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Abstract

Motivation: Protein–protein interactions (PPI) play a crucial role in our understanding of protein

function and biological processes. The standardization and recording of experimental findings is

increasingly stored in ontologies, with the Gene Ontology (GO) being one of the most successful

projects. Several PPI evaluation algorithms have been based on the application of probabilistic

frameworks or machine learning algorithms to GO properties. Here, we introduce a new training

set design and machine learning based approach that combines dependent heterogeneous protein

annotations from the entire ontology to evaluate putative co-complex protein interactions deter-

mined by empirical studies.

Results: PPI annotations are built combinatorically using corresponding GO terms and InterPro

annotation. We use a S.cerevisiae high-confidence complex dataset as a positive training set. A ser-

ies of classifiers based on Maximum Entropy and support vector machines (SVMs), each with a

composite counterpart algorithm, are trained on a series of training sets. These achieve a high per-

formance area under the ROC curve of�0.97, outperforming go2ppi—a previously established pre-

diction tool for protein-protein interactions (PPI) based on Gene Ontology (GO) annotations.

Availability and implementation: https://github.com/ima23/maxent-ppi

Contact: sbh11@cl.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite their structural diversity, proteins only achieve full potential

by direct interaction in multi-protein complexes involved in funda-

mental biological processes such as gene expression, cell differ-

entiation and cell–cell communication (Alberts, 1998; Bonetta,

2010; Vidal et al., 2011).

Protein interactions have been studied by low-throughput assays

and associated analytical methods, including x-ray crystallography

(Scott et al., 2009), nuclear magnetic resonance (NMR) and surface

plasmon resonance (SPR), fluorescence resonance energy transfer

(FRET) and isothermal titration calorimetry (ITC). Such methods

are reviewed in (Collins and Choudhary, 2008; Shoemaker and

Panchenko, 2007). Additionally, several mass spectrometry methods

have more recently been used to interrogate protein interactions

in multi protein complexes (Smits and Vermeulen, 2016). These

structural proteomics approaches, including native mass spectrome-

try (Mehmood et al., 2015), and crosslinking mass spectrometry

(Liu et al., 2015), nicely complement high-resolution cryo-electron

microscopy (Huis In ’t Veld et al., 2014).
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The development of high-throughput approaches has generated

large datasets, with the largest fraction being generated by yeast two-

hybrid (Y2H) and affinity purification coupled with mass spectromet-

ric identification (AP-MS) (Supplementary Note 1). These methods

are not without limitations and false discoveries (Armean et al., 2013;

Deane et al., 2002; Sprinzak et al., 2003), despite experimental pipe-

lines intended to reduce false interactions (Rees et al., 2011, 2015).

1.1 Annotation ontologies
Computational methods to identify and filter false discovery from

empirical output represent an alternative to assiduous and time-

consuming experimental validation or use of simple subtraction

of proteins from datasets based on their likelihood to be co-

contaminants (Mellacheruvu et al., 2013). An appropriate mapping

between known properties of candidate proteins and their likelihood

of interaction is key to the success of computational approaches.

In this context, many contemporary PPI prediction and evalua-

tion algorithms use a range of associated information to describe

likely binding partners, including co-expression and co-localization

data, known involvement in biological processes, computational

predictions of protein structure (Mosca et al., 2013; Zhang et al.,

2012), and focused interaction data acquired using empirical

approaches such as AP-MS (Armean et al., 2013; Teo et al., 2014).

Annotations that relate gene products to biological process, molec-

ular function and sub-cellular localization have been curated for over

a decade via the Gene Ontology (GO) (Ashburner et al., 2000).

Associated evidence codes describe whether annotations are derived

from experimentation, computational analysis, author statements, dur-

ing curation or by automated assignment (Rogers and Ben-Hur, 2009;
�Skunca et al., 2012; Yon Rhee et al., 2008). Each of the three ontology

branches are hierarchically structured, with generic annotation terms,

or nodes, forming roots for branches of more specific terms.

InterPro is a comprehensive database of protein domain annota-

tions from more than a dozen databases (Mitchell et al., 2015). The

domain annotation is organized in a hierarchical structure, with

domains that share higher-level structure and/or function at the top

and those describing more specific functional subfamilies or struc-

tural/functional subclasses of domains at the bottom. Protein

domains have been used in computational methods to identify PPIs

either by single domain association (Sprinzak and Margalit, 2001),

by frequency of domain co-occurrence or domain combinations

(Han et al., 2003). These methods are extensively reviewed by Ta

et al. (Ta and Holm, 2009). Domain–domain interactions have been

identified using 3D structures in PDB (Rose et al., 2017), 3did

(Mosca et al., 2014) or predicted based on orthogonal information

as PPIs with DOMINE v2.0 containing more than 20 513 known or

predicted domain–domain interactions (Yellaboina et al., 2011).

1.2 Prediction of protein interactions from annotation
Aside from the choice of classification algorithm, the availability of

a realistic known or ‘training’ scenario that incorporates an appro-

priate annotation space within which to represent pairs of proteins

is fundamental to such approaches. For a brief review of the training

set design and GO based annotation space used in supervised

machine learning applications to predict protein-protein interactions

see Supplementary Note 2.

Most GO term similarity measures are restricted to descriptive

probabilities of one shared GO term. There are multiple ways to

select the most informative GO terms to compare: Jain and Bader

used the first common ancestor (Jain and Bader 2010); Maetschke

et al. (2012) compared an extensive list of approaches for selecting

the parents concluding that the set of parents up to the first common

ancestor is the most suitable (Maetschke et al. 2012), while Yang

et al. (2012) used parents and descendants of the given GO terms to

improve GO semantic similarity performance (Yang et al. 2012).

Many supervised machine learning approaches ignore some of

the term relationships, therefore Maetschke et al. ( 2012) used simi-

larity scores on all GO term parents up to the lowest common ances-

tor (ULCA), including both relationships (‘is_a’ and ‘part_of’) in a

single random forest classifier. This approach was observed to per-

form better than (i) similarity scores applied to the most specific GO

terms, (ii) similarity scores applied only to the lowest common

ancestors (OLCA) or (iii) similarity scores applied to parent terms

up to the lowest common ancestor (ULCA) excluding the lowest

common ancestor itself (Maetschke et al., 2012).

Boyanova et al. used the GO similarity of the Most Informative

Common Ancestor (MICA) as implemented in the GOSim package

(Fröhlich et al., 2007) to build edge weights (Boyanova et al., 2014).

These edge weights in addition to node weights, based on presence/

absence of proteins from reference networks, were grouped into

specific functional modules by heinz, (heavy induced subgraph algo-

rithm) (Dittrich et al., 2008).

Methods to compute similarity scores between GO annotations

have been grouped into node-based (GO terms), edge-based (GO

term relationships) and hybrid methods, each with their own limita-

tions (Pesquita et al., 2009). Information Content (IC) sequence sim-

ilarity is computed using the most informative node and the node’s

use frequency, however the choice of node and the frequency can

bias the results towards less studied species as their annotation fre-

quency is lower than for more researched organisms. Edge-based

methods, for example shortest path, are sensitive to terms with the

same depth but different precision. Hybrid methods offer an alterna-

tive by defining the semantic similarity of one term as the sum of a

chosen parent’s set (Pesquita et al., 2009). A significant improve-

ment to estimating semantic similarity using only child nodes or

only parent nodes is to use both sets to infer similarity. The combi-

nation of both sets raises the question of how to best use the ontol-

ogy structure to maximize inference (Bettembourg et al., 2014;

Mazandu and Mulder, 2013).

Co-evolution of proteins, the presence/absence of protein pairs

across taxa, has been used in several similarity scores and made avail-

able through STRING (Szklarczyk et al., 2015), Prolinks (Bowers

et al., 2004) or ECID (Andres Leon et al., 2009). These methods range

from using binary representation to a mix of similarity metrics and

taxonomy. A recent development is an automated approach, sub-

setting the taxa to the most informative set of species for the specific

organism PPI prediction problem (de Juan et al., 2013; Ochoa and

Pazos, 2014; Simonsen et al., 2012; �Skunca and Dessimoz, 2015).

The combination of protein phylogenetic profiling, phyloprof

(Simonsen et al., 2012) and go2ppi (Maetschke et al., 2012) resulted

in an improvement from 0.61 to 0.7 AUC (area under the ROC

curve) when trained and tested on yeast PPI published data (Yao

et al., 2015). More recently the information content of a GO term

for a specific protein has been adjusted based on all the other

GO terms, including ancestors terms, assigned to the protein

(Bandyopadhyay and Mallick, 2017). All GO ancestor terms have

been recently used as part of a new Weighted Inherited Semantic

(WIS) measure (Tian et al., 2016).

1.3 Maximum Entropy
Maximum Entropy modelling is considered to be among the simplest

predictive models, as its only constraint is to train a model that
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maximizes expected disorder in the system as quantified by the

entropy. Information theory and Maximum Entropy were successfully

used by Alterovitz et al. (2010) to evaluate and suggest improvements

to the GO ontology structure based on terms at the same depth level

having varying information content, inter-level variability (one

parent-child relationship might encode a higher information content

increase than another) and topological variability (Alterovitz et al.,

2010). The knowledge gained in respect of the GO ontology was used

to create an improved GO: single-level changes were introduced,

1001 relationships and 11% of GO terms modified. The modifica-

tions lead to a significant change in functional interpretation for

97.5% of genes and on average 14.6% of GO categories.

Here, we introduce a novel approach that uses Maximum Entropy

to capture and take advantage of the entire ontology structure—all

relationships and ancestor terms—that offers an efficient method for

protein co-complex evaluation with insight into the individual weights

for each annotation. We apply a Maximum Entropy model, GIS-

MaxEnt [Generalized Iterative Scaling Maximum Entropy (Darroch

and Ratcliff, 1972; Jain et al., 2005)] to the interaction prediction sce-

nario described above and assess its predictive power.

2 Materials and methods

2.1 Problem formulation and dataset
The manually curated S.cerevisiae CYC2008v2.0 (Pu et al., 2009)

dataset was selected as a starting point when building a set of high con-

fidence protein interactions (true positives). The CYC2008v2.0 dataset

comprises 408 manually curated protein complexes obtained from

consolidation of two genome-wide affinity purification mass spectrom-

etry (AP-MS) studies. The number of complex members ranges from 2

to 81 (cytoplasmic ribosomal large subunit) with a median of 3 com-

plex members (Fig. 1). This dataset has been used as a validation set

for the study of conservation of multiprotein complexes among meta-

zoans (Wan et al., 2015) and in the identification of essential proteins

based on PPI networks and complexes (Qin et al., 2016).

Matrix expansion—a method that assumes binary interaction

between any bait–prey or prey–prey proteins identified in the same

experiment—was used to expand the 408 high-confidence overlap-

ping complexes to 11 923 S.cerevisiae binary interactions among

1627 genes, of which 211 belonged to more than one complex. An

alternative to matrix expansion, that we chose not to employ, is

the more conservative spoke expansion whereby bait proteins are

assumed to interact only with prey proteins (Hakes et al., 2007).

Considering the rate at which proteins are annotated [estimated

300–500 proteins in 6 months (Radivojac et al., 2013)] it is sensible

to expect that annotations were assigned based on the publication of

this dataset. Using annotations created due to the publication of a

dataset when evaluating the same dataset would result in circularity

and bias in the model. To avoid this bias, the 11 923 S.cerevisiae

interactions were transferred by homology to D.melanogaster inter-

actions. The mapping was performed by identification of interologs

of yeast (Walhout, 2000) in Drosophila. The gene homologs were

extracted using FlyMine v. 33 (Lyne et al., 2007) which includes

TreeFam v7.0 (Ruan et al., 2008). The 11 923 S.cerevisiae interac-

tions were transferred to 9593 binary interactions among 1077

genes in D.melanogaster. These 9593 binary interactions are consid-

ered to have high confidence, and hence form the positive set.

In order to create a negative training set counterpart, 9593 pairs

of genes were randomly sampled from the set of 1077 genes, ignor-

ing pairs of genes already present in the positive set or published as

interacting based on FlyMine v33, which imports BioGRID (Stark

et al., 2011), IntAct (Kerrien et al., 2012) and FlyBase (McQuilton

et al., 2012). This approach ensured the same level of protein anno-

tation in both training classes. Additional filters including different

subcellular locations (Jansen et al., 2003) were later assessed as

introducing significant bias into the training problem (Ben-Hur and

Noble, 2006). Depending on organism and model, GRIP (Browne

et al., 2009) and Negatome (Smialowski et al., 2010) offer alterna-

tive approaches for training set construction.

The gene pairs present in the positive and negative set will be

referred to as protein interactions in the remainder of this work.

2.2 Annotation
GO and InterPro annotations including all parent terms were extracted

for each gene using FlyMine v33. GO terms with evidence codes NAS

(Non-traceable Author Statement), ND (No biological Data available),

IEA (Inferred from Electronic Annotation) and NR (Not Recorded),

or, those labelled with the ‘Not’ qualifier, were excluded. Given indi-

vidual GO branch depths, most unique annotation pairs originated

from the biological process branch (Supplementary Table S1). 841 of

the 1077 genes had at least one GO or InterPro annotation

(Supplementary Table S2 for gene annotation coverage).

The distribution of the shortest paths from each GO term to its

corresponding root is slightly skewed towards shorter distances

(Supplementary Fig. S1). For biological process (BP) and molecular

function (MF) most of the terms are centered half way down the

ontology tree.

2.3 Annotation representation
Protein annotation was transferred at the interaction level by pairing all

annotation terms (P1 ¼ fGO1xjx ¼ 1::ng), including all parents, from

one protein with all annotation terms (P2 ¼ fGO2yjy ¼ 1::mg) from

the other protein such that P1P2 ¼ fGO1xGO1yjx ¼ 1::n; y ¼ 1::mg.
The three GO branches were treated separately.

The above approach resulted in the annotation coverage of the

protein interactions being 54.25% (5204/9593) for the positive set

(A) and 57.42% (5508/9593) for the negative set (B) (Fig. 2 and

Supplementary Table S3).

By using all GO parent terms in our annotation preparation, we

ensure that the root terms will most often form pairs leading to high

frequency in observance, and a low information content evaluation

by the Maximum Entropy model, as well as ensuring that any rela-

tion between the child and parent terms is maintained.

Fig. 1. Barplot distribution of the number of members per complex in the

CYC2008 dataset of 408 complexes. The four largest complexes are: the cyto-

plasmic ribosomal large subunit with 81 members, the cytoplasmic riboso-

mal small subunit with 57 members, the mitochondrial ribosomal large

subunit with 44 members and mitochondrial ribosomal small subunit with 32

members. Most complexes 171/408 (42%) have 2 members

1886 I.M.Armean et al.

Deleted Text: , 
Deleted Text: (
Deleted Text: Jain <italic>et<?A3B2 show $146#?>al.</italic>, 2005; 
Deleted Text: )
Deleted Text: 2 Methods
Deleted Text: .
Deleted Text: F
Deleted Text: D
Deleted Text:  
Deleted Text:  &hx2013; 
Deleted Text: -
Deleted Text: -
Deleted Text:  - 
Deleted Text: ,
Deleted Text:  
Deleted Text: , 
Deleted Text: (
Deleted Text: -
Deleted Text: (Radivojac <italic>et<?A3B2 show $146#?>al.</italic>, 2013)) 
Deleted Text: ,
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: , 
Deleted Text: , 
Deleted Text:  
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: .
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx803#supplementary-data
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx803#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx803#supplementary-data
Deleted Text: .
Deleted Text: R
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx803#supplementary-data


In the positive set (A) 3164 gene pairs had at least one annotation in

each of the annotation categories GO-CC, GO-MF, GO-BP and

InterPro (IP). Out of these 3164, 903 (28%) were interactions involving

histone proteins, 880 (27%) were ribosomal protein interactions related

to the large ribosomal subunit, and 522 (16%) related to the small ribo-

somal subunit (Supplementary Fig. S2). To avoid sampling a large num-

ber of ribosomal or histone interactions, which would have made the

positive subset very specific, these interactions were excluded before

sampling. After exclusion of histone and cytoplasmic ribosomal related

proteins, the positive set comprised 859 interactions. For ease in per-

formance testing, 500 out of the 859 examples were randomly sampled.

The structure of the ontologies is reflected in the number of unique

annotations extracted from each of them; the highest number of anno-

tations is present in the GO biological process branch (22 259 over 15

levels), while InterPro has fewer terms (6622 with the maximum depth

of 8 levels). The number of annotations obtained from each annotation

source in the final training set is displayed in Supplementary Table S4.

The negative set covers a broader range of annotations than the posi-

tive set, due to the increased randomization of the data.

2.4 Classifiers
We used four machine learning methods to predict PPIs.

Generalized iterative scaling maximum entropy (GIS-MaxEnt)

(Darroch and Ratcliff, 1972) and support vector machines (SVMs)

(Shawe-Taylor and Cristianini, 2004) are standalone methods. The

other two methods—GIS-MaxEnt Ensemble and Multiple Kernel

Learning (MKL)—are combinations of classifiers. A brief introduc-

tion to the underlying algorithms is given in the Supplementary

Data, along with details of the specific software used. This section

provides information that is specific to our own experiments.

For the two standalone classifiers we trained on each individual

annotation source GO-BP, GO-CC, GO-MF and IP. We also used

two combined sources: GO, which combines the GO-BP, GO-CC and

GO-MF sources, and GO-IP which includes all the sources combined.

The GIS-MaxEnt Ensemble and MKL methods were allowed to com-

bine GO-BP, GO-CC, GO-MF and IP as part of the training process.

2.4.1 Generalized iterative scaling—maximum entropy

Internally the GIS-MaxEnt method specifies the feature functions fi

x; yð Þ : X� Y ! 0; 1f g that act on training examples ðx; yÞ. In our

experiments using the kernel methods we used the feature functions

fi x; yð Þ ¼
1; if GO term pair i is in x; yð Þ

0; otherwise:

(

The implementation of GIS-MaxEnt used (Supplementary Note 3)

was modified to use the mean number of annotations per interaction

as internal correction constant in the training step, as opposed to the

maximum number of annotations. Subsequent to this we employed

the default settings with a maximum of 100 iterations.

2.4.2 Support vector machine (SVM)

We employed a kernel K derived from the polynomial kernel

(Shawe-Taylor and Cristianini, 2004)

K x;x
0

� �
¼ x; x0h i þ cð Þd

where x; x0h i denotes the inner product of x and x
0
. Specifically we

set c ¼ 0 and d ¼ 1 and refer to the kernel K x; x
0� �
¼ x;x0h i as the

linear kernel.

A common preprocessing step when applying machine learning

methods is to normalize the datasets such that features have a mean

of zero and a standard deviation of one. However, the datasets

described above are both large and sparse, and normalizing the fea-

tures would make them dense. Instead of doing this we implemented

a kernel normalizer to normalize by the Tanimoto coefficient

(Tanimoto, 1958). This operates directly on the kernel matrix,

which is significantly smaller than the feature matrices. It computes

the Jaccard similarity as

K0 x; x
0

� �
¼

K x; x
0� �

K x; xð Þ þ K x0;x0ð Þ � K x;x0ð Þ

where K0 is the normalized kernel, K is the original kernel—the lin-

ear kernel in our experiments—and x and x0 are feature vectors.

2.4.3 GIS-MaxEnt ensemble

Individual GIS-MaxEnt models were trained on the four data sub-

sets and their resulting predictions on the training data used as input

to a linear SVM decision layer (Supplementary Fig. S3).

2.4.4 Multiple kernel learning

A kernel K0i was constructed for each of the data subsets, based on

the Jaccard similarity and linear kernel as was the case for the SVM.

The multiple kernel was then

K0 0 x;x0ð Þ ¼
X4

i¼1

biK
0
i x; x0ð Þ

We used the ‘2-norm on the values bi (Supplementary Note 4).

2.5 Model selection and estimated generalization
Estimated generalization performance was assessed by repeated

stratified (Stratification in this context refers to the preservation of

the original class proportions in each partition.) partitioning of all

labelled data examples into training (90%) and test (10%) parti-

tions. Models were created on the training partition and their pre-

dictions assessed on the test partition. We used 50 divisions of the

data to assess each method (more details in Supplementary Note 5

and Fig. S7).

2.6 go2ppi system
Maetschke et al. compared 10 different approaches of generating a

set S of GO terms based on two sets of GO terms S1 and S2, each

corresponding to different proteins. The ULCA approach outper-

formed the others and was selected to be implemented in the go2ppi

system. The GO term set S for each protein interaction was trans-

formed to a binary feature vector v where each unique GO term cor-

responded to a unique index i and the corresponding position in the

Fig. 2. Annotation coverage of the protein interactions of the two initial train-

ing sets each containing 9593 interactions
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vector was set to 1 if the GO term was present or 0 otherwise. Using

this configuration, a sparse high-dimensional matrix was built and

used as input to a machine learning algorithm. The go2ppi software

offers two algorithm implementations: Naı̈ve Bayes (NB) and

Random Forest (RF) (Maetschke et al., 2012).

The go2ppi system is an appropriate system for comparing

against the proposed ontology-based models. First, there is an exten-

sive list of approaches for extracting PPI relevant GO terms explored

by the go2ppi authors with the one performing best being imple-

mented in go2ppi. Secondly, the go2ppi pipeline is freely available.

The labelled examples were used to create two input files as

required by go2ppi: a binary protein—protein interaction file and a

protein annotation file. The annotation file containing only the most

specific GO terms. go2ppi (version 1.06) was set to be evaluated

with 10-fold cross validation, 90%/10% split and 50 runs to repli-

cate the training and testing of our own methods. The same GO obo

(open biomedical ontologies format) version was used as in FlyMine

v33, and both Random Forest (RF) and Naı̈ve Bayes (NB) imple-

mentations were tested. go2ppi reports the AUC in the training

phase and testing phase.

3 Results

3.1 Performance comparison: GIS-MaxEnt versus SVM
The GIS-MaxEnt and SVM models’ performance was assessed on a

D.melanogaster training set composed of 500 positive examples and

500 negative examples described by 224 629 annotations based on

InterPro and GO annotation terms (see Supplementary Table S4 and

Section 2).

3.1.1 GIS-MaxEnt applied on different annotation sets

The GIS-MaxEnt based model trained on the four individual data

sources (three GO branches and one InterPro) performed best when

trained on the GO cellular component having a Matthews correla-

tion coefficient (MCC) of 0.83 with the lowest performance being

present for the one trained on biological process with a MCC of

0.56 (Fig. 3 and Supplementary Table S6). A reduced number of

annotations does not correlate directly to a lower MCC, for example

there were 8632 InterPro based terms and 8875 GO molecular func-

tion terms (Supplementary Table S4) resulting in 0.64 MCC for

InterPro and 0.80 for the GO branch. The observed difference is

likely due to the underlying ontology structure with the biological

process GO branch having the most terms and the maximum num-

ber of levels. The InterPro structure is shorter in depth (maximum 8

levels deep) and very wide (1926 distinct terms on the first level)

reflecting the diversity in protein families. The difference between

the individual datasets is also highlighted when plotting the ROC

curves (Supplementary Fig. S4).

Varying accuracies were obtained on the individual datasets,

with the combination of all four leading to the highest accuracy of

0.93 and the highest AUC of 0.979 (Fig. 3).

The GIS-MaxEnt model trained on all three GO branches also

has a very good performance and is not significantly different to the

performance on the GO-IP dataset [Wilcoxon unpaired two sample

test, P-value<0. 05 (Supplementary Table S7)]. We observe the dif-

ference between the performance of GO-CC and GO-MF to be less

significant than the one between GO-CC and GO-BP or GO-CC

and GO-IP. Regardless of its low number of annotations

(Supplementary Tables S1, S2) the GO-CC branch is the second

dataset in respect of performance contribution to the GIS-MaxEnt

GO-IP dataset.

3.1.2 SVM applied on different annotation sets

The SVM has a high performance (AUC above 0.8) on all of the

training sets, with the GO-IP dataset having the highest AUC 0.984

(Supplementary Fig. S5). Based on MCC, SVM-IP is the least suc-

cessful combination, with SVM-BP and SVM-GO-MF being rela-

tively comparable and SVM-GO-CC having a higher MCC of 0.83

(Fig. 3 and Supplementary Table S6).

The slight increase of SVM-GO-MF MCC over SVM-GO-BP is

overturned when the AUC is taken into consideration, however the per-

formance difference is not significant (Supplementary Table S8). Any of

the trained SVM models display a significant performance difference

against SVM-GO-IP except SVM-GO which has P-value¼0.68

(Wilcoxon test on MCC values).

3.1.3 GIS-MaxEnt compared to SVM

GIS-MaxEnt and SVM perform well on the different training sets.

There are some notable differences. If the MCC performance rank-

ing of the four primary datasets (GO-MF, GO-BP, GO-CC, IP) for

each method is compared then the only datasets that do not change

position are GO-CC and GO-MF, being ranked first and second.

Only GO-CC maintains its rank when also taking the AUC into

consideration.

GIS-MaxEnt maintains the performance rank between MCC or

AUC, while SVM has an inversion of the rank for GO-BP and GO-

MF, which is not surprising given the relatively small difference in

MCC performance.

Comparing the two trained models GIS-MaxEnt and SVM to

each other on the same sets, they have a significantly different per-

formance for GO-BP set (P-value 9.29E-11), GO biological process

ontology being the one with the highest number of terms. If the

P-value is taken as a measure of similarity, then the models trained

on IP are most similar, followed by GO-CC, suggesting that the

InterPro and cellular component annotations are able to clearly sep-

arate the positive from the negative examples and therefore repre-

sent good quality annotation.

The significantly different performances between the models on

the other datasets suggests that each model has learned different sep-

aration rules from the same training set, despite similar performance

(Supplementary Table S9).

Fig. 3. Performance of the different systems trained on the different datasets

evaluated using accuracy (ACC), Matthews Correlation Coefficient (MCC), F1,

recall and precision as defined in the formulas (Supplementary Tables S5,

S6). GIS-MaxEnt trained on the six different training sets: GO-BP, GO-CC, GO-

MF, GO, GO-IP, SVM trained on the same six training sets: SVM-GO-BP, SVM-

GO-CC, SVM-GO-MF; SVM-GO, SVM-IP, SVM-GO-IP; GIS-MaxEnt Ensemble

(GME) and Multiple Kernel Learning (MKL) which were trained on all the data
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3.2 Ensemble classifiers
3.2.1 GIS-MaxEnt compared to GIS-MaxEnt ensemble

The ensemble version of GIS-MaxEnt has a slight improvement over

GIS-MaxEnt trained on GO-IP in respect of AUC, from 0.979 to

0.981 (Fig. 3, Supplementary Fig. S6) although the difference when

compared on MCC is not significant (Wilcoxon test, P-value<0.05,

see Supplementary Table S10).

GIS-MaxEnt trained on InterPro compared to the GO based

sets continues to have the lowest P-values (P-value 1.34E-17

see Supplementary Table S8, P-value 1.49E-17 see Supplementary

Table S11). This reflects the significantly different annotation struc-

ture of the InterPro annotation vocabulary compared to the GO.

3.2.2 GIS-MaxEnt ensemble compared to MKL

Analysis presented in Table 1 show that MKL is in agreement with

GIS-MaxEnt when trained on individual sources, in evaluating GO-

BP as having the lowest contribution to the overall evaluation and

GO-MF the second highest. However they disagree regarding the

top-ranked contributor: InterPro or cellular compartment (Table 1,

Supplementary Table S6).

In both the GIS-MaxEnt and kernel-based systems, the algo-

rithms trained on all the data sources outperform models trained on

individual sources alone. The ensemble models outperform the

models trained on all data at once (Supplementary Table S7). The

MKL and GIS-MaxEnt Ensemble had almost identical performance

with MKL having a slightly improved MCC (Supplementary

Table S6) although the difference was not significant (Wilcoxon test

P-value<0.05).

3.3 Performance in the context of published systems
Compared to go2ppi, GIS-MaxEnt had higher AUC performance

both when using only the most specific terms and when including

the GO parent terms, outperforming both go2ppi configurations

using either Naı̈ve Bayes or Random Forest (Table 2).

The performance of GIS-MaxEnt is highest when all the GO

branches are used, with a slight improvement when the parent terms

are used as opposed to term-only (Table 2). The ranked order based

on performance is maintained with GO-CC having the highest per-

formance followed by GO-MF and GO-BP. The ontology branch

GO-BP has more than twice as many terms as GO-MF distributed

over the same number of levels (Supplementary Table S1). This has

an impact on the performance of GO-MF and GO-BP in the two

modes: term-only and all-parents. The model trained on GO-BP

term-only is overfitting and GO-BP all-parents has a lower perform-

ance having to deal with a lot more terms from the dense structure.

This is also reflected in the very large number of annotations

obtained when using all the parents (Supplementary Table S4). This

property of the GO-BP branch leads to parent term-based annota-

tion having a higher overlap between leaf terms belonging to a posi-

tive example of PPI and a negative example of PPI, making the

separation between positive and negative examples harder, although

at the same time one could expect that this property could give the

evaluation a better resolution. Based on the difference of 0.78 ver-

sus 0.95 for GIS-MaxEnt and GO-BP it is expected that the

GIS-MaxEnt (term-only) model is overfitting, having a very good

performance on the training set and limited performance on new

examples, due to unseen combinations of GO-BP terms. GO-CC

maintained the top ranked dataset for the Naı̈ve Bayes and Random

Forest models, followed by GO-BP and GO-MF.

The self-test AUC is always higher than the testing phase as it is

computed on the same dataset as the training (Table 2). The RF dis-

plays a bigger difference between the self-test AUC and 10-fold

cross-validation AUC suggesting that Random Forest is more prone

to overfitting than the Naı̈ve Bayes model.

3.4 GO term frequencies
Both GIS-MaxEnt and MKL performed well on the training set. To

check that the problem setting and training set did not represent a

trivial question for the algorithms, we looked for the presence of

GO terms representing protein complexes in our training set. 1679

GO terms were extracted from the GO (v1.1.2412) containing

the word ‘complex’ in the name. Out of these 180 were present in

the training set, and the counts in the positive set were not

significantly different from those in the negative set (Wilcoxon test

P-value¼0.28). The frequencies of all single GO terms in the

positive and negative set are however significantly different at

P-value <0.05 (Fig. 4).

As an independent validation we evaluated the 359 positive PPIs

excluded from the training set by random selection (Section 2.1)

using GIS-MaxEnt trained on GO-IP. 95.8% (344 out of 359) were

correctly evaluated with a score above 0.5.

In addition to an efficient classification GIS-MaxEnt offers the

insight into the individual weights assigned to term pairs present in

the positive and negative training set (Supplementary Fig. S8).

To further assess the performance of the GIS-MaxEnt based sys-

tem, we assessed it using a recently published dataset containing

1379 binary interactions in S.cerevisiae (Celaj et al., 2017). Unlike

the Drosophila dataset where interactions were determined using

affinity purification coupled with mass spectrometry, this yeast

interaction dataset was created using a murine dihydrofolate reduc-

tase protein complementation assay (mDHFR PCA). The resulting

binary yeast protein interactions were detected in at least one out of

14 different biochemical conditions with many being condition

dependent (55%). Using the 1379 interactions as a positive training

set, we created a corresponding negative set and annotated it with

GO annotations as described in the methods section (section 2,

Supplementary Note 6). Based on 10-fold cross-validation the high-

est accuracy was obtained when all three ontology branches in GO

were used, giving an accuracy value of 0.84 with a recall of 0.87 and

precision of 0.82 (Supplementary Table S12).

Table 1. The individual weights on each dataset used by the MKL

algorithm

GO-CC GO-BP GO-MF IP

0.42865E-05 0.42263E-05 0.53867E-05 0.590611E-05

Table 2. AUC for go2ppi and GIS-MaxEnt in different

configurations

Model GO-CC GO-BP GO-MF GO

go2ppi—NB 0.765/0.730 0.731/0.700 0.729/0.697 0.761/0.723

go2ppi—RF 0.991/0.719 0.985/0.697 0.957/0.695 0.997/0.708

GIS-MaxEnt

—term-only

0.963 0.959 0.950 0.972

GIS-MaxEnt

—all-parents

0.965 0.787 0.956 0.978

Note: The go2ppi algorithm reports two results, displayed as Train/Test.

‘Train’ is the self-test AUC in the training phase (for example 0.731 for

go2ppi-NB and GO-BP). ‘Test’ is the 10-fold cross-validation AUC in the test-

ing phase over 50 runs (for example 0.70 for go2ppi-NB and GO-BP).
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Comparing the results from the two datasets shows the GIS-

MaxEnt performance is better on the more highly curated,

Drosophila dataset. Nevertheless, the good performance on the

S.cerevisiae set showcases the direct applicability of our system to

protein interaction sets obtained with different experimental meth-

ods beyond AP-MS in spite of differences in curation.

4 Discussion

In this work we set out to design and test a novel PPI evaluation

system. We created a novel training set for D.melanogaster based

on published curated S.cerevisiae protein complexes from the

CYC2008 dataset, revisiting data representation and training set

design. We have evaluated the combination of an information theo-

retic algorithm with protein annotation databases to assess experi-

mentally derived protein interactions. The training set was

complemented by a novel way of using controlled vocabulary anno-

tation stored in ontology structures. We tested the performance of

several algorithms on the novel training set and annotation represen-

tation and obtained good estimated generalization performance and

good performance when applied to a larger test set.

The GIS-MaxEnt and SVM models trained on the merged data-

set containing all individual sources outperform GIS-MaxEnt

trained on any of the individual sources. The GIS-MaxEnt Ensemble

and MKL outperform their counterparts trained on GO-IP, with

MKL having a slightly improved MCC compared to the GIS-

MaxEnt Ensemble, however the performance comparison did not

pass the significant threshold. To conclude, both algorithm types

performed well, but by learning different rules had occasionally sig-

nificantly different performance.

The GIS-MaxEnt based system was also compared against the

publicly available go2ppi system, which made use of its own

approach to building the parent GO terms set (Up to Lowest

Common Ancestor ULCA). This approach of selecting the GO

parents outperformed an extensive variation of methods of obtain-

ing GO parents. The GIS-MaxEnt system outperformed both the

go2ppi implemented algorithms—Naı̈ve Bayes and Random

Forest—when trained either on GO specific terms only or GO

including all parent terms.

The model using all GO parent terms offers an improved dis-

crimination of PPIs compared to using only the most specific GO

terms, this being due to the higher number of GO based annotations

that the model was trained upon. A similar trend can be observed,

based on the GIS-MaxEnt AUC performance, for the GO term-only

model versus the GO all-parent-terms model. However, despite the

lower AUC value when using GO all-parents, this model highlights

a central property of the underlying ontology: that the GO-BP ontol-

ogy has a very dense branching system, with the result that positive

and negative PPIs share many of the GO parent terms. A high num-

ber of shared GO parents between the positive and negative PPIs

will lead a model to assign less extreme weights to the shared GO

term based annotations. However, the GIS-MaxEnt based system

outperformed one of the latest developments in GO based PPI evalu-

ation (Maetschke et al., 2012) even when used only on GO specific

terms.

The proposed approach is limited to the annotation terms

observed in the training set. The use of only the most specific anno-

tated GO terms is likely to lead to overfitting and poor performance

on unseen annotation. The use of species-specific training sets

ensures that only the species relevant ontology space will be trained

and therefore reduce the likelihood of missing important unseen

annotation. The proposed system however performs well in the con-

text of increased usage of ontologies and standardized controlled

vocabularies.

Here we showcased the application of GIS-MaxEnt on categori-

cal annotations. Continuous numerical annotation, such as interac-

tion weights, could be readily usable by representing them into a

categorical system.

To conclude, we introduce a novel approach to the computa-

tional quality assessment of protein interaction screens and a novel

training set for evaluating protein complex data in D.melanogaster.

This system has been trained and applied on a large dataset, which

is part of the FlyTrap project (Lowe et al., 2014) and accessible

through FlAnnotator (Ryder et al., 2009). Transparent evaluation of

PPIs and the individual weights for the annotation term pairs will

support further ontology refinement and PPI analysis as part of

powerful aggregate systems such as STRING (Szklarczyk et al.,

2015).
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