, irrespective of the study design.
The presence of a comparison group (external validation) was desired but not mandatory.
Similarly, the report of at least one benchmarking metric, among accuracy, F1-score, area
under receiver operator characteristic curve (AUROC) or area under precision-recall curve
(AUPRC) were desired but not mandatory. Table 1 summarizes eligibility criteria. Only
full-text publications were considered. Articles not in English language or not providing
full text were excluded.

Table 1. Inclusion criteria.

Parameter Inclusion Criteria

Population Diagnosed cases with NEN (NET/NEC) or NEN included
in the differential diagnosis.

Intervention Analysis with a ML/DL algorithm.
Comparison External validation desired but not mandatory.

Outcome Report of accuracy, F1-score, AUROC or AUPRC desired
but not mandatory.

Study design Any. Abstract-only studies were excluded
NEN: neuroendocrine neoplasm; NET: neuroendocrine tumor; NEC: neuroendocrine carcinoma; ML: machine
learning; DL: deep learning; AUROC: area under receiver operator characteristic (ROC) curve; AUPRC: area
under precision-recall (PR) curve.

Data extraction was performed by two independent researchers (A.G.P., P.A.P.) using
a predefined template with the eligibility and exclusion criteria. In case of disagreement,
a third researcher (D.P.L.) made the decision whether to include the article or not. For
the collection of relevant data we consulted the Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research [9]. We collected data on year
of publication, country of origin, DOI number, study design (prospective vs. retrospective),
classification vs. regression, NEN type studied, dataset (number of patients or samples),
input (predictors), output (outcomes), tested AI algorithm(s), training set, test set, internal
and external validation sets, cross-validation method, accuracy, F1-score, AUROC (with
95% CI, if available) and AUPRC (with 95% CI, if available).

Numerical variables are presented as mean ± standard deviation (SD). Categorical
variables are presented using frequencies and percentages. Calculations and statistical
analysis were carried out using the online tool Prism®, GraphPad Software, San Diego, CA,
USA.

3. Results

Literature search across PubMed yielded 1327 articles. In addition, 9 articles were
retrieved through other sources (Google® search, screening through articles’ literature).
After screening of titles and abstracts, removal of duplicates, and implementation of
eligibility criteria, 44 unique articles were included in the final analysis (Figure 1) [10–53].
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Regarding geographical distribution (Figure 2), the included studies originated from
12 different countries, with major contributors being the USA (22 studies, 50%), China
(12 studies, 27.3%) and Italy (3 studies, 6.8%). Among them, there were 4 coalitions of
countries. The studies spanned a 13-year period (2007–2021), with a significant rise over
time (Figure 3). Notably, 2/3 of studies were published over 2019–2021, which follows the
general increase of publications regarding AI [54].
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In order to identify the prediction problem of each study, we collected data on study
design, nature of the prediction, and continuity of the target variable, as per Luo et al. [9].
Consequently, there were 19 prospective (42.2%) and 26 retrospective (57.8%) analyses.
Notably, one study had 2 stages, one prospective and one retrospective [13], hence the
discrepancy between the total number of studies (44) and the sum of analysis based on
prospective-retrospective study design (45). Regarding the nature of the prediction, we
dichotomized the studies into diagnostic vs. prognostic, depending on whether the predic-
tion referred to healthy subjects or subjects with already diagnosed NET, respectively [55].
The analysis yielded 24 diagnostic (54.5%) and 20 prognostic (45.5%) studies. Finally, all
studies but one [24] had to do with classification. The prediction characteristics of each
study are summarized in Table 2.

We then classified the papers according to the type of studied NET. Twenty-six studies
were about Pan-NETs (59.1%) [10,11,15–20,24,25,27,28,30,31,34,38,41–43,45–47,49,51–53],
3 studies had to do with (metastatic) liver NETs (6.8%) [36,37,44], 2 studies analyzed SI-NETs
(4.5%) [14,35], whereas colon and rectum [12], rectum [22], non-specified GEP [39], and non-
specified GI NETs [50] had from 1 study each (2.3%). There were 4 studies with multiple
types of NETs with separate data for each one of them provided (9.1%) [21,23,29,33], and
another 2 studies with non-specified multiple types of NETs (4.5%) [13,48]. Figure 4 shows
the relevant distribution of studies by NET type.

Regarding the source of data, there were 15 studies with histology-based
analyses [10,15,20,23,24,33,38–43,45,47,50] and another 15 studies with imaging-based anal-
yses (34.1% each). Six studies were structured based on patient databases (16.7%) [13,22,27,
29,32,48], 5 on genetic assays (11.4%) [18,21,30,35,36], and 3 on plasma/serum (6.8%) [12,
14,26]. Imaging-based studies were further distinguished in CT-based (6/15, 40%) [17,
28,34,46,51,53], EUS-based (4/15, 26.7%) [11,19,25,31], MRI-based (3/15, 20%) [44,49,52],
and PET/CT (2/15, 13.3%) [16,37]. Genetic assays included gene expression assays [35,36]
and miRNA analyses [18,21] (2 studies each), as well as 1 genome-wide association study
(GWAS) [30]. Figure 5 shows the relevant distribution of studies by source of data.
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Table 2. Collective representation of the studies included in the present review, with respective prediction characteristics, technical characteristics, datasets and
benchmarking. For reasons of conciseness, we have included only AUC of all the mentioned benchmarking measurements.

Study ID Prediction Characteristics Technical Characteristics Datasets & Benchmarking

First Author Year of
Publication DOI Ref. No. Study

Design
Nature of
Prediction

Continuity of
Output NET Type Source of Data Tested AI

Algortihm(s) Training AUC-Training Cross-
Validation Test AUC-Test Ext.

Validation AUC

Bevilacqua A 2021 10.3390/
diagnostics11050870 [10] Prospective Prognostic Classification Pancreas Histology LDA-model A Y 0.870–0.940 3-fold x100 Y 0.870–0.900 N

Chen K 2018 10.1016/S1470-
2045(20)30323-5 [11] Retrospective Prognostic Classification Pancreas Imaging (EUS) DT, LR, NN, RF, SVM N N Y 0.879–0.997 N

Cheng X 2021 10.3389/fsurg.2021.745220 [22] Retrospective Prognostic Classification Rectum Database
AdaBoost, NB,

Nu-SVC, SVC, RF,
XGB

Y 0.780–0.850 10-fold Y 0.890 Y 0.830–0.890

Drozdov I 2009 10.1002/cncr.24180 [33] Prospective Diagnostic Classification
Primary small

intestine;
metastatic liver

Histology DT, SVM Y 10-fold Y N

Drozdov I 2009 10.1002/cncr.24180 [33] Prospective Prognostic Classification
Primary small

intestine;
metastatic liver

Histology Perceptron Y N N N

Fehrenbach U 2021 10.3390/cancers13112726 [44] Prospective Prognostic Classification Liver Imaging (MRI) Not specified Y 0.908–1.000 N Y N

Gao X 2019 10.1007/s11548-019-
02070-5 [49] Prospective Prognostic Classification Pancreas Imaging (MRI) CNN Y 0.915 * 5-fold Y 0.893 * N

Govind D 2020 10.1038/s41598-020-
67880-z [50] Prospective Prognostic Classification GI Histology

deep-SKIE, SKIE
(GAN-based),

deep-SKIE
(GAN-based)

Y N Y N

Han X 2021 10.3389/fonc.2021.606677 [51] Retrospective Diagnostic Classification Pancreas Imaging (CT)
AdaBoost, DT, GBDT,

GNB, KNN, LDA,
LR, SVM, RF

Y 10-fold x1000 Y 0.946–0.997 * N

Huang B 2021 10.1109/JBHI.2020.3043236 [52] Retrospective Prognostic Classification Pancreas Imaging (MRI) DFSR N N Y 0.919 Y 0.688–0.840

Huang B 2021 10.1109/JBHI.2021.3070708 [53] Retrospective Prognostic Classification Pancreas Imaging (CT) GBDT, LR, RF, SVM Y 0.660–0.760 N Y 0.700–0.870 Y 0.710–0.830

Ito H 2020 10.4251/wjgo.v12.i11.1311 [12] Retrospective Diagnostic Classification Colon & rectum Serum BT Y N N N

Kidd M 2021 10.1159/000508573 [13] Retrospective Prognostic Classification Multiple Database N N N N

Kidd M 2021 10.1159/000508573 [13] Prospective Prognostic Classification Multiple Database DT N N Y N

Kjellman 2021 10.1159/000510483:
10.1159/000510483 [14] Prospective Diagnostic Classification Small intestine Serum RF Y 0.970–0.990 5-fold N N

Klimov S 2021 10.3389/fonc.2020.593211 [15] Retrospective Diagnostic Classification Pancreas Histology CNN Y 5-fold Y N

Klimov S 2021 10.3389/fonc.2020.593211 [15] Retrospective Prognostic Classification Pancreas Histology CNN, ML “zoo” (18
different models) Y 5-fold,

leave-one-out N N

Liu Y 2014 10.1016/j.media.2014.02.005. [16] Prospective Prognostic Classification Pancreas Imaging
(PET/CT) RDM N N N N

Luo Y 2019 10.1159/000503291 [17] Retrospective Prognostic Classification Pancreas Imaging (CT) CNN, LR, RF, SVM Y 0.570–0.810 8-fold Y 0.820 N

Nanayakkara J 2020 10.1093/narcan/zcaa009 [18] Retrospective Diagnostic Classification Pancreas miRNA data mining N N Y N

Nguyen VX 2010 10.7863/jum.2010.29.9.1345 [19] Retrospective Diagnostic Classification Pancreas Imaging (EUS) ANN Y N Y 0.890 N

Niazi MKK 2018 10.1371/journal.pone.0195621 [20] Retrospective Diagnostic Classification Pancreas Histology

Inception v3-C1 (type
of CNN),

Bootstrapped
Inception v3-C1

N N Y 0.922–0.973 N

Panarelli N 2019 10.1530/ERC-18-0244 [21] Retrospective Diagnostic Classification
Appendix, GEP,
ileum, pancreas,

rectum
miRNA SVM Y 10-fold Y N

Redemann J 2020 10.4103/jpi.jpi_37_20 [23] Retrospective Diagnostic Classification

Appendix, colon
& rectum,

duodenum,
pancreas, small

intestine, stomach,
total (icl. lung)

Histology CNN Y N Y N
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Table 2. Cont.

Study ID Prediction Characteristics Technical Characteristics Datasets & Benchmarking

First Author Year of
Publication DOI Ref. No. Study

Design
Nature of
Prediction

Continuity of
Output NET Type Source of Data Tested AI

Algortihm(s) Training AUC-Training Cross-
Validation Test AUC-Test Ext.

Validation AUC

Saccomandi P 2016 10.1007/s10103-016-
1948-1 [24] Retrospective Prognostic Regression Pancreas Histology Inverse Monte Carlo N N N N

Saftoiu A 2008 10.1016/j.gie.2008.04.031 [25] Prospective Diagnostic Classification Pancreas Imaging (EUS) MLP Y 10-fold Y N

Soldevilla B 2021 10.3390/cancers13112634 [26] Prospective Diagnostic Classification Not specified Plasma OPLS-DA supervised
model Y 0.779–0.982 N N N

Song Y 2018 10.7150/jca.26649 [27] Retrospective Prognostic Classification Pancreas Database DL, LR, SVM, RF Y 10-fold Y 0.870 (DL) N

Song C 2021 10.21037/atm-21-25 [28] Retrospective Prognostic Classification Pancreas Imaging (CT) SVM (various
models) Y 0.580–0.830 10-fold Y 0.480–0.770 Y 0.520–0.560

Telalovic JH 2021 10.3390/diagnostics11050804 [29] Retrospective Prognostic Classification GI; pancreas Database
DT, GB GNB, KNN,
MLP, MNB, LR, RF,

SVC, XT
Y 10-fold Y N

Tirosh A 2019 10.1002/cncr.31930 [30] Prospective Diagnostic Classification Pancreas GWAS Unsupervised
clustering analysis N N N N

Udristoiu AL 2021 10.1371/journal.pone.0251701 [31] Prospective Diagnostic Classification Pancreas Imaging (EUS) CNN-LSTM
(different models) Y N Y 0.970–0.990 N

van Gerven
MAJ 2007 10.1016/j.artmed.2006.09.003 [32] Retrospective Prognostic Classification Not specified Database NTC Y leave-one-out N N

Wan Y 2021 10.1002/mp.15199 [34] Retrospective Prognostic Classification Pancreas Imaging (CT) SAE, hybrid
(SAE+handcrafted) Y 0.766–0.934 5-fold Y 0.739 N

Wang Q 2020 10.1042/BSR20193860 [35] Prospective Diagnostic Classification Small intestine
Gene

expression
assay

ANN N N N N

Wang Q 2021 10.3389/fonc.2021.725988 [36] Retrospective Diagnostic Classification Liver
Gene

expression
assay

SVM N N Y 0.945–1.000 N

Wehrend J 2021 10.1186/s13550-021-
00839-x [37] Retrospective Diagnostic Classification Liver Imaging

(PET/CT) CNN Y 5-fold Y 0.700–0.730 ** N

Xing F 2013 10.1007/978-3-642-40811-
3_55 [38] Prospective Diagnostic Classification Pancreas Histology SVM N N Y N

Xing F 2014 10.1109/TBME.2013.2291703 [39] Prospective Diagnostic Classification GEP Histology SVM N 3-fold N N

Xing F 2015 10.1007/978-3-319-24574-
4_40 [40] Prospective Diagnostic Classification Not specified Histology CNN N N Y N

Xing F 2016 10.1007/978-3-319-46726-
9_22 [41] Prospective Diagnostic Classification Pancreas Histology CNN Y N Y N

Xing F 2016 10.1109/TMI.2015.2481436 [42] Prospective Diagnostic Classification Pancreas Histology CNN Y N Y N

Xing F 2019 10.1109/TBME.2019.2900378 [43] Prospective Diagnostic Classification Pancreas Histology

FCN-8s, FCRNA,
FCRNB, FRCN,

KiNet, SFCNOPI,
U-Net

Y N Y 0.525–0.724 N

Zhang X 2020 10.1200/CCI.19.00108 [45] Retrospective Diagnostic Classification Pancreas Histology GADA Y 0.627–0.857 2-fold Y 0.462–0.775 N

Zhang T 2021 10.3389/fonc.2020.521831 [46] Retrospective Prognostic Classification Pancreas Imaging (CT) DC + AdaBoost, DC +
GBDT, XGB + RF Y N Y 0.570–0.860 N

Zhou RQ 2019 10.12998/wjcc.v7.i13.1611 [47] Retrospective Prognostic Classification Pancreas Histology LDA, LR, MLP, SVM N leave-one-out Y N

Zimmerman
NM 2021 10.2217/fon-2020-1254 [48] Retrospective Prognostic Classification Multiple Database DT N N N N

* Only the algorithm with the best performance is mentioned. ** AUPRC (instead of AUROC).
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In the set of 44 studies, there were 53 outcome analyses, i.e., 7 studies with more
than 1 outcome (5 with two outcomes [13,38,43,45,53], and 2 with three outcomes [15,33]).
The most popular outcome analyses were tumor type identification and tumor grade
(10 analyses each, 18.9%), tumor detection (5 analyses, 9.4%), and 5-year survival, cell
segmentation, disease progression, disease recurrence and Ki-67 scoring (2 analyses each,
3.8%). Table 3 summarizes these outcome analyses, along with the references to relevant
studies.
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Table 3. Most popular outcome analyses within the included studies.

Outcome Number of Studies (%) Reference No.

Tumor type identification 10 (18.9) [12,18,19,21,23,25,31,36,37,51]
Tumor grade 10 (18.9) [10,11,17,34,46,47,49,50,52,53]

Tumor detection 5 (9.4) [14,20,26,33,43]
5-year survival 2 (3.8) [22,27]

Cell segmentation 2 (3.8) [40,42]
Disease progression 2 (3.8) [13,29]
Disease recurrence 2 (3.8) [28,53]

Ki-67 scoring 2 (3.8) [38,39]

The next analysis we performed was on the number of AI algorithms mentioned within
the included studies. As it is expected, a number of studies included more than one AI
algorithms, either in an attempt to find the most accurate among them or in the form of
comparison of a novel AI model against established ones. In total, we identified 47 differ-
ent models, with 10 among them being the most utilized ones (Figure 6), i.e., Supporting
Vector Classification/Machine (14 analyses, 29.8%) [11,17,21,22,27–29,33,36,38,39,47,51,53],
Convolutional Neural Network (10 analyses, 21.3%) [15,17,20,23,31,37,40–42,49], Ran-
dom Forest (9 analyses, 19.1%) [11,14,17,22,27,29,46,51,53], Logistic Regression (8 anal-
yses, 17.0%) [11,17,27,29,32,47,51,53], Decision Tree (6 analyses, 12.8%) [11,13,29,33,48,51],
Gradient Boosting Decision Tree [29,46,51,53], Multi-Layer Perceptron [25,29,33,47], and
(Gaussian) Naïve Bayes [22,29,32,51] (4 analyses each; 8.5%), and AdaBoost [22,46,51], and
Linear Discriminant Analysis [10,47,51] with 3 analyses each (6.4%).
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We then proceeded with the potential of quantitative assessment of the included
studies. Again, we utilized the seminal study of Luo et al. [9] and evaluated the included
studies for reporting their training sets, testing sets, cross-validation method and external
validation sets. As surrogate metrics of performance for the studied AI algorithms, we
considered Accuracy, F1-score, AUROC (95% CI) and AUPRC (95% CI). Only 33 studies
out of the included 44 (75%) reported clearly on their training set [10,12,14–17,19,21–23,25–
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34,37,39,41–47,49–51,53], 19 mentioned a cross-validation method (43.2%) [10,14,15,17,21,22,
25,27–29,32–34,37,39,45,47,49,51], 36 reported their test set (81.8%) [10,11,13,15,17–23,25,27–
29,31,33,34,36–53], and only 4 had an external validation set (9.1%) [22,28,42,53]. Thirty-five
studies (79.5%) reported at least 1 performance metric in at least 1 dataset (training or
test). However, this feature was very heterogenous and non-consistent and we decided
not to proceed with further analysis (Supplemental Table S1). Regarding training sets,
the highest reported Accuracy value was 1.000 (SVM, MLP) [21,33] and the lowest was
0.540 (noisy threshold classifier) [32], the highest reported F1-score was 0.876 (SVC) [29]
and the lowest was 0.578 (FCRNA) [43], and the highest reported AUROC was 1.000
(algorithm not specified) [44], while the lowest one was 0.570 (CNN) [17]. With respect
to test sets, the highest reported Accuracy value was 1.000 (SVM) [21] and the lowest
was 0.310 (CNN) [23], the highest reported F1-score was 0.989 (Decision Tree, Random
Forest) [51] and the lowest was 0.578 (FCRNA) [43], and the highest reported AUROC
was 1.000 (SVM) [35], whilst the lowest one was 0.462 (Generative Adversarial Domain
Adaptation) [45]. Table 2 summarizes the prediction characteristics, the source of data, the
implemented AI algorithm(s), and the datasets for each of study included in our scoping
review.

4. Discussion

This scoping review deals with the current applications of artificial intelligence in the
diagnosis and management of gastrointestinal and pancreatic neuroendocrine neoplasms
(GEP-NENs). GEP-NENs are inherently rare neoplasms, as such an empirical approach to
their management would be unreliable. One of the advantages of AI and its application
through machine learning and deep learning is that it can integrate a vast amount of data
collected anywhere in the world (big data) and then render them applicable into clinical
practice in an individualized manner.

Despite the rarity of NENs, our research yielded a total of 44 relevant studies, the vast
majority of which have been published over the last three years. On the one hand, this
harmonizes with the general tendency of incremental accumulation of pertinent evidence
in Medicine [54,56], on the other hand it may reflect an increasing diagnosis rate of NENs,
as it has been documented by the SEER registry [2]. In any case, this establishment may
pave the way for future research.

Nevertheless, available studies have several limitations. First, a major restriction are
the small datasets of the majority of the studies. There were only 3 among them which used
data from large databases with populations of 13,830 [48], 10,580 [22] and 9,663,315 [27]
patients, whereas the rest of the studies had populations of 50–361 individuals. Another
serious point is that most of the studies did not provide clear information on the structure
of the prediction problem (i.e., study design, prognostic vs. diagnostic, classification vs.
regression), as such these pieces of information were derived after strenuous digest through
the text. Most importantly, there is a non-negligible number of studies with poorly defined
training and test sets. Another area of confusion is the lack of universal nomenclature
regarding the discrete data sets (i.e., training, validation and test). Some studies use the
terms “test set” and “validation set” interchangeably, whereas others are structured based
on all three datasets. Future studies should also present their findings on AI algorithm
performance in a robust way, including accuracy, F1-score, AUROC and AUPRC, because
each one measures different performance aspects and may be a better predictor than the
other ones under certain circumstances [57]. Also, such quantification will pave the way for
meta-analyses. Furthermore, the ultimate goal of AI is the implementation of the findings
of relevant studies into clinical practice. This can be achieved only if the performance of AI
algorithms is benchmarked against established tests. Given the small number of studies
with an external validation dataset, there is plenty of room for improvement in the field.
As mentioned earlier, future endeavors in the field should follow a universal structure as
per the existing guidelines, for purposes of both reproducibility and quality [9,58].



Diagnostics 2022, 12, 874 11 of 14

As one proceeds from the structure to the content of relevant studies, as we docu-
mented, the most popular topics are tumor type identification and grade, tumor detection,
5-year survival, cell segmentation, disease progression, disease recurrence and Ki-67 scor-
ing. In a recent review, Yang et al. showed similar applications of AI with satisfactory
prediction accuracy in the diagnosis, risk stratification and prognosis of small intestinal
tumors [59]. Interestingly, this review shares 3 studies with the review in hand [14,21,33],
which is not surprising given the rarity of small intestinal tumors and the major share of
NENs among them. Kim et al. performed a similar analysis of the usefulness of AI in
gastric neoplasms [60].

The combination of radiomics, i.e., the multitude of features and technical parameters
that can be extracted from imaging studies, with the capability of big data processing
offered by AI has opened new frontiers and has led to an exponential burst of pertinent
literature. The fundamentals of the process of transforming an imaging study into data that
can be processed by an AI algorithm are image acquisition, segmentation (i.e., selection of
a region of interest in two dimensions), preprocessing (which allows data homogenization),
data extraction, data selection and modelization. Given the routine performance of a
constellation of imaging studies in clinical practice, this concept could contribute to the
prompt diagnosis of NENs even at a preclinical stage. Promising evidence from imaging of
pancreatic tumors with CT and MRI shows that this technology could find more widespread
application in the field of NENs [61]. Partouche et al. performed a systematic review and
meta-analysis of 161 studies on AI and imaging for Pan-NETs [62]. In accordance with our
review, they documented wide heterogeneity of practices, poor procedural compliance
with international guidelines, and poor reporting of clinical protocols. They reach the
conclusion that standardization and homogenization is the key to future research if AI
has the aspiration to enter clinical practice as a standard of care. In an another recent
review on the role of radiomics in Pan-NETs, Bezzi et al. also acknowledge the need for
further validations before widespread clinical adoption, nevertheless this discipline has
great potential in decision-making regarding diagnosis and management [63].

In a process similar to data extraction from imaging studies, histology images can
be utilized for processing with the aid of AI algorithms, following a pipeline from whole
slide images (WSIs), segmentation into tiles, biomarker visualization and classification.
Kuntz et al. recently published a review of 16 studies that used CNN in order to analyze
gastrointestinal cancer histology images and showed good performance metrics with
external validation, but none of them had clinical implementation for the time being [64].

The main limitation of the review in hand is the heterogeneity of the included studies,
on grounds of methodology, dataset allocation and performance benchmarking, which
did not allow for a meta-analysis. Structured publications are consequently mandatory in
order to facilitate reproducible evidence of high quality. Another predicament for our study
is set by the heterogeneity of NENs itself, which may raise methodological limitations.
Nevertheless, given the probing nature of our research, an inclusive search strategy was
inevitable. Future reviews could focus on specific histologic neuroendocrine types or
disease stages.

5. Conclusions

To our knowledge, this is the first attempt to systematize existing evidence on the
applications of AI in the field of NENs. Published studies focus mostly on diagnosis
(tumor detection, tumor identification and tumor grading) rather than management and
decision-making, mainly with the use of imaging studies and histology samples. Future
directions should take into serious consideration the reporting and quality prerequisites set
by already existing guidelines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12040874/s1, Table S1: Raw data.
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