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To address the limitations of conventional Pd catalysts in the polymerization of thiophene-
containing conjugated polymers, an active catalyst system based on Pd (0) and a phosphine-
based bulky ligand, L1, is explored systematically in Suzuki–Miyaura polymerizations using
thiophene boronic acid pinacol ester as one of themonomers. This active catalyst is found very
efficient in synthesizing a series of thiophene-containing linear and hyperbranched conjugated
polymers. First, as a model example, coupling reactions between electron-rich/moderately
hindered aryl or thienyl halides and thiophene boronic acid pinacol ester give excellent yields
with lower catalyst loading and can be completed in a shorter reaction time relative to
Pd(PPh3)4. Notably, high molecular weight thiophene-containing polymers are successfully
synthesized by Suzuki–Miyaura polycondensation of 2,5-thiophene bis(boronic acid)
derivatives with different dibromo- and triple bromo-substituted aromatics in 5–15min.

Keywords: cross-coupling, thiophene boronic acid pinacol ester, aryl halides, polymerization, hyperbranched
polymers

INTRODUCTION

π-Conjugated polymers have received considerable interest for their potential in a variety of
applications, such as optoelectronics, chemical sensors, and biological sensors (Ponder et al., 2018;
Yue et al., 2019; Li and Pu, 2019; González et al., 2019; Ochieng, et al., 2020; Abdollahi and Zhao, 2020).
In particular, conjugated polymers containing thiophene, tri-phenylamine, and benzo(lmn)(3,8)
phenanthroline-1,3,6,8(2H,7H)-tetraone in the main or side chains have attracted much attention
due to their unique optophysical properties, and they can be used as active components for light-
emissive and charge carrier thin-filmmaterials (Koyuncu, 2012; Ma et al., 2013; Ponder et al., 2018;Wu
et al., 2018; Li and Pu, 2019; Jessop et al., 2020). Linear conjugated polymers usually have a rigid
structure and are easy to form aggregation or crystallization in solvent and solid films. The aggregation
of conjugated polymer chains in the film can greatly reduce the luminescence quantum efficiency and is
detrimental to the device performance in light-emitting applications. Therefore, in recent years,
hyperbranched conjugated polymers with a three-dimensional structure have attracted extensive
interest. Theymostly possess good solubility, processability, and adjustable photophysical and chemical
properties, with effectively inhibited aggregation in the solid state (Xia et al., 2007; Okamoto et al., 2013;
Wu et al., 2015; Jiang et al., 2019; Yen and Liou, 2019).
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The palladium-catalyzed Suzuki–Miyaura cross-coupling is a mild
and efficient reaction to construct the carbon–carbon bonds among
aromatics (Bellina et al., 2004; Han, 2013; Paul et al., 2015; Qiu et al.,
2018; Rizwan et al., 2018; Ayogu and Onoabedje, 2019; Zhang et al.,
2019). This reaction is advantageous over alternative reactions, such as
Kumada–Corriu (Clagg et al., 2019; Loewe et al., 1999), Negishi (Chen
and Rieke, 1992; Pei et al., 2002; Abdiaj et al., 2018), and Stille (Zou
et al., 2009; Rathod et al., 2017), with regard to the tolerance to many
kinds of functional groups, the commercial availability of various
boronic acids, the nontoxicity and the stability of the catalyst, and the
easy separation of by-products (Shen, 1997; Buchwald et al., 1998).
Great efforts on the development of catalyst systems for
Suzuki–Miyaura cross-coupling reactions have been made over the
past 2 decades by Buchwald (Littke and Fu, 2002; Altenhoff et al.,
2004; Buchwald et al., 2004; Barder et al., 2005), Beller (Beller et al.,
2004), Bedford (Bedford, 2003; Bedford et al., 2003a; Bedford et al.,
2003b), Fu (Littke et al., 2000; Liu et al., 2001), Herrmann (Böhm et al.,
2000), Norlan (Zhang et al., 1999; Grasa et al., 2002), etc. It should be
noted that the catalyst system based on Pd (0) with the electron-rich
and bulky phosphorus ligands showed high activity even with existing
hindered and electron-rich aryl chloride substrates, and the synthesis
of thiophene-containing polymers by Suzuki polymerization is
performed successfully by using aryl boronic acids and thiophene
halides as startingmaterials (Littke and Fu, 2002; Altenhoff et al., 2004;
Buchwald et al., 2004; Barder et al., 2005; Zou et al., 2009). Because of
deboronation of thiophene boronic acid pinacol ester at high
temperature, it is difficult to obtain the thiophene-containing
products with excellent yields and high molecular weights from
electron-rich thiophene boronic acid pinacol ester by Suzuki
polymerization. Only few groups reported that high molecular
weight polymers were obtained by Suzuki polymerization based on
2,5-thiophenebis (boronic acid pinacol ester)s using Pd(PPh3)4 as the
catalyst precursor (Lu et al., 2008; Liu et al., 2013; Nguyen et al., 2014).

A palladium complex containing a bulky electron-rich ligand
facilitates the oxidative addition of the aryl halide (Grushin and
Alper, 1994; Farina et al., 1997). The chemical structure of L1 is
shown in Figure 1. The alkoxy groups attached to the second phenyl
ring stabilize the Pd center and prevent cyclometalation, and the

thienyl groups on the phosphorus core increase interactions with the
Pd center and enhance the electron density of the phosphine-based
ligand backbone. These features are beneficial to the activity and
lifetime of the catalyst (Ryabov, 1990; Buchwald et al., 2004). The
catalyst system consisting of Pd (0) and L1 shows high efficiency for
the Suzuki–Miyaura cross-coupling of thiophene-2-boronic ester and
aryl halide (Liu et al., 2013). The main drawbacks of the catalytic
systemPd (0)/L1might involve a long reaction time andpoor turnover
numbers (TONs) and turnover frequencies (TOFs) (Gautam and
Bhanage, 2015). Despite the high performance of L1, there is still room
to optimize the catalyst system toward a wider scope, higher reactivity,
lower catalyst loading, and a shorter reaction time. In this report, L1
was studied as the ligand with zero-valent palladium as the catalyst
precursor for Suzuki–Miyaura cross-coupling reaction of benzyl
bromide and thiophene boronic acid pinacol ester by changing
various reaction conditions including reaction times and the
quantities of the catalyst together with the different ratios to ligand
L1, and optimized conditions can be obtained. In addition,
Suzuki–Miyaura cross-coupling reactions were completed with low
levels of catalyst loading and short reaction times for a broad range of
substrates. Comparedwith the traditional palladiumsourcePd(PPh3)4,
the catalyst Pd2(dba)3/L1 showed higher performance in generating
TONandTOF. Furthermore, this catalyst system canbe conducted for
Suzuki polycondensation of polymers based on 2,5-thiophenebis
(boronic acid pinacol ester), and high molar mass polymers can be
easily gained within 15min.

EXPERIMENTAL SECTION

Materials and Measurements
All chemicals were obtained from commercial suppliers and applied
without purification. Solvents were disposed according to the standard
process. 5-Bromothiophene-2-carbaldenhyde and L1 were gained
according to a previous literature procedure (Li et al., 2008; Liu
et al., 2013). The catalyst precursor Pd(PPh3)4 was prepared
according to the literature (Coulson, 1972). All reactions proceeded
under N2 and monitored by thin-layer chromatography. Column
chromatography was conducted on silica gel (200–300 mesh). 1H
NMR was performed in CDCl3 on a Bruker DM 300, AV 400, or AV
600 spectrometer. The gel permeation chromatography (GPC)
measurements were performed on a Waters chromatography system
connected to a ShimadzuLC-20ADdifferential refractometerwithTHF
as an eluent or at 150°C with 1,2,4-trichlorobenzene as an eluent and
calibration with polystyrene standards.

METHODS

Pd-catalyzed (Pd2(dba)3 + L1)
Suzuki–Miyaura Coupling of Aryl Bromide or
Thienyl Bromide With Thiophene Boronic
Ester
A mixture of aryl halides or thienyl halides, thiophene boronic
ester, THF (5 Lmol-1 halide), water, the base (5 equiv), Pd2(dba)3,
and L1 was mixed under nitrogen and refluxed. CH2Cl2 was then

FIGURE 1 | The chemical structure of L1.
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poured into the mixture, and the organic layer was separated and
dried with MgSO4. The crude product was purified on silica gel
eluting with petroleum ether (60–90°C)/acetate ester to provide
the title compound.

Pd-Catalyzed (Pd2(dba)3 + L1) Suzuki
Polycondensation of Aryl Bromide or
Thienyl Bromide With Thiophene Boronic
Ester
Amixture of aryl halides or thienyl halides, thiophene boronic ester,
THF (5 L mol-1 halide), water, the base (5 equiv), Pd2(dba)3, and L1
was mixed under nitrogen and refluxed. Water was then added, and
the organic layer was separated and precipitated into methanol. The
crude product was purified to provide the polymers.

RESULTS AND DISCUSSION

Suzuki–Miyaura Cross-Coupling Reaction
of Aryl or Thienyl Halide and
Thiophene-2-Boronic Acid Pinacol Ester
The Suzuki–Miyaura cross-coupling reactions of thiophene-2-boronic
acid pinacol ester and aryl bromide using Pd (0)/L1 have been screened
in Table 1. Yields of the isolated product were obtained under various
reaction conditions (Table 1). First, decreasing the catalyst loading to
0.1%Pd for reaction of thiophene-2-boronic acid pinacol ester and aryl
bromide, the coupling product was obtained in a good yield of 89%
after 48 h at 65°C. Interestingly, when the reaction time was shortened
to 15min, there was little effect on the yield of the reaction, and the
product was gained in good yields of 85–95% under similar conditions
with an increase in the values of TON and TOF (especially by
shortening the reaction time to 15min, the value of TOF increased

to 103 h−1) (Table 1, entries 3–7). Besides, by further decreasing the Pd
loading to 0.01% Pd and using the L1: Pd ratio of 5:1, the process was
carried out at 65°C after 0.5 h in yields of 62–89%, and a value of TOF
of 2.5–3.6× 104 h−1 could be generated (Table 1, entries 8–12). Among
the bases offered in Suzuki–Miyaura cross-coupling reactions, the base
K2CO3was proved to be the best choice, and the desired products were
obtained with the highest yields under the above conditions (Table 1)
(Buchwald et al., 2004). According to the results, this catalyst system
showed efficient activity for the cross-coupling reactions of aryl
bromide and thiophene-2-boronic acid pinacol ester.

To test the performance of our ligand L1 with low levels of
catalyst loading and short reaction times, we chose nine substrates
under the conditions of K2CO3 as the case with 0.1% Pd (0)/L1 (1:
3) within 30min as a test case (Table 2). The isolated yields of the
corresponding product are depicted inTable 2. Comparedwith the
catalyst Pd(PPh3)4, ligand L1 gave better yields in reactions of aryl
halide and 2-thiopheneboronic ester under the above conditions.
For example, the coupling reaction of bromobenzene or benzyl
bromide and aromatic boronic acid pinacol ester with 0.1% Pd (0)
(Pd: L1 � 1:3) within 15min gave excellent isolated yields of the
corresponding products, wherein TOFs of 3,840 h−1 and 3,800 h−1

were obtained, respectively (Table 2, entries 1–2; Supplementary
Table S2, entries 1–2). The reaction of electron-rich 1-bromo-4-
methoxybenzene and electron-deficient aryl bromide with
thiophene-2-boronic acid pinacol ester (ratio 1:1) resulted in
the excellent yields of 92–97% with 0.1% Pd (0) (Pd: L1 � 1:3)
(Table 2, entries 3–5; Supplementary Table S2, entries 3–5). The
above results showed that the presence of electron-rich or electron-
deficient groups of aryl bromide had little effect on the yield and
TOF of these reactions. In addition, the Suzuki cross-coupling
reactions of substrates such as moderately hindered 1,4-dibromo-
2,5-dimethylbenzene with thiophene-2-boronic ester could be
completed at 0.1% Pd (0) (Pd: L1 � 1:3) to give an 88% yield
with a decreased TOF of 880 h−1 within 30min (Table 2, entry 6;

TABLE 1 | Yields of the isolated products from Suzuki–Miyaura cross-coupling reactions of thiophene-2-boronic esters (a) and bromobenzene (b) under various reaction
conditions.

Reaction time (h)||base||Catalyst system a: b Yield [%] TON TOF (h−1)

1 48 NaHCO3 1%Pd, Pd: L1 � 1:3 1:1 94 94 1.98
2 48 NaHCO3 0.1%Pd, Pd: L1 � 1:3 1:1 89 890 18.6
3 0.25 NaHCO3 0.1%Pd, Pd: L1 � 1:3 1:1 85 850 3,400
4 0.25 K2CO3 0.1%Pd, Pd: L1 � 1:3 1:1 95 950 3,800
5 0.25 K3PO4 0.1%Pd, Pd: L1 � 1:3 1:1 88 880 3,520
6 0.25 Cs2CO3 0.1%Pd, Pd: L1 � 1:3 1:1 94 940 3,760
7 0.25 Et3N 0.1%Pd, Pd: L1 � 1:3 1:1 85 850 3,400
8 0.25 NaHCO3 0.01%Pd, Pd: L1 � 1:5 2:1 73 7,300 29,200
9 0.25 K2CO3 0.01%Pd, Pd: L1 � 1:5 2:1 89 8,900 35,600
10 0.25 K3PO4 0.01%Pd, Pd: L1 � 1:5 2:1 74 7,400 29,600
11 0.25 Cs2CO3 0.01%Pd, Pd: L1 � 1:5 2:1 86 8,600 34,400
12 0.25 Et3N 0.01%Pd, Pd: L1 � 1:5 2:1 62 6,200 24,800

Reaction conditions: bromobenzene, thiophene-2-boronic acid pinacol ester, 5 equiv. of the base, THF, H2O, Pd2(dba)3 + L1, reflux.
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Supplementary Table S2, entry 6). Under the similar conditions,
Pd(PPh3)4 furnished the target products with a 24% isolated yield
and only a 6 h−1 TOF after 2 h. Notably, the Suzuki cross-coupling
reactions of 2,5-thiophenebis (boronic ester)s and ortho-
substituted bromobenzene Pd (0)/L1 provided the target
products in an isolated yield of 90% with a value of TOF of
900 within 30 min, whereas under the similar conditions,
Pd(PPh3)4 gained the isolated yield of 18% with only a 4.5 h−1

TOF after 2 h (Table 2, entry 7; Supplementary Table S2, entry 7).
Besides, the process worked well on the coupling of electron-rich
thienyl bromide and thiophenylboronic ester, and the coupling
reactions could be carried out at 0.1% Pd (0) (Pd: L1 � 1:3) to give 90
and 91% yields, with TOFs of 1,800 h−1 and 1,820 h−1 after 30 min,
and Pd(PPh3)4 gained the isolated yields of 31% and 48%, with TOFs
of 15.5 h−1 and 24 h−1 after 2 h, respectively (Table 2, entries 8–9;
Supplementary Table S2, entries 8–9). These results suggest that the
catalyst system is remarkably effective for the cross-coupling based
thiophene-2-boronic ester with low levels of catalyst loading and
short reaction times for a broad range of substrates. Compared with
the traditional catalyst precursor Pd(PPh3)4, the catalyst system

Pd2(dba)3/L1 showed higher performance in yield and TOF. The
general mechanism for the Pd-catalytic cross-coupling reaction is
divided into three steps, including oxidative addition,
transmetalation, and reductive elimination (Miyaura, N. and
Suzuki, A. 1995). Oxidative addition is the rate-limiting step for
Suzuki–Miyaura coupling reaction, which might be accelerated in
the Pd (0)/L1 catalyst system. A high reaction rate can effectively
reduce the undesired deboronation of thiophene-2-boronic acid
pinacol ester that negatively affects Suzuki–Miyaura cross-
coupling reactions under standard conditions (Jayakannan et al.,
2001; Kinzel et al., 2010).

Suzuki Polycondensation Reaction Based
on Thiophenylboronic Ester
To test the performance and wide scope of the catalyst precursor
Pd (0)/L1, the catalytic system with ligand L1 and Pd2(dba)3 (Pd/
L1 � 1/3) was tested for the synthesis of hyperbranched polymers
based 2,5-thiophenebis (boronic acid pinacol ester)s (Scheme 1).
For comparison, Pd2(dba)3 (Pd/L1 � 1/3) and Pd(PPh3)4 were

TABLE 2 | Yields of the isolated products from Suzuki–Miyaura cross-coupling reactions of thiophene-2-boronic esters and aryl halides with different catalysts.

Thiophene-2-boronic
esters

Aryl halides Time (min) Yield (%)

Pd2(dba)3/L1 Pd(PPh3)4

1 15 96 83

2 15 95 76

3 15 92 72

4 15 93 81

5 15 97 81

6 30 88 24

7 30 90 18

8 30 90 31

9 30 91 48

Reaction conditions: 1 equiv. of thienyl halide, 1 or 2 equiv. of thiophenylboronic ester, 5 equiv. of K2CO3, THF (5 Lmol-1), H2O, 0.1 mol% Pd2(dba)3 + L1, reflux, within 15–30 min, 1 mol%
Pd(PPh3)4, reflux, within 2 h.
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also applied for the same polymerization as catalyst precursors.
Suzuki polycondensation of 2,5-thiophenebis (boronic acid
pinacolester)s (M2) with tris(4-bromophenyl)amine (M1) or tris(4-
bromophenyl)amine (M4) and 2,7-dibromo-9,9-dioctyl-9H-fluorene
(M3) was carried out in a biphasic mixture of THF and aqueous
K2CO3 with freshly prepared Pd2(dba)3/L1 or Pd(PPh3)4 as the

catalyst precursor in 15 min. The results of polymerization are
displayed in Table 3. When using Pd2(dba)3/L1 as the catalyst
precursor, the polycondensation proceeded very rapidly, and
large amounts of precipitation were observed in the reaction
flask after 5 min. Polymers were not soluble in common reagents
such as CHCl3 or THF even at the refluxed temperature, but little
were soluble in 150°C 1,2,4-trichlorobenzene. The molecule
molar masses of P1 and P2 were determined by GPC at 150°C
with 1,2,4-trichlorobenzene as the eluent and calibration with
polystyrene standards. The soluble fractions of polymers P1
and P2 had molecular weights Mw of 24,800 g mol−1 and
7,900 g mol−1, respectively. Using the representative palladium
catalyst Pd(PPh3)4, Suzuki polycondensation of monomers (M1
or M4) and monomer M3 with 2,5-thiophenebis (boronic acid
pinacolester)s (M2) provided only low molecule molar mass
oligomers with an Mw less than 3,000 g mol−1.

To test the performance and obtain fully soluble polymers in the
reaction solvents, we chose 4,9-dibromo-2,7-bis(2-octyldodecyl)
benzo(lmn)(3,8)phenanthroline-1,3,6,8(2H, 7H)-tetraone (M5)
and 2,5-thiophenebis (boronic acid pinacolester)s (M2) as
monomers. Using Pd2(dba)3/L1 as the catalyst precursor,

SCHEME 1 | Suzuki polycondensation based on 2,5-thiophenebis (boronic acid pinacol ester) with Pd2(dba)3 (Pd/L1 � 1/3) and Pd(PPh3)4 as catalyst precursors.

TABLE 3 | Catalyst precursor, yield, weight-average molecular weight (Mw), and
polydispersity index (PDI).

Polymers Catalyst precursor Yield (%) Mwa(g mol−1) PD

P1 Pd2(dba)3/L1 95 24,800b 1.7
P1 Pd(PPh3)4 93 3,000 3.2
P2 Pd2(dba)3/L1 97 7,900b 1.4
P2 Pd(PPh3)4 89 2000 1.5
P3 Pd2(dba)3/L1 92 112,000 3.5
P3 Pd(PPh3)4 82 8,400 1.1

aMolecular weight determined by GPC with THF as the eluent, calibrated with
polystyrene standards.
bMolecular weight determined by GPC at 150°C with 1,2,4-trichlorobenzene as the
eluent, calibrated with polystyrene standards.
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polymer P3 was synthesized, which was completely soluble in THF
at room temperature in 15min. The GPC elution curve of P3
showed narrow molecular weight distribution. The number-
average molecular weight and weight-average molecular weight
of P3 were 32,000 g mol−1 and 11,2000 g mol−1, respectively
(Figure 2). The polycondensation of M2 and M5 was also
tested using Pd(PPh3)4 as the catalyst precursor. GPC data
showed that polymer P3 was gained with a molecular weight
Mw 8,400 g mol−1. The results are also displayed in Table 3.

CONCLUSIONS

In conclusion, the catalyst system based on Pd (0)/L1 was studied
for the Suzuki–Miyaura cross-coupling reactions of thiophene-2-
boronic ester with aryl bromides and unactivated thienyl bromides.
The catalytic system is efficient in good to excellent yields and high

TOFs with low catalyst loadings or shorter reaction times. In
addition, relative to Pd(PPh3)4, this catalyst system also
demonstrates higher activity in the Suzuki polymerization of
aryl halide and 2,5-thiophenebis (boronic acid pinacol ester)s,
resulting in various thiophene-containing conjugated polymers
with good yields and high molecular weights within 15min.
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