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Abstract: Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized
poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the
successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic
poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs)
to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs).
A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room
temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS
and AFM, and PIL-CNs with 15–20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide)
PIL nanophases with average domain sizes of 8.2–8.4 nm are formed. Unexpectedly, while the
swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF,
NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium
swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol.
An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees
versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF
PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined
structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be
utilized in various application fields.
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1. Introduction

Nanoconfined material structures, including polymers as well, due to the wide range of unique
structural features, properties, and effects arising under nanocompartmentalized conditions, have
created significant worldwide interest over the last couple of years (see e.g., references [1–6]
and references therein). The recently emerged polymer conetworks, especially amphiphilic
conetworks (APCNs), composed of covalently or supramolecularly bonded, otherwise immiscible,
hydrophilic and hydrophobic polymer chains, belong to such nanophase-separated materials with
mutually nanoconfined macromolecular components [7–41]. Considering that polymers containing
imidazole rings, which also play a pivotal role in the major biopolymers and compounds of
living organisms, such as DNA, RNA, proteins, enzymes, hormones, vitamins, etc., provide
various advantageous properties, like water solubility, strong metal ion coordinating ability,
protonation, and alkylation possibilities, we have recently explored the synthesis, nanophasic
structure, and properties of poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) and
poly(1-vinylimidazole)-l-poly(propylene glycol) (PVIm-l-PPG) conetworks (-l- stands for “linked
by”) [8,34–40]. In addition to revealing the basic features of the synthesis and swelling behavior of
these conetworks, it was found by us that the PVIm-l-PTHF conetworks possess nanophase-separated
morphology with ~7–20 nm average domain sizes and bicontinuous (cocontinuous), i.e., a mutually
nanoconfined domain structure in an unprecedented broad range of composition (~25–60% weight
fraction of PVIm) [39]. This unique cocontinuous nanoconfined phase structure and the imidazole
rings in the PVIm-l-PTHF conetworks provide various possibilities to create several novel materials
which have not existed before.

Another class of imidazole-based polymers belongs to poly(ionic liquid)s (PILs), that is
macromolecules with ionic liquid (IL) moieties. Due to the challenging tasks of the synthesis, revealing
the structure–property relationships, and the broad range of special application possibilities, PILs have
been intensively investigated in recent years (see e.g., references [41–79] and references therein).
PILs may find applications in energy production as proton [57], electron [58,59], or Li-ion [60,73]
conducting materials; as metal free [61] and metal containing [62] catalysts; gas separation
membranes [63,64]; DNA isolation microspheres [65] etc. PILs are prepared either by polymerization
of ionic liquid-type monomers [42–53], or less frequently by polymer analogous postmodification of
suitable polymers [66–68] as shown, for instance, recently by the synthesis of PVIm-based PIL brushes
via termination of oxazoline polymerization by PVIm homopolymer [68]. Although several applications
require crosslinked PILs, PIL networks have not gained broad interest yet. The crosslinking usually takes
place by copolymerizing IL monomers with conventional crosslinking agents, such as divinylbenzene
and ethylene glycol dimethacrylate [43,69–71] or by bis-vinylimidazolium compounds [72,73]. In a
few cases, low molecular weight poly(ethylene glycol) (PEG) di(meth)acrylate oligomers were used as
crosslinkers in the preparation of PIL networks [41,74–79]. Although these crosslinked PILs can be
considered as PIL conetworks with the PEG oligomer crosslinkers, the conetwork aspects have not
been investigated so far, most likely because of the relatively low PEG contents in these materials.

While nanoconfined low molecular weight ionic liquids have been widely investigated (see
e.g., reference [80] and references therein), systematic research on nanoconfined poly(ionic liquid)
chains or chain segments—with the exception of the polymerization of vinylimidazolium ionic
liquid monomers in aluminum oxide nanochannels with 18–150 nm pore diameter by Kaminski and
coworkers [81,82], and the effect of confinement on the ionic conductivity of PIL block copolymers by
Segalman et al. [83]—have not been reported so far according to the best of our knowledge. Taking into
account the presence of poly(1-vinylimidazole) in the nanophase-separated PVIm-l-PTHF conetworks
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as one of its components, this inspired us to explore the possibility of the synthesis of nanoconfined
PIL conetworks by alkylation of the imidazole pendant groups of the PVIm nanodomains in the
conetworks. These challenging studies have raised several aspects of such a process unexplored
so far, such as whether alkylation can be carried out in the nanoconfined PVIm phase, what would
be the extent of alkylation in the nanophasic conetworks, and what would be the effect of this
process on the fundamental structural characteristics, especially on keeping or destroying the
nanophase-separated structure by alkylation of the PVIm phase, and how the swelling capabilities
of the resulting PIL conetworks (PIL-CNs) would change in comparison to the starting nanophasic
PVIm-l-PTHF amphiphilic conetworks. Herein, we report on the synthesis, structural investigations,
and the unexpected swelling behavior of PIL conetworks obtained by converting the imidazole rings
to imidazolium ionic liquid moieties inside the nanostructured PVIm-l-PTHF conetworks.

2. Materials and Methods

2.1. Materials

1-Vinylimidazole (VIm) (Sigma-Aldrich, St. Louis, MO, USA) was vacuum distilled prior to use.
Hydroxyl-telechelic poly(tetrahydrofuran) (PTHF, Teratane 2000, Mn = 2000 g/mol, Sigma-Aldrich,
St. Louis, MO, USA) was purified by precipitation from dichloromethane into hexane, then dried
in a vacuum at 35 ◦C. 2,2′-Azobis-isobutyronitrile (AIBN; Sigma-Aldrich, St. Louis, MO, USA) was
recrystallized from methanol before use. Methacryloyl chloride (MACl, 97%, Honeywell Fluka,
Charlotte, NC, USA) was freshly distilled prior to use. Dichloromethane (DCM, 99%, Molar Chemicals,
Halásztelek, Hungary) and ethanol (EtOH, 99.8%, VWR International, West Chester, PA, USA) were
purified by distillation and kept under nitrogen. Triethyl amine (TEA), neutral aluminum oxide (Al2O3)
(both from Sigma-Aldrich, St. Louis, MO, USA), and magnesium sulfate (MgSO4, Molar) were used as
received. Tetrahydrofuran (THF, 99.5%), methanol (MeOH, 98.5%), N,N-dimethylformamide (DMF,
99.8%), dimethylsulfoxide (DMSO, 99%), acetonitrile (99%) (all from VWR International, West Chester,
Pennsylvania, USA), N-methyl-pyrrolidone (NMP, 99.5%) and bioreagent water (Sigma Aldrich, St.
Louis, MO, USA), ethyl acetate (99%), and hexane (Hex, 51%) (purchased from Molar Chemicals,
Halásztelek, Hungary) were used as received. Silver behenate was purchased from Alfa Aesar (Thermo
Fischer Scientific, Ward Hill, MA, USA) and used without further purification.

2.2. Synthesis of Methacrylate-Telechelic Poly(tetrahydrofuran)

Methacrylate-telechelic poly(tetrahydrofuran) (MA-PTHF-MA) was synthesized by a reaction
between hydroxyl-telechelic PTHF and methacryloyl chloride, as described earlier [34]. Briefly,
6.98 g hydroxyl-telechelic PTHF was dissolved in 150 mL of dichloromethane, and then, the oxygen
was removed with a nitrogen purge for one hour. After cooling with isopropanol/dry ice, first
27.8 mL triethylamine then 9.8 mL methacryloyl chloride were added dropwise under vigorous
stirring. The reaction mixture was allowed to warm to room temperature and stirred overnight.
Then, the reaction was quenched with 30 mL of methanol and stirred for an hour. The solution was
washed two times with distilled water and three times with brine. The separated organic phase was
dried on anhydrous magnesium sulfate overnight. After filtration, the polymer solution was passed
through a column filled with neutral aluminum oxide, and then, the solvent was removed by a rotary
evaporator. The product was dried under vacuum until constant weight (yield: 88%). The obtained
methacrylate-telechelic PTHF (MA-PTHF-MA) was characterized by 1H NMR. The molecular weight
of the resulting MA-PTHF-MA with functionality of 2.0 is 2900 g/mol.

2.3. Synthesis of the PVIm-l-PTHF Polymer Conetworks

Poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) conetworks were synthesized by
free radical copolymerization of VIm and MA-PTHF-MA (Scheme 1). The free radical copolymerization
of the VIm monomer and MA-PTHF-MA macro-crosslinker was carried out by using AIBN as
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the initiator in absolute ethanol as the solvent, as reported earlier [34]. The feed ratios of the
MA-PTHF-MA and VIm reagents used for the conetwork syntheses were 50:50 and 60:40 wt/wt%.
Briefly, the appropriate amounts of the MA-PTHF-MA crosslinker and VIm monomer were dissolved
in ethanol in a glass vial, and then, the required amount of AIBN was added from a stock solution.
The mixture was homogenized and deoxygenation was carried out with a nitrogen purge. The vials
were thermostated at 65 ◦C for 3 days. The resulting conetworks were extracted first by THF, then by
methanol, to remove the unreacted components and oligomers. The extraction was carried out in each
solvent for 5 days, and the solvents were changed daily. Finally, the extracted conetworks were dried
in vacuum at 120 ◦C until constant weight. Furthermore, the samples were annealed at 190 ◦C in a
vacuum before every characterization measurements.

2.4. Alkylation of the Poly(1-vinylimidazole) with Methyl Iodide in the Conetworks

The synthesized conetworks were reacted with methyl iodide to convert the PVIm component to
poly(ionic liquid)s. The conetwork samples were placed in a glass vial and a large excess of methyl
iodide was added. After 3 days at room temperature, the swollen conetworks were removed from the
vials, and the products were dried in a vacuum at 120 ◦C until constant weight.

2.5. Elemental Analysis

The composition of the conetworks was determined by elemental analysis. The measurements
were made on a Heraeus CHN-O-RAPID instrument. The composition was calculated from the
nitrogen content of the samples.

2.6. Solid-State NMR Measurements

Solid-state NMR magic angle spinning (MAS) spectra of the conetwork samples were recorded on
a Varian NMR System 400 MHz with a Chemagnetics 4.0 mm narrow-bore double resonance T3 probe.
The spinning rate of the rotor was 8 kHz in all cases. For the 13C CP MAS (cross polarization magic
angle spinning) spectra, 12,000 transients were recorded with SPINAL-64 decoupling, 2 ms of contact
time, and 5 s of recycle delay. The measuring temperature was 40 ◦C (ca. 15–35 ◦C above the melting
temperature of PTHF), and the samples were incubated for 1 h before the measurements. Adamantane
was used as the external chemical shift reference (38.55 and 29.50 ppm). The 90◦ pulse lengths were
2.9 µs for carbon and 2.9 µs for the proton channel.

2.7. Differential Scanning Calorimetry

The differential scanning calorimetry (DSC) measurements were carried out on a Mettler TG50
instrument under nitrogen atmosphere in the temperature range of −100 to 200 ◦C with 10 ◦C/min
heating/cooling rate. On the recorded second heating curves, the glass transition temperature (Tg) was
determined as the inflection point of the DSC curve. The crystalline fraction (Xc) was obtained from
the integration of the endothermal peak.

2.8. Small-Angle X-ray Scattering

Small-angle X-ray scattering (SAXS) measurements were performed on the CREDO instrument
equipped with a GeniX3D Cu ULD integrated beam delivery system having a 30W microfocus
Cu-anode X-ray tube and a parabolic FOX3D graded multilayer mirror (Xenocs SA, Sassenage, France),
as described elsewhere [84,85].

2.9. Atomic Force Microscopic Measurements

The atomic force microscopic (AFM) experiments were performed on a MultiMode scanning
probe microscope with a Nanoscope IIIa controller (Digital Instruments) at ambient conditions in
height and phase imaging modes. To guarantee a high resolution and avoid cantilever tip artefacts,
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new Nanosensors SSS cantilevers were used for these investigations. The flat cryo-sectioned surfaces
of the annealed conetworks for these measurements were obtained by using a Diatome diamond knife
at −100 ◦C with a Leica EMFCS microtome. It has to be noted that it is important to carry out the
AFM measurements right after the cryo-microstomy, because the sectioned surfaces could adsorb some
moisture within several hours and this may seriously affect the AFM imaging results.

2.10. Swelling Measurements

Weighted samples were placed in 50 mL of different solvents (distilled water, methanol, DMF,
DMSO, hexane, THF, acetonitrile, N-methyl pyrrolidone, and ethyl acetate). Then, the weight of the
samples was measured at predetermined time intervals for 3 days. The swelling degree (Q) was
calculated by the following formula:

Q = (mt − m0) / m0 (1)

where Q is the swelling degree; m0 and mt are the weight of the initial dry and the swollen samples at a
given swelling time (t), respectively.

3. Results and Discussion

3.1. Synthesis of and Alkylation in PVIm-l-PTHF Conetworks and Structural Characterizations

Two poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) conetworks were synthesized
by free radical copolymerization of 1-vinylimidazole (VIm) with methacrylate-telechelic
poly(tetrahydrofuran) (MA-PTHF-MA) according to the literature procedure [34] as shown in Scheme 1.
Copolymerizations with 50/50 and 60/40 wt/wt% feed ratios of MA-PTHF-MA/VIm resulted in
conetworks with 85% and 77% gel fractions, respectively, indicating successful conetwork formation in
both cases. Elemental analysis gave 57 and 76 wt% PTHF, and correspondingly 43 and 24 wt% PVIm
content in these conetworks, respectively. These conetworks are denoted as PVIm-l-PTHF-57 and
PVIm-l-PTHF-76, where the numbers stand for the PTHF contents (wt%) in these materials. It has to
be noted that the PTHF crosslinker content is higher in the conetworks than in the feed, which is in
line with previous reports [34,35], according to which both the reactivity ratio differences between
methacrylates and 1-vinylimidazole, and the uneven partitioning of VIm between the region of the
chain ends surrounded by the hydrophobic PTHF and the solution, lead to this effect. As shown
later in this study (see Figures 3-5), in accordance with a previous report [39], nanophase-separated
PVIm-l-PTHF conetworks have been obtained.

Polymers 2020, 12, x FOR PEER REVIEW 5 of 22 

 

the AFM measurements right after the cryo-microstomy, because the sectioned surfaces could 

adsorb some moisture within several hours and this may seriously affect the AFM imaging results. 

2.10. Swelling Measurements 

Weighted samples were placed in 50 mL of different solvents (distilled water, methanol, DMF, 

DMSO, hexane, THF, acetonitrile, N-methyl pyrrolidone, and ethyl acetate). Then, the weight of the 

samples was measured at predetermined time intervals for 3 days. The swelling degree (Q) was 

calculated by the following formula: 

Q = (mt - m0) / m0 (1) 

where Q is the swelling degree; m0 and mt are the weight of the initial dry and the swollen samples at 

a given swelling time (t), respectively. 

3. Results and Discussion 

3.1. Synthesis of and Alkylation in PVIm-l-PTHF Conetworks and Structural Characterizations 

Two poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) conetworks were 

synthesized by free radical copolymerization of 1-vinylimidazole (VIm) with methacrylate-telechelic 

poly(tetrahydrofuran) (MA-PTHF-MA) according to the literature procedure [34] as shown in 

Scheme 1. Copolymerizations with 50/50 and 60/40 wt/wt% feed ratios of MA-PTHF-MA/VIm 

resulted in conetworks with 85% and 77% gel fractions, respectively, indicating successful 

conetwork formation in both cases. Elemental analysis gave 57 and 76 wt% PTHF, and 

correspondingly 43 and 24 wt% PVIm content in these conetworks, respectively. These conetworks 

are denoted as PVIm-l-PTHF-57 and PVIm-l-PTHF-76, where the numbers stand for the PTHF 

contents (wt%) in these materials. It has to be noted that the PTHF crosslinker content is higher in the 

conetworks than in the feed, which is in line with previous reports [34,35], according to which both 

the reactivity ratio differences between methacrylates and 1-vinylimidazole, and the uneven 

partitioning of VIm between the region of the chain ends surrounded by the hydrophobic PTHF and 

the solution, lead to this effect. As shown later in this study (see Figures 3‒5), in accordance with a 

previous report [39], nanophase-separated PVIm-l-PTHF conetworks have been obtained. 

 

Scheme 1. Synthesis of poly(1-vinylimidazole)-l-poly(tetrahydrofuran) conetworks by free radical 

copolymerization, and formation of poly(ionic liquid) conetworks (PIL-CNs) by alkylation with 

methyl iodide. 

Scheme 1. Synthesis of poly(1-vinylimidazole)-l-poly(tetrahydrofuran) conetworks by free radical
copolymerization, and formation of poly(ionic liquid) conetworks (PIL-CNs) by alkylation with
methyl iodide.
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Converting the PVIm chains in the PVIm-l-PTHF conetworks to imidazolium containing PIL
was attempted by alkylation of the imidazole rings in the PVIm chains with methyl iodide (MeI),
as displayed in Scheme 1. For this reaction, in the PVIm nanophases, the conetworks were swollen
with excess of MeI. After three days of this treatment, the samples were removed from the MeI solvent,
and the weights of the resulting swollen materials were measured. The gained weights were found
601% and 275% for the PVIm-l-PTHF-57 and PVIm-l-PTHF-76 conetworks, respectively, indicating high
swelling ability of the conetworks in MeI. Subsequently, the samples were dried under vacuum until
constant weight to remove the unreacted MeI in order to determine the extent of alkylation. On the
basis of the weight increase by the treatment with MeI, it was found that the extents of alkylation in
the PVIm-l-PTHF-57 and PVIm-l-PTHF-76 conetworks were 93% and 96%, respectively. These findings
indicate that independent of the PVIm content of the conetworks, nearly quantitative methylation was
achieved in the nanophase-separated PVIm-l-PTHF conetworks. As shown in Figure 1, the color of
the alkylated sample changed to orange from the pale yellow of the starting conetwork by reacting it
with MeI, indicating structural changes, i.e., alkylation of the imidazole moieties in the conetworks.
The methylated conetworks are denoted furthermore as PVImMe-l-PTHF-57 and PVImMe-l-PTHF-76.
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The successful methylation of the PVIm chains in the PVIm-l-PTHF conetworks is also supported
by solid-state 13C CP MAS analyses. As shown in Figure 2, the signals in the aromatic region
(110–140 ppm in the 13C NMR spectra) are changed clearly, indicating the effect of the methylation of
the nitrogen in the imidazole rings. Because the signals of the unmethylated rings cannot be observed
in this spectrum, taking into account the accuracy of the measurements, we can conclude that the
methylation efficiency was at least 95%, which corresponds well with the methylation yields determined
gravimetrically. The N-methyl signals are also identifiable at 39 ppm in the NMR spectrum of the
PVImMe-l-PTHF conetwork. It is also noteworthy that the signals belonging to the main chain carbon
atoms of PVIm (32–60 ppm) also show some changes in the 13C NMR spectra. These changes may
originate from the modifications of the main chain conformation caused by ionic forces. Because the
signals of the PTHF crosslinker do not show differences at 26.1 ppm and at 70.0 ppm, it is evident that
the PTHF chains are unaffected by the methyl iodide treatment of the PVIm-l-PTHF conetworks. On the
basis of these and the gravimetric data, it can be claimed that the applied alkylation method leads
with nearly quantitative yields to poly(3-methyl-1-vinylimidazolium iodide)-l-poly(tetrahydrofuran)
poly(ionic liquid) conetworks (PIL-CNs).
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Figure 2. Solid-state 13C NMR spectra of the PVIm-l-PTHF-57 and the methylated PVImMe-l-PTHF-57
poly(ionic liquid) conetworks.

The DSC curves of the PVIm-l-PTHF conetworks and the methylated PVImMe-l-PTHF derivatives
are displayed in Figure 3, and the obtained glass transition temperature (Tg), melting temperature
(Tm), and crystalline fraction (Xc) data are shown in Table 1. For evaluating these data, it has to be kept
in mind that the PVIm homopolymer has a Tg at 171 ◦C, while the Tg of the MA-PTHF-MA crosslinker
is −81 ◦C, and its melting temperature is 25 ◦C with 42% crystalline fraction. As can be clearly seen in
Figure 3 and in Table 1, all the conetworks, including the PVImMe-l-PTHF-57 and PVImMe-l-PTHF-76
PIL-CNs as well, have two Tgs, one in the region of the Tg of the PTHF homopolymer, and another
one in the region of 103–116 ◦C for the PVIm and PVImMe components. The observed two Tgs in
these conetworks indicate clear evidence that the chemically crosslinked immiscible PTHF and PVIm,
and PTHF and PVImMe components as well, form two distinct phases in both the PVIm-l-PTHF and
PVImMe-l-PTHF conetworks, respectively. It has to be emphasized that these findings mean that the
phase-separated structure is maintained even after the alkylation reaction as well in the methylated
conetworks. As shown in Figure 3 and Table 1, the Tg of the PTHF phase does not change considerably
in the conetworks upon methylation, which corroborates the findings of the solid-state NMR analysis.
The Tgs of the PVIm component are significantly lower in the conetworks than that of the PVIm
homopolymer. This is in accordance with the so called “scissor effect” in conetworks [37], according
to which the decrease in the Tg of the crosslinked chains in conetworks is related to the molecular
weight of the PVIm chains between two crosslinking points in the conetworks. The formation of the
ionic liquid moiety leads only to a small degree of Tg decrease, indicating that the alkylation of the
PVIm chains does not have a remarkable effect on the chain segment mobility of the main chain. In
contrast, significant changes occur in relation to the melting temperature and crystalline fraction of
the PTHF phase in these conetworks. As already reported [37], both the Tm and Xc are smaller in the
PVIm-l-PTHF conetworks than that of the PTHF homopolymer. Remarkably, the crystalline fraction of
PTHF completely disappears by methylation of the PVIm-l-PTHF-57 conetwork, while both the Tm

and Xc are smaller in the PVImMe-l-PTHF-76 poly(ionic liquid) conetwork than in the unmethylated
PVIm-l-PTHF-76 precursor. These changes can also be considered as indications of the successful
formation of the poly(ionic liquid) phase in the conetworks by the applied alkylation process.
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Figure 3. DSC curves of the PVIm-l-PTHF-57 (A) and PVIm-l-PTHF-76 (B) (blue lines) and
the methylated PVImMe-l-PTHF-57 (A) and PVImMe-l-PTHF-76 (B) poly(ionic liquid) (red
lines) conetworks.

Table 1. The composition of the PVIm-l-PTHF and PVImMe-l-PTHF conetworks, yield of alkylation,
the glass transition temperature (Tg) of the PTHF, PVIm, and PVImMe+I− components, the melting
temperature (Tm) and crystalline fraction (Xc), the d-spacing, the average domain sizes (dPTHF,
dPVIm, and dPVImMe), and the average domain distances in the corresponding PVIm-l-PTHF and
PVImMe-l-PTHF conetworks.

PVIm-l-PTHF-57 PVImMe-l-PTHF-57 PVIm-l-PTHF-76 PVImMe-l-PTHF-76

PTHF content (wt%) 57 36 76 56

PVIm content (wt%) 43 2 24 1

PVImMe+I− content (wt%) - 62 - 43

Tg of PTHF (◦C) (a) −86 −89 −83 −87

Tg of PVIm and PVImMe (◦C) (b) 116 114 106 103

Tm of PTHF (◦C) (c) 4.8 - 10.0 2.7

Xc of PTHF (%) (d) 9.4 0.0 13.7 5.6

d-spacing by SAXS (nm) 21.9 20.1 17.6 15.7

dPTHF (nm) (e) 15.0 13.5 18.5 9.0

dPVIm and dPVImMe (nm) (e) 7.8 8.4 7.9 8.2

average domain distance (nm) (e) 22.8 21.9 26.1 17.2

(a) Tg(PTHF) = −81 ◦C, (b) Tg(PVIm) = 176 ◦C, (c) Tm(PTHF) = 25 ◦C, (d) Xc(PTHF) = 42%, (e) by phase mode AFM.

In order to reveal the effect of alkylation of the PVIm chains on the phase-separated structure, small
angle X-ray scattering (SAXS) and atomic force microscopy (AFM) measurements were carried out
with the PVIm-l-PTHF conetworks and the PVImMe-l-PTHF PIL-CN derivatives. As shown in Figure 4,
a scattering curve with one maximum is observed, indicating disordered phase separation in all cases,
including the PVImMe-l-PTHF PIL-CNs as well. This corroborates the result of previous morphology
investigations on the PVIm-l-PTHF conetworks [39]. In addition, the scattering intensities of the
PVImMe-l-PTHF conetworks are significantly higher than that of the corresponding PVIm-l-PTHF
samples. This is due to the presence of the iodide ion in the methylated PIL phase. It is also important
to note that the peak maximum as a function of the scattering vector (q) does not change substantially
by methylation of the conetworks. Evidently, this means that the PVIm-l-PTHF conetworks keep their
nanophase-separated morphology in the alkylated PIL conetworks as well. This is well reflected by
comparing the d-spacing values (d = 2π/qmax). As shown in Table 1, the d-spacings are 21.9 and 20.1 nm
for the PVIm-l-PTHF-57 and the PVImMe-l-PTHF-57 conetworks, respectively. The PVIm-l-PTHF-76
and PVImMe-l-PTHF-76 samples have 17.6 and 15.7 nm d-spacing values, respectively. As found
earlier [39], the domain spacing decreases with increasing crosslinker content in the PVIm-l-PTHF
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conetworks, and the d-spacing values indicate the same relationship for the PIL-CN conetworks as
well, on the one hand. On the other hand, it is evident from the d-spacing values that methylation
of the PVIm chains results in somewhat smaller average domain distances than that observed in the
unmethylated conetworks, i.e., the d-spacings are 21.9, 20.1, 17.6, and 15.7 nm in the PVIm-l-PTHF-57,
PVImMe-l-PTHF-57, PVIm-l-PTHF-76, and PVImMe-l-PTHF-76 conetworks, respectively. The lack of
expected d-spacing increase as a consequence of PIL formation in the conetworks can be attributed
to the relatively high crosslinking densities in these conetworks, and also to the strong hydrogen
bonding of the iodide ion with the hydrogens of the alkyl imidazolium rings [86,87]. Consequently,
the results of the SAXS measurements indicate that the reaction of MeI with the PVIm chains in the
nanophase-separated PVIm-l-PTHF conetworks leads to poly(ionic liquid) conetworks with d-spacing
of ~15–20 nm having methylated poly(3-methyl-1-vinylimidazolium iodide) PIL and PTHF nanophases.
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Figure 4. SAXS curves of the PVIm-l-PTHF-57 (A) and PVIm-l-PTHF-76 (B) (blue lines)
and the methylated PVImMe-l-PTHF-57 (A) and PVImMe-l-PTHF-76 (B) poly(ionic liquid) (red
lines) conetworks.

As displayed in Figure 5, the phase mode AFM images further corroborate the nanophase-separated
morphologies of both the PVIm-l-PTHF and the PVImMe-l-PTHF PIL conetworks. In these images,
the darker regions correspond to the softer PTHF, while the white areas belong to the harder PVIm and
PVImMe phases. The nanophase-separated morphologies are clearly visible in these images both before
(Figure 5A,B) and after (Figure 5C,D) the alkylation process. In other words, the poly(ionic liquid)
formation from the PVIm nanophases keeps the nanophase-separated structure of the conetworks,
i.e., PIL conetworks with PVImMe and PTHF nanophases are formed. Evaluation of the AFM
images allows for the estimation of the average phase sizes and the average domain distances in the
conetworks. As presented in Table 1, the average domain sizes of the PTHF phases (dPTHF) decrease
from 15.0 to 13.5 nm and from 18.2 to 9.0 nm as a result of the methylation in the PVIm-l-PTHF-57 and
PVIm-l-PTHF-76 conetworks, respectively. In contrast, a slight increase is obtained in the domain sizes
from 7.8 nm for the PVIm to 8.4 nm for the PVImMe, and from 7.9 nm for the PVIm to 8.2 nm for the
PVImMe phases upon alkylation with methyl iodide in the PVIm-l-PTHF-57 and PVIm-l-PTHF-76
conetworks, respectively. These findings can be attributed to the volume increase by methylation
of the PVIm phase. As already mentioned in relation to the SAXS results above, the lack of larger
domain size increase can be attributed to the crosslinked structure of these conetworks and also to the
hydrogen bonding between the imidazolium rings and iodide ions, which is in close proximity of the
iodide ions to the imidazolium rings, as reported for low molecular weight ionic liquids with halogen
counter ions [86,87]. The decrease in the domain sizes of the elastic PTHF phases in the PIL-CNs can
be explained by the compression (hardening) effect of the harder PIL phases in comparison to the
PVIm phases in the PVIm-l-PTHF conetworks. It must be mentioned that the image contrast in phase
imaging responds not only to the nanosized soft/hard areas but also to the overall hardness averaged
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throughout a surface of a few hundred nanometers. Nonetheless, the average domain distances could
be estimated from the AFM images and these fit relatively well with that of the SAXS measurements as
shown in Table 1. Based on the AFM and SAXS results, it can be concluded that the nanoconfined
phase-separated morphology of the PVIm-l-PTHF conetworks is kept even after the highly efficient
alkylation of the PVIm nanophases, that is, poly(ionic liquid) conetworks with nanocompartmentalized
poly(3-methyl-1-vinylimidazolium iodide) PIL domains with ~8–9 nm average domain sizes are formed
by the applied alkylation process.
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Figure 5. AFM images of the PVIm-l-PTHF-57 (A), PVIm-l-PTHF-76 (B), PVImMe-l-PTHF-57 (C), and
PVImMe-l-PTHF-76 (D) conetworks (1000 × 1000 nm2).

3.2. Swelling Properties of the PVIm-l-PTHF Amphiphilic and PVImMe-l-PTHF Poly(ionic liquid) Conetworks

Considering that the swelling properties of crosslinked polymers are of paramount importance,
detailed swelling investigations with the PVIm-l-PTHF APCNs and PVImMe-l-PTHF PIL-CNs were
carried out by us with a broader range of widely used polar and nonpolar solvents, including
ethyl acetate (EtOAc), N-methylpyrrolidone (NMP), acetonitrile (ACN), THF, hexane (Hex), DMSO,
DMF, methanol (MeOH), and distilled water. As reported earlier, the PVIm-l-PTHF conetworks
have amphiphilic swelling characteristics [34], i.e., these conetworks swell in both hydrophilic and
hydrophobic solvents. Indeed, this is well demonstrated in Figure 6, which shows the swelling
degrees as a function of time for both kinds of conetworks. The PVIm-l-PTHF conetwork swells in the
hydrophobic THF and hexane, and in the hydrophilic water and methanol as well, for instance, the
equilibrium swelling degrees are 503% and 223% in methanol and THF, respectively. The quaternized
PVImMe-l-PTHF conetwork also possesses amphiphilic character. However, even the first look at
the data in Figure 6 indicates that there are significant differences between the swelling capacities of
the PVIm-l-PTHF APCN and the PVImMe-l-PTHF PIL-CN. As displayed in Figure 7A and shown in
Table 2, the equilibrium swelling degrees (Q) of the PIL-CN, which is a polyelectrolyte, are surprisingly
lower in water and methanol, and in acetonitrile and ethyl acetate as well, than that of the PVIm-l-PTHF
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APCN, on the one hand. On the other hand, the equilibrium swelling degrees of the PVImMe-l-PTHF
PIL-CN is dramatically higher in DMF, DMSO, and NMP, than that of the starting APCN. It is also
remarkable that the PVImMe-l-PTHF-57 PIL-CN is able to absorb more than 1000% liquids in DMF,
DMSO, and NMP, and as such, this PIL-CN can be considered as a superabsorbent for these solvents.
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Figure 6. The swelling degrees as a function of time of the PVIm-l-PTHF-57 (blue) and
PVImMe-l-PTHF-57 poly(ionic liquid) (red) conetworks as a function of time in different solvents:
hexane (A), THF (B), ethyl acetate (C), methanol (D), acetonitrile (E), DMF (F), NMP (G), DMSO (H),
and distilled water (I).

Table 2. The equilibrium swelling degrees of the PVIm-l-PTHF-57 (QAPCN) and PVImMe-l-PTHF-57
(QPIL-CN) conetworks, the ratio of their swelling degrees (QPIL-CN/QAPCN), and the dipole moment,
dielectric constant, and polarity index of the investigated solvents.

Solvent QAPCN
(%)

QPIL-CN
(%) QPIL-CN/QAPCN

Dipole Moment
(D)

Dielectric
Constant

Polarity
Index

water 50 31 0.62 1.87 80.10 10.2

methanol 503 69 0.14 2.87 32.70 5.1

DMF 540 1099 2.03 3.86 36.71 6.4

DMSO 196 1245 6.35 4.10 46.68 7.2

hexane 21 11 0.52 0.08 1.88 0.1

THF 223 63 0.28 1.75 7.58 4.0

acetonitrile 57 29 0.51 3.44 37.50 5.8

NMP 630 1503 2.38 4.09 32.20 6.7

ethyl acetate 99 50 0.50 1.88 6.02 4.4
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The ratios of the equilibrium swelling degrees for the PVImMe-l-PTHF PIL-CN (QPIL-CN) and
the PVIm-l-PTHF APCN (QAPCN) are depicted in Figure 7B. The quaternization decreases the Q not
only in the aprotic hydrophobic solvents, i.e., by about 70% in THF and 50% in hexane, but also in the
polar acetonitrile and ethyl acetate as well. Surprisingly, this trend can also be observed in polar protic
solvents, such as MeOH and water. The equilibrium swelling degree is reduced by about 40% in water
and to nearly one-tenth in methanol. In large contrast, the swelling capacity of the PIL-CN increases
by more than two times in DMF and NMP, and a more than sixfold increase is observed in DMSO.
This unprecedented selective swelling behavior of the nanoconfined PVImMe-l-PTHF PIL-CN can
be considered to be utilized for several application possibilities, such as catalysis purposes, solvent
purification, and environmental protection processes, etc.

Finding a relationship between the observed changes in the swelling behavior upon the formation
of the PIL phase in the PVIm-l-PTHF conetwork and fundamental solvent polarity characteristics,
such as dielectric constant, dipole moment, and Snyder’s polarity index [88,89], was also attempted.
In this context, it has to be mentioned that only one study [69] was found by us which reported
on the correlation between the equilibrium swelling degree and dielectric constant for crosslinked
poly(3-alkyl-1-vinylimidazolium-co-acrylic acid) PILs, in which both the imidazolium cations and
carboxylate counter ions are located in the same copolymer chain. In contrast, we have found that no
characteristic relationship exists between the equilibrium swelling degrees of the PVIm-l-PTHF APCN
or the PVImMe-l-PTHF PIL-CN and the dielectric constant, dipole moment, or polarity index of the
investigated solvents. The data in Table 2 indicate only that solvents with higher than a 3.7–3.8 D dipole
moment may result in high swelling capacities of the PVImMe-l-PTHF PIL-CN. However, displaying
the QPIL-CN/QAPCN ratios in a three-dimensional plot as a function of the dipole moment and dielectric
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constant (Figure 8A) shows that a tight dipole moment–dielectric constant region exists where the three
solvents, i.e., DMSO, DMF, and NMP with a high degree of relative swelling, are located. Namely,
when the dipole moment of the applied solvent is higher than 3.8 and the dielectric constant is between
30 and 50, the ratios of QPIL-CN/QAPCN increase up to 2 to 6 times, but otherwise, these swelling ratios
are lower than one. Unexpectedly, plotting the QPIL-CN/QAPCN data as a function of the polarity index,
a Gaussian curve can be fitted for the equilibrium swelling ratios. This finding indicates that solvents
falling in a relatively narrow polarity index region, roughly in ~6–9.5, are able to swell the PIL-CNs
with high QPIL-CN/QAPCN equilibrium swelling ratios, and the swelling capacity of solvents with
polarity index below and above this region becomes low, like in the case of methanol and water with a
polarity index of 5.1 and 10.2, respectively.Polymers 2020, 12, x FOR PEER REVIEW 14 of 22 
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Figure 8. The ratio of the equilibrium swelling degrees of the PVImMe-l-PTHF-57 poly(ionic liquid)
conetwork (QPIL-CN) and the PVIm-l-PTHF-57 (QAPCN) conetwork as a function of the dipole moment
and dielectric constant of the solvents (A), and as a function of the polarity index of the solvents (B).

Evaluation of the swelling degrees versus time plots was carried out by the Korsmeyer–Peppas
relationship [90] as well, which provides information about the solvent diffusion process in
the conetworks:

R = k tn

where R stands for the ratio of the swelling degree at times t and the equilibrium swelling degree,
and k and n are constants. The type of the diffusion process of the solvents can be classified by the
value of the n exponent obtained by the double logarithmic plot on the basis of the above equation,
i.e., log(R) versus log(t). When n is close to 0.5 or smaller, then the swelling occurs mainly by Fickian
diffusion, while higher values indicate that other processes, e.g., relaxation phenomena and/or strong
solvent–network interactions, influence also the solute diffusion in the conetworks, that is, non-Fickian
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diffusion, and so called anomalous transport takes place. As shown in Table 3, with the exception of
DMF, DMSO, and NMP, the n values are in the range of 0.5 or somewhat smaller, implying swelling
by Fickian diffusion by the other solvents, i.e., water, methanol, hexane, THF, acetonitrile, and ethyl
acetate. With the PVImMe-l-PTHF PIL-CN, 0.64, 0.71, and 0.63 n values are obtained for DMF, DMSO,
and NMP, respectively. These findings evidently indicate that anomalous swelling, i.e., non-Fickian
diffusion, occurs with these solvents for the PVImMe-l-PTHF poly(ionic liquid) conetworks. These
results also allow for the conclusion to be made that presumably preferential interaction exists between
these solvents and the nanoconfined PVImMe-l-PTHF PILs. The data in Table 3 also show that the n
values are somewhat higher than 0.5, even in the case of PVIm-l-PTHF for swelling in DMF, DMSO,
and NMP. These are in line with the observed high swelling capacity of both the PVIm-l-PTHF, and
especially the PVImMe-l-PTHF nanoconfined poly(ionic liquid) conetwork for these solvents.

Table 3. The exponents of the swelling degree versus time curves obtained by the Korsmeyer–Peppas
relationship for the PVIm-l-PTHF-57 (nAPCN) and PVImMe-l-PTHF-57 (nPIL-CN) conetworks swollen in
different solvents.

Solvent nAPCN nPIL-CN

water 0.43 0.36

methanol 0.36 0.46

DMF 0.58 0.64

DMSO 0.56 0.71

hexane 0.38 0.49

THF 0.52 0.52

acetonitrile 0.48 0.34

N-methylpyrrolidone 0.58 0.63

ethyl acetate 0.46 0.50

4. Conclusions

A new type of nanoconfined poly(ionic liquid) conetworks (PIL-CNs), which has not existed
before according to the best of our knowledge, was successfully synthesized by a simple alkylation
process of the pendant imidazole rings of poly(1-vinylimidazole) with methyl iodide in bicontinuous
nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks
(APCNs). Gravimetric and solid-state NMR measurements indicate that the yields of the alkylation
reaction in the conetworks were over 95%, and poly(3-methyl-1-vinylimidazolium iodide) (PVImMe)
poly(ionic liquid) phases, crosslinked with PTHF chains, are formed. DSC analysis showed two distinct
glass transitions in both the APCNs and PIL-CNs, indicating phase-separated morphology even after
the alkylation process as well, i.e., the PVImMe PIL phase and the PTHF crosslinker are immiscible even
at the nanoscale. Significant suppression of crystallinity of the PTHF component in the conetworks
was found as a result of alkylation. In conetworks with higher PVIm content, the crystallinity fully
disappears after the alkylation reaction, i.e., the charged PVImMe PIL chains prevent crystal growth
nucleation of the semicrystalline PTHF. SAXS and AFM measurements clearly indicate bicontinuous
nanophase-separated morphology in both the PVIm-l-PTHF and PVImMe-l-PTHF poly(ionic liquid)
conetworks with domain sizes nearly in the same range. This means that the formation of PVImMe PIL
phases by alkylation of the PVIm nanophases does not destroy the mutually nanoconfined morphology
of the PVImMe PIL and PTHF phases in these conetworks. Evaluation of the SAXS curves with distinct
peak maxima and the phase mode AFM images indicates disordered bicontinuous (cocontinuous)
nanophase-separated structure in both the PVIm-l-PTHF and PVImMe-l-PTHF poly(ionic liquid)
conetworks with 22–26 and 17–22 nm domain spacing, respectively, on the one hand. On the other
hand, the domain sizes of the PVIm and PVImMe phases in the PVIm-l-PTHF and PVImMe-l-PTHF
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poly(ionic liquid) conetworks obtained by AFM fall in the ranges of 7.8–7.9 and 8.2–8.4 nm. The lack of
the expected higher average domain size increase in the PVImMe-based phases as a result of alkylation
can be attributed to the relatively high crosslinking densities and the known strong hydrogen bonding
between the iodide ions and the imidazolium rings in these PIL-CNs. In contrast, shrinkage of the PTHF
phase occurs by methylation from 15–19 nm in the PVIm-l-PTHF to 9–14 nm in the PVImMe-l-PTHF
poly(ionic liquid) conetworks. Presumably, this is due to the compression effect of the ionic PIL phases
on the elastic hydrophobic PTHF nanophases. Based on these findings, it can be concluded that
the applied robust alkylation process is suitable to convert the PVIm nanophases in PVIm-l-PTHF
conetworks to PVImMe poly(ionic liquid) nanophases without the loss of the bicontinuous nanoconfined
morphology of these conetworks. In other words, PVImMe-l-PTHF poly(ionic liquid) conetworks with
distinct nanocompartmentalized PVImMe phases are formed with average domain sizes in the range
of 8.2–8.4 nm.

Detailed comprehensive swelling studies with the PVIm-l-PTHF and PVImMe-l-PTHF poly(ionic
liquid) conetworks using nine different swelling agents, such as water, methanol, THF, DMSO,
DMF, NMP, hexane, ethyl acetate, and acetonitrile, covering a wide range of philicity and polarity
characteristics, resulted in surprising unprecedented results. Although, the PIL component in the
PVImMe-l-PTHF PIL-CNs is a polyelectrolyte, it was found that the equilibrium swelling degrees
are smaller in the PVImMe-l-PTHF than in the PVImMe-l-PTHF PIL conetworks, not only for the
less polar hydrophobic solvents, i.e., hexane, THF and ethyl acetate, but for acetonitrile, and even
for the hydrophilic protic water and methanol as well. In contrast, unexpectedly higher than 1000%
equilibrium swelling degrees were observed for the PVImMe-l-PTHF PIL-CN in the aprotic polar
DMSO, DMF, and NMP, providing superabsorbent behavior selectively for these solvents. The swelling
capacity of the PVImMe-l-PTHF PIL-CN is more than one order of magnitude higher for these three
solvents than that for the rest of the investigated swelling agents, for which the swelling degrees fall
only in the 11–69% range. Searching for a correlation between solvent characteristics and the observed
unusual swelling of the PVImMe-l-PTHF PIL-CN in the examined solvents, one can conclude that there
is no direct correlation between the absolute equilibrium swelling ratios of either the PVIm-l-PTHF
or the PVImMe-l-PTHF PIL conetworks and dielectric constants or dipole moments of the solvents.
The data only indicate that high, selective superabsorbent behavior of the PIL-CN can be expected
for solvents with higher than about 3.6–3.7 D dipole moments. Interestingly, however, the ratio
of the equilibrium swelling degrees (QPIL-CN/QAPCN) of the two types of conetworks as a function
of the polarity index of the solvents can be fitted with a Gaussian curve with a maximum at 7.8.
This dependence of QPIL-CN/QAPCN on the polarity index also shows that increased swelling of the
PVImMe-l-PTHF PIL-CNs can be expected only with solvents having polarity index values in the
~6–9.5 range.

In sum, the robust process applied by us, i.e., soaking PVIm-l-PTHF conetworks in MeI, leads to
a high extent of alkylation to form novel PVImMe-l-PTHF PIL-CNs with nanoconfined PIL phases.
These new materials possess unprecedented unique swelling properties with selective superabsorbent
properties for polar aprotic solvents with a range of polarity index of 6–9.5, such as DMF, DMSO,
and NVP. These fundamental swelling properties and the potential of ion exchange of the counter ion in
these PIL-CNs is expected to lead to new research and development directions with such PIL containing
materials, and enable the application of the resulting PIL-CNs in broad application fields, for example,
nanohybrid syntheses, biomedicine, catalysis, solvent and wastewater purification, gas sorption
membranes (e.g., CO2), and ion or proton conduction for batteries and fuel cells, respectively, which
will be investigated in our future research.
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