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Abstract

The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in

humans and other mammals, despite the development of potent host immune responses

that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in

human hosts arises at least in part from the remarkable level of genetic diversity in multiple

families of genes encoding the primary target antigens of anti-parasite immune responses.

However, the highly repetitive nature of the genome–largely a result of these same exten-

sive families of genes–have prevented a full understanding of the extent of gene diversity

and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and

proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains

representing the apparent ancestral lineages of the species. These assemblies reveal not

only the full repertoire of the members of large gene families in the two strains, demonstrat-

ing extreme diversity within and between isolates, but also provide evidence of the pro-

cesses that generate and maintain that diversity, including extensive gene amplification,

dispersion of copies throughout the genome and diversification via recombination and in situ

mutations. Gene amplification events also yield significant copy number variations in a sub-

stantial number of genes presumably not required for or involved in immune evasion, thus

forming a second level of strain-dependent variation in this species. The extreme genome

flexibility evident in T. cruzi also appears to create unique challenges with respect to pre-

serving core genome functions and gene expression that sets this species apart from

related kinetoplastids.

Author summary

Many pathogens vary their surface antigenic profile in order to establish and maintain

infections in the face of host immune responses. Although antigenic variation has been

extensively documented in extracellular pathogens and is crucial in these cases to
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pathogen evasion of host antibody responses, there is scant understanding of the role that

antigenic variation plays in immunity to intracellular pathogens, where cell-mediated

immune responses are key to infection control and where a low frequency of switching

from one predominant surface antigen to a new variant would be expected to have little

impact on immune recognition. Herein we use comparative genome analysis to reveal the

details of and mechanisms behind how the intracellular parasite Trypanosoma cruzi, agent

of human Chagas disease, maintains a vast and varying array of antigens that are the tar-

gets of host immune responses. The process of diversification is so efficient that two iso-

lates share not a single identical gene among the thousands of antigenic variants in their

genomes, thus making the likelihood of generating protective vaccines, low. This genome

flexibility also ensnares genes whose products are not targets of immune responses, thus

further driving the isolate-specific biological diversity that characterizes this species.

Introduction

The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, the highest

impact parasitic infection in the Americas, affecting 10 to 20 million humans and innumerable

animals in many species. The study of T. cruzi and Chagas disease is particularly challenging

for a number of reasons, including the complexity and unique characteristics of its genome.

Over 50% of the T. cruzi genome is composed of repetitive sequences, which include numer-

ous families of surface proteins (e.g. trans-sialidases, mucins and mucin-associated surface

proteins) with hundreds to thousands of members each, as well as substantial numbers of

transposable elements, microsatellites and simple tandem repeats [1–3]. This repetitive nature

greatly hampered the assembly of the original CL Brener strain reference genome generated in

2005, resulting in a highly fragmented and draft assembly with extensively collapsed high

repeat regions [2]. In addition, the CL Brener strain turned out to be a hybrid strain with

divergent alleles at many loci. To scaffold the genome sequence, Weatherly et al. took advan-

tage of the bacterial artificial chromosome (BAC) library sequencing data and combined with

synteny analysis of two genomes from closely related species, Trypanosoma brucei and Leish-
mania, obtained the current reference genome with 41 chromosomes [4]. Nevertheless, a large

number of gaps are still present in the chromosomes of the reference genome, and many unas-

signed contigs remain, making it impossible to determine the exact genome content and, in

particular, the full repertoires of large gene families.

As in many pathogens, and best documented in the related trypanosomatid Trypanosoma
brucei, families of variant surface proteins often serve as both the primary molecular interface

with mammalian hosts and as the predominant target of host immune responses. Classical

antigenic variation in these pathogens consists of the serial expression of a single (or a highly

restricted number of) antigen variant(s) in the pathogen population at any one time, with

switches to new variants becoming evident once the host immune response controls the domi-

nant one. This largely “one-at-a-time” strategy appears particularly effective in pathogens

exposed continuously to antibody-mediated immune control mechanisms. T. cruzi, however,

appears to take a much different approach to antigenic variation, generating multiple very

large families of genes encoding surface and secreted proteins, many of which are expressed

simultaneously rather than serially. We believe that this strategy may reflect the primarily

intracellular lifestyle of T. cruzi in mammalian hosts and the necessity of evading T cell recog-

nition of infected host cells, although this has not yet been formally proven.
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The advent of two advances in genome analysis has made it feasible to revisit and substan-

tially improve upon the T. cruzi genome assembly and to advance our understanding of its

composition. The long-read capability of PacBio Single-Molecule Real-Time (SMRT) sequenc-

ing provides read lengths capable of spanning long repetitive regions. The application of this

technology [5–7] as well as nanopore sequencing [8], has resulted in much-improved contigu-

ity and expansion of the members of large gene families in T. cruzi. Secondly, proximity liga-

tion methods have allowed for the scaffolding of assemblies spanning highly repetitive regions.

One of the methods, Hi-C, identifies extant inter-chromosomal interactions by capturing

chromosome conformation, and has been used to create scaffolds at chromosomal scale [9–

11]. A second approach termed Chicago, adapts this same methodology but reconstitutes the

conformation of DNA in vitro by combining the DNA with purified histones and chromatin

assembly factors [12]. These proximity ligation methods not only improve the contiguity of

genomes by joining contigs, they also identify misjoins in the contigs and separate them to

increase the accuracy of assemblies [12]. The combination of Chicago and Hi-C has now been

applied to many genomes [13–17].

In this study, we have applied SMRT sequencing and proximity ligation methods to pro-

duce very high-quality assemblies from the Brazil (TcI) and Y (TcII) strains of T. cruzi. These

two strains are representatives of the most ancestral lines that are hypothesized to have given

rise to the 6 discrete typing units (DTUs, TcI-TcVI) lineages now composing this genetically

diverse species [18–23]. Using these chromosomal-level assemblies with minimal gaps, we are

now able to compare the full gene content of representatives of these founding lineages of the

T. cruzi species, including the full repertoires of large gene families. The six largest of these

gene families are of particular interest because each contains over 200 members and substan-

tial numbers of pseudogenes, the latter likely a product of gene duplication and recombination

events. The three largest of these families, the trans-sialidases, mucins and mucin-associated

surface proteins (MASPs) also serve as the primary targets of host immune responses and are

thus under immune pressure. Herein, we document a substantial diversity in individual chro-

mosome content, including frequent allelic variants, but with an overall conserved gene con-

tent outside of the large gene families. Within these largest gene families, however, extreme

diversification is evident, with no identical copies between the two strains, of genes in these

families. These high-quality genomes also reveal the mechanisms behind the expansion and

diversification of the large gene families, presumably in response to immunological pressure,

and in the process, creating other challenges in terms of core genome stability and function.

Results

Genome sequencing and assembly

PacBio SMRT sequencing provided 1,264,527 (N50 = 9,560 bp) and 763,579 (N50 = 12,499 bp)

filtered reads with ~9 Gb and ~6 Gb of sequence data for Brazil clone A4 (Brail A4) and Y

clone C6 (Y C6), respectively, corresponding to ~200x and ~130x coverage based on the pre-

dicted genome size. Initial assembly resulted in sequences of 45.11 Mb and 46.98 Mb for Brazil

A4 and Y C6 draft genomes, respectively, close to the estimated haploid genome size of T.

cruzi [24] (Table 1). Furthermore, we applied the proximity-ligation tools, Hi-C and Chicago

[12] to scaffold the draft assembly with the generation of joins and breaks (S1 Table). Density

histograms mapped with Hi-C reads are provided in S1 Fig for scaffolds > 1Mb. The applica-

tion of these two libraries decreased the L50 to half of that of the draft genomes, and the size of

the largest scaffolds doubled (Table 1). Gap extension and base correction using Illumina

reads ultimately resulted in 12 and 14 scaffolds in the Brazil A4 and Y C6 final assemblies,

respectively, with a length greater than 1 Mb. Telomeric repeats [(TTAGGG)n] were identified
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in 18 Brazil A4 and 15 Y C6 scaffolds, including on both ends of three scaffolds in Brazil A4,

suggesting full chromosome assembly in these cases. The improvement in these new genomes

is not only in integrity (S2 Table and S2 Fig), but also in filled gaps, recovered genes and

deconvoluted repetitive regions (see examples in S3 Fig).

Genome features and content

Due to a lack of apparent chromosome condensation during replication [24,25], the karyotype

of T. cruzi has not been completely elucidated. Moreover, chromosome size and content vary

significantly between different T. cruzi strains and even among clones of the same strain based

upon pulse-field gel electrophoresis (PFGE) analysis [25–29]. Based on criteria including size,

repeat proportion, and gene number, 43 scaffolds of Brazil A4 and 40 scaffolds of Y C6 were

designated as chromosomes (S4 Fig) and the remainder referred to as smaller scaffolds.

Repetitive sequences occupy 58.8% and 62.3% of the genome for Brazil A4 and Y C6 (S3

Table), substantially higher than the 50% that was estimated in the reference CL Brener genome,

thus confirming the capability of long-read sequencing and assembly approaches to recover and

place more repetitive DNA content. Approximately 50% of the sequence in chromosomes is

repetitive sequences, compared to ~90% in smaller scaffolds (S4 Fig). Using conventional

approaches with manual curation, gene models were identified in Brazil A4 and Y C6, respec-

tively. We employed Benchmarking Universal Single-Copy Orthologs (BUSCO, v3.0.2) [30] to

evaluate the completeness of Brazil A4 and Y C6 assembly in comparison to three other pub-

lished long-read assembled T. cruzi genomes for which annotations are available [5,31]. Search-

ing against single-copy orthologs that are expected to be present in either eukaryote lineage

orthologous groups, or protist lineage orthologous groups, Brazil A4 and Y C6 contain the high-

est number of gene sets in one haplotype among all these genomes (S4 Table).

A major constituent of the repetitive regions in the T. cruzi genome is large gene families,

including the trans-sialidases (TS), mucin associated surface proteins (MASP), mucins, and

surface protease GP63 (all targets of immune responses), as well as retrotransposon hotspot

(RHS) proteins and dispersed gene family 1 proteins (DGF-1) [2,32,33]. Our previous studies

indicated the total copy number of TS genes was underestimated using conventional annota-

tion approaches due in part to the failure to identify new variants and fragments of TS result-

ing from frequent recombination [34]. To complete the annotation of the members of large

gene families, we developed a customized workflow (summarized in S5 Fig) and applied it to

the six largest gene families. This allowed us to capture the full repertoire of the largest and

Table 1. Summary of assembly statistics.

Genome Method used and coverage Total size

(Mbp)

Number of contigs or

scaffolds

GC (%) N50 (bp) L50 Largest contig or scaffold length

(bp)

# of

gaps

Brazil A4

Draft PacBio RSII (200x) 44.97 677 51.56 227,072 48 1,236,815 0

Scaffolded Chicago (125x) and Hi-C

(46,451x)

45.00 402 51.56 907,746 18 2,710,165 295

Final PBJelly, Pilon and iCorn 45.56 402 51.58 914,771 17 2,738,928 295

Y C6

Draft PacBio Sequel (130x) 46.98 351 51.57 410,475 33 1,547,313 0

Scaffolded Chicago (2,096x) and Hi-C

(21,551x)

47.00 266 51.57 890,993 18 2,951,407 106

Final PBJelly, Pilon and iCorn 47.22 266 51.58 889,019 18 2,951,016 106

� Draft assemblies are sequences with zero gaps.

https://doi.org/10.1371/journal.ppat.1009254.t001
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most diverse gene families (S5 Table, copy numbers of which are summarized in S6 Table).

Members of these gene families are unequally distributed among and along the chromosomes,

with several of the largest chromosomes (e.g. TcBrA4_Chr2 and TcYC6_Chr1) composed

nearly entirely of members of these large gene families (Figs 1 and S6). In contrast to previous

reports suggesting the members of large gene families were mainly located in telomeric and

subtelomeric regions [2,7], members of large gene families are not restricted to particular

regions of chromosomes. Moreover, TS, MASP, mucin and GP63 have an overlapping distri-

bution along the chromosomes, while RHS and DGF-1 genes are more dispersed.

After consolidating the predictions of large gene families with our conventional annota-

tions, the Brazil A4 and Y C6 genomes contained 18,708 and 17,650 gene models, respectively

(see annotation summary in S7 Table). The composition of gene content between two

genomes is very similar, with ~25% as members of 6 largest gene families, ~40% as hypotheti-

cal proteins, and>90% of the remaining genes as orthologs of those in the related kinetoplas-

tids T. brucei and L. major. That this gene model count in the two T. cruzi strains is

substantially higher than that estimated for T. brucei and L. major is likely due to two factors:

1) the high number of members of large gene families in T. cruzi, and 2) a greater number of

hypothetical genes in T. cruzi, a third of which are unique to T. cruzi, although the size distri-

bution of the hypothetical proteins is similar in the 3 species (S7 Fig).

Allelic variation

The significant number of small scaffolds and the relatively high gene model numbers in some

of them prompted us to consider whether these small scaffolds might represent regions of

Fig 1. Distribution of large gene families and synteny between chromosomes in Brazil A4 (right, B) and Y C6,

(left, Y). Tracks from outer to inner rings: chromosome number, TS, MASP, mucin, GP63, and synteny blocks.

https://doi.org/10.1371/journal.ppat.1009254.g001
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allelic variation between sister chromosomes, as allelic variation is one of the factors that

results in fragmentation during genome assembly for diploid genomes. Although TcI and TcII

DTUs represented by the Brazil and Y strains, respectively, are considered homozygous line-

ages, we very conservatively detected 26 and 33 small scaffolds in each genome showing con-

sistent synteny in multiple gene models to parts of the core chromosomes (S8 Table). An

example is shown in Fig 2A in which scaffold TcYC6_Contig191 demonstrates regions of syn-

teny within the 825,025–1,379,353 bp region in the first chromosome of Y C6 (TcYC6_Chr1).

Confirmation of this chromosome variant was supplied by replacing the identified region in

TcYC6_Chr1 with TcYC6_Contig191 and then mapping the chromosomal contacts in the Hi-

C data for these 2 alternative versions for TcYC6_Chr1. As shown in Fig 2B, the Hi-C data are

equally strong for both chromosome variants. Using Falcon-Phase, which phases diploid

genome sequences by integrating long reads and Hi-C data [35], we identified an additional 18

and 7 allelic variations in Brazil A4 and Y C6, respectively. In combination, these analyses

identified allelic variations in 24 chromosomes of Brazil A4 and 25 of Y C6, including chromo-

somes with multiple allelic variants, e.g. the largest chromosome in Y C6 (TcYC6_Chr1), and

an intermediate-sized chromosome in Brazil A4 (TcBrA4_Chr13; Fig 2C). Thus, we suggest

that many of the small scaffolds are variants of regions in the chromosome-size scaffolds. How-

ever, because the majority of these small scaffolds lack the conserved, non-gene family

sequences required to prove synteny, and Falcon-Phase can only resolve haplotypes bearing

divergence of< 5%, identifying the position of all the small scaffolds on the chromosomes was

not possible.

Fig 2. An example of homologous chromosomes with large allelic variations. (A) Synteny between two allelic variants in Chr1 of Y

C6. Synteny blocks are marked with green. (B) Hi-C heat maps of TcYC6_Chr1 (left) and its homologous chromosome with

TcYC6_Contig191 (boxed area) replacing the allelic region in TcYC6_Chr1 (boxed area). (C) Two chromosomes with multiple allelic

variants. Blue blocks indicate genes on the forward strand, and red blocks indicate genes at the reverse strand.

https://doi.org/10.1371/journal.ppat.1009254.g002
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Structural comparison of the Brazil and Y sequences

The very high genome quality and contiguity provided by the combination of SMRT sequenc-

ing and Hi-C analysis enabled chromosome level comparison of the Brazil (TcI) and Y (TcII)

clones (Fig 1). The synteny plots show that the majority of chromosomes from one genome

are collinear with those in the other genome (synteny blocks with 1–1 orthologous pairs are

summarized in S9 Table). For instance, Brazil A4 Chr4 showed continuous synteny to Y C6

Chr4 overall. However, as expected based upon previous gene mapping studies [26,36–38],

some chromosomes corresponded to different regions in multiple chromosomes of the other

genome, e.g. Brazil A4 Chr1 showed synteny to a combination of Chr20 (298,235–684,393bp),

Chr9 (63,384–95,053bp) and Chr2 (20,327–1,438,658bp) in Y C6. Some inverted syntenies

were also detected, e.g. between 388,900–968,190bp on Brazil A4 Chr8 and 11,711–556,982bp

on Y C6 Chr16 (Fig 1). Notably, the diversity of sequences encoding members of the large

gene families (see details below) prevented the detection of synteny in a substantial proportion

of the two genomes, including in two of the largest chromosomes (e.g. TcBrA4_Chr2 and

TcYC6_Chr1).

Variation in gene models within and between Brazil and Y strains is

predominantly in the large gene families

A large number of genetic variations were identified in the non-repetitive regions, including het-

erozygous SNPs/Indels within respective strains (S10 Table), and homozygous SNPs/Indels

between the two strains (S11 Table). We also detected aneuploidy in both genomes: 3 and 8

chromosomes in Brazil A4 and Y C6, respectively, exist in copy numbers greater than two, based

on the results of both relative read depth and allele frequency (S8 Fig). Among these are the par-

tially syntenic chromosomes (TcBrA4_Chr24 and TcYC6_Chr10), which also share synteny

with Chr31 in CL Brener, reported to be supernumerary in many strains [39], thus suggesting a

species-wide requirement for> 2 copies of one or more genes in these regions. Additionally,

variations exist in the copy number for a substantial number of individual genes characterized

by OrthoFinder [40], with ~150 genes showing the greatest variation between the two strains

(S12 Table). However, with respect to genes unique to either strain, we found 23 (Brazil A4) and

20 (Y C6) unique gene loci not present in the other strain and further validated this finding by

examining the raw reads (S13 Table). All are annotated as hypothetical proteins, and most are

small genes located in large gene family-rich regions of the genome and thus are likely the prod-

ucts of recombination events involved in gene family diversification (see below).

To fully assess the variation in the members of the 6 largest gene family between the two

strains, we carried out a best match search for the protein sequence of putatively expressed

genes in each family from Y C6 genome with those in Brazil A4 (S14 Table). As a control, the

same analysis was performed for a subset of 291 mostly single-copy genes (BUSCO), as well as

a small gene family of 35 members, beta galactofuranosyl glycosyltransferase (b-gal GT). As

shown in Fig 3, high-identity matches could always be found for the BUSCO genes, and some

of them (22 out of 291) have identical matches (100% identity) in the other strain. Similar to

BUSCO genes, the identity between best matches for b-gal GT is also tightly distributed in the

range of 90–97%. In contrast, all six large gene families exhibit a broad distribution of identity

for their best matches relative to the BUSCO genes and b-gal GT genes, especially TS, MASP,

mucin and RHS, with only a small proportion of best matches bearing 90% identity or more.

Among the family members with the greatest similarity between the two strains are the small

subset of TS genes containing the sialidase enzymatic domain as previously described [41],

suggesting that this group of trans-sialidases has been selected for and conserved in both

strains.
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Evidence of large gene family expansion and diversification

The very high number and the impressive within- and between- strain variation in the genes

composing the largest gene families in T. cruzi is indicative of a system under intense evolution-

ary pressure. We have taken advantage of the high contiguity of these two genome sequences, as

well as the comprehensive prediction of all members of the 6 largest gene families, to attempt to

understand better how this remarkable diversity is generated and maintained.

We first examined the genomes for evidence of gene duplication events that could increase

the number of members in gene families. Multidimensional scaling (MDS) plots based on the

pair-wise genetic distances of all members of each large gene family in each strain allowed us

to identify tightly distributed gene clusters with high sequence identity (http://shiny.ctegd.uga.

edu). In multiple cases, genes within these clusters were tandemly arrayed individually (TS; Fig

4A top) or as a set of genes (TS plus MASP; Fig 4A bottom). Such tandem amplifications are

present in all large gene families (except DGF-1) and occur uniquely in each strain (S15

Table). A number of unusual amplification events were also noted, including inverted duplica-

tions creating a strand switch in between (Fig 4B), and an amplification involving several

genes on both strands, replicated a total of 5 times (Fig 4C), thus creating a complex set of

strand switches.

The majority of tandem amplification of genes in the 6 largest gene families in both T. cruzi
genomes contained 10 or fewer replicates (S15 Table). However, one hypothetical protein

(�HP) in the Y C6 occurs in a tandem array of 29 units with a TcMUCI gene (Fig 4D). Com-

parison to the syntenic region in Brazil A4 revealed a single TcMUCI ortholog (and no �HP

sequence), indicating that at some point the �HP sequence was inserted next to the TcMUCI

gene in Y C6, and the two genes were amplified together as a segment (Fig 4D). Although no

particular protein domains were characterized in the �HP gene, 18% of its sequence shares

similarity with several MASP sequences, implying that at least part of the gene might be

derived from a MASP. The abnormally high number of replicates in this tandem array as well

as the low diversity in the tandem copies suggested that this might be a recent amplification

event. However, comparison to syntenic regions in other T. cruzi genomes sequenced with

long-read technologies revealed the same TcMUCI+�HP tandem array in the TCC (TcIV)

strain but not in the Dm28c (TcI), Sylvio (TcI), and Bug2148 (TcV) (Fig 4D). Additionally,

phylogenetic analysis grouped all of the replicated copies from Y C6 and TCC together and

distant from the single TcMUCI genes in the other 4 strains (Fig 4E). Using the model of DTU

evolution in T. cruzi which postulates that the TcVI is derived from a hybridization event

Fig 3. Protein best match analysis of gene families between Brazil A4 and Y C6. Solid lines indicate median and

dashed lines indicate quantiles.

https://doi.org/10.1371/journal.ppat.1009254.g003
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between TcII and TcIII [18,23], we propose that the TcMUCI+�HP amplification is an ancient

event, occurring after the split of TcI and TcII but prior to the TcII/TcIII hybridization that

yielded TcVI.

In addition to tandem clusters of genes in these large gene families, MDS analysis also

revealed closely related family members located on multiple chromosomes (Fig 5A). An

Fig 4. Gene amplification events in members of large gene families. (A) Tandem arrays of individual TS genes (top),

and a TS+MASP pair (bottom) clustered based upon genetic distance in the MDS plots. Each chromosome is displayed

as a separate pattern on the MDS plot. T: TS; M: MASP. Alignment of the genes in each MDS cluster (right) confirms

high consensus (grey regions); black regions indicate SNPs and ‘–’ indicate gaps. (B) Mirror-duplication of one

fragmented RHS and two RHS pseudogenes. P: pseudogene; F: fragment. (C) One RHS (+), one hypothetical protein

(+) and one fragmented glycosyltransferase (-) replicated 5 times, creating multiple strand switches. F: fragment. (D)

Syntenic regions of the TcMUCI+�HP tandem array detected in 6 long-read sequenced T. cruzi strains. Synteny of

TcMUCI orthologs are labeled in yellow. (E) Bayesian inference of phylogeny of all TcMUCI orthologs from the 6

strains. Note that TcMUCI genes from Y C6 (purple) and TCC (green) are intermingled in the top portion of the tree,

indicating the retention of high similarity in these lineages, and are collectively distant from their next nearest mucins

in 4 T. cruzi genomes lacking this array. Live MDS plots can be explored at http://shiny.ctegd.uga.edu. Alignments

were performed using Geneious software (v11.0.4).

https://doi.org/10.1371/journal.ppat.1009254.g004
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extreme case is the Y C6 gene cluster in the bottom right of Fig 5A which contained 31 TS

genes with very high similarity distributed on 11 different chromosomes (S9A Fig). Interest-

ingly, the 13 TS genes on Chr7 (Fig 5B, middle) are in tandem, interspersed with a beta tubulin

gene, while the 7 TS genes on Chr18 (Fig 5B, top) are in tandem as TS genes alone (with one

beta tubulin gene downstream of TS7). The remaining 11 TS genes in this cluster are dispersed

in the genome as singlets (3 of them are shown at the bottom of Fig 5B). Notably, the sequences

upstream and downstream of the TS gene in the TS + beta tubulin array on Chr7 are homolo-

gous to those of the TS7 gene in the Chr18 array, and the dispersed singlet TS also share a por-

tion of the upstream and downstream sequences with the other TS in this cluster (S9B Fig).

Together, these results suggest that all 31 TS genes in this cluster originated from one or more

gene amplification/relocation events. Based on the phylogenetic analysis (S9C Fig), we propose

that the TS + beta tubulin tandem copies have been generated in or relocated to Chr7 (13 cop-

ies) and Chr18 (1 copy), with another 4 TS copies as single genes beyond the TS + beta tubulin

Fig 5. Examples of relocations of TS genes in Y C6. (A) Tight clusters of TS genes from MDS plot are distributed on

different chromosomes. (B) Diagram of relocations in one of the TS clusters on the bottom right in (A). Blocks in the

same color indicate genes or flanking sequences in high identity. Note that the segment size is not to scale. IR:

intergenic region.

https://doi.org/10.1371/journal.ppat.1009254.g005
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cassette on Chr18, while the single TS genes on other chromosomes may derive from the TS

on Chr7.

We next used a pipeline previously designed to identify recombination events within TS

genes in the CL Brener genome [34], to quantify recombination for 4 of the large gene families

in the Brazil and Y strains (Table 2). This pipeline uses the RDP4 package that employs a vari-

ety of methods to detect signals of recombination and then approximates breakpoints and the

recombinant sequence [42]. As expected, recombination events, including multiple events act-

ing on the same gene, were detected in a large fraction of the genes but were particularly abun-

dant (2-fold higher) in the TS family relative to the other three families examined.

Interestingly, recombination events in the TS family were detected at a roughly 2-fold higher

frequency in the Brazil strain as compared to the Y or the CL Brener strains.

As noted previously, our recombination pipeline is highly conservative in detecting rela-

tively recent events that have not been obscured by subsequent accumulation of SNPs and

Indels [34]. Such in situ diversification is evident in genes that are clustered in the MDS analy-

sis but dispersed in the genome. An example is a cluster of GP63 genes in Brazil A4 which

have low genetic distance based on MDS analysis (S10A Fig), but are located on different chro-

mosomes and display a considerable degree of variation (SNPs and Indels; S10B Fig). How-

ever, because these genes also share similar upstream genes (a TS) and intergenic regions, all

of these dispersed genes were likely derived via gene duplication. This hypothesis is further

supported by the result that 9 out of 10 GP63 genes and their corresponding GP63 + flanking

sequences (including upstream TS + intergenic region + GP63 + intergenic region) occupy

identical positions in their respective phylogenetic trees (S10C Fig). Therefore, a TS/GP63

gene pair and associated intergenic regions underwent one or more duplication and relocation

events with subsequent diversification through the accumulation of SNPs and Indels, yielding

multiple, diverse genes spread through the genome.

The potential complexity generated by amplification, relocation, recombination and diver-

sification make it challenging to track the specific set of events contributing to the evolution of

Table 2. Recombination events detected within genes of large gene families in Brazil A4 and Y C6.

Brazil A4 Y C6 CL Brener

TS MASP Mucin GP63 TS MASP Mucin GP63 TS

# of genes 1644 1118 700 411 1465 1066 797 427 3209

Kb length total 3477.7 1011.9 352.1 460.6 2614.5 1115.2 458.9 619.7 4456.5

# of genes recombined 793 145 38 70 479 154 73 89 787

# of recombination events 2976 190 39 101 1334 221 85 153 2087

% of genes recombined 48.2 13.0 5.4 17.0 32.7 14.4 9.2 20.8 24.5

Average events per gene 1.8 0.2 0.1 0.2 0.9 0.2 0.1 0.4 0.7

Average events per kb 0.9 0.2 0.1 0.2 0.5 0.2 0.2 0.2 0.5

Number of genes with ‘n’ number of recombination events

n = 1 137 111 37 51 162 110 61 58 324

n = 2 198 24 1 15 114 28 12 19 149

n = 3 98 9 0 1 66 11 0 3 110

n = 4 128 1 0 1 54 3 0 6 72

n = 5 68 0 0 1 33 2 0 1 52

n>5 164 0 0 1 50 0 0 2 80

Max of n 18 4 2 5 12 5 2 6 12

Max of n: the highest number of recombination events detected for one gene.

https://doi.org/10.1371/journal.ppat.1009254.t002
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individual members of these large gene families in T. cruzi. However, some gene sets reveal all

of these processes at work. Fig 6C shows four cassettes located on different chromosomes or in

distant sites on the same chromosome, each cassette with a central MASP and flanking region

with high identity (Fig 6A and 6B), suggesting a common origin. SNPs/Indels indicate in situ
diversification of the MASP genes, especially in the C terminus (Fig 6B). Cassette pairs I/II and

III/IV share the same upstream gene and flanking sequence (mucin genes in both cases) while

cassette pairs I/III and II/IV shared downstream mucin and GP63 genes, respectively. In addi-

tion, a recombination event was detected in the C terminus of the GP63 in cassette IV, creating

divergence from the GP63 C terminus in cassette IV.

Potential impact of high genome flexibility on gene expression

Unlike in other classical models of antigenic variation in protozoa, the large gene families in T.

cruzi are not restricted to particular regions of chromosomes (e.g. subtelomeric in the case of

T. brucei [11,43–46]) but instead are spread throughout the genome (Fig 1). This presents the

complication that the amplification and dispersion events common in the large gene families

of T. cruzi might also impact non-gene family (core) genes as well. To investigate this possibil-

ity, we focused on core genes for which there were> 6 total paralogues for the two genomes

and organized these paralogues on the basis of gene location (S12 Table). By doing this, we

could identify tandemly distributed genes that likely resulted from gene amplification. For the

Fig 6. The combination of gene amplification, relocation, recombination and in situ diversification of members of large

gene family. (A) A tight cluster of 4 MASP genes from the MDS plot are distributed on two chromosomes. (B) Alignment of

the 4 MASP genes shows high identity with modest diversification of SNPs/Indels. Alignment was analyzed using the same

method as in Fig 4. (C) MASP genes with flanking intergenic sequences and flanking genes. Blocks with the same color

indicate sequences in high identity. Note that the segment sizes are not to scale.

https://doi.org/10.1371/journal.ppat.1009254.g006
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over 150 groups of genes in this analysis, many showed dramatic differences in gene copies in

the two T. cruzi genomes with 26 instances of double-digit gene copies in one strain compared

to only 1–3 copies in the other. This same high level of variation was evident for other T. cruzi
genomes sequenced using long-read sequencing methods but not in similarly sequenced T.

brucei and Leishmania isolates (S11 Fig). Additionally, dispersion patterns for these amplified

genes differed widely between the Y C6 and Brazil A4 genomes (S12 Table). Thus, the mecha-

nisms that provide for the generation and maintenance of diversity in the large gene families

also appear to allow for substantial variation in copy number for selected core genes, repre-

senting a second major contributor to between-strain genetic variation in T. cruzi strains.

Most gene expression in trypanosomatids initiates in the absence of specific promoters and

with the production of multi-gene mRNA transcripts that are then processed into single-gene

mature mRNAs. These polycistronic transcriptional units (PTUs) of genes can be well over

>100 kb in length and are marked by start and stop signals, including base modifications [47].

The apparent wide degree of freedom for amplification and dispersion both within and outside

the T. cruzi large gene families, and particularly events that create tandem strand switches as

shown in Fig 4C, would be expected to impact this normal multi-gene PTU structure. Indeed,

the average PTU length was 116.5 and 126.8 kb in the core gene-rich regions of the Brazil A4

and Y C6, respectively, similar to that in T. brucei (148.3 kb). However, the average PTU length

in the gene-family-enriched regions of both T. cruzi genomes was less than ¼ of that (29.3 kb

in Brazil A4 and 33.8 kb in Y C6), indicating a disruption of the normal PTU structure. Inter-

estingly, amplified but conserved tandem gene arrays like the ‘mucin + �HP’ array in Y C6 dis-

cussed above (Fig 4D) and the previously described TcSMUG family [48–50] are within large

PTUs containing almost no members of the large gene families (S12A Fig) while many other

tandem arrays or apparently diverging genes reside in gene-family-rich, short PTUs (S12B

Fig). The disruption in PTU structure might also hamper the preservation of transcriptional

control mechanisms, in particular the tight controls on transcriptional termination character-

ized in other kinetoplastids and mediated by base J and histone H3/4 variants [11,51–57]. To

address this question, we mapped strand-specific RNA-seq reads to both sense and antisense

strands to assess transcriptional termination relative to PTUs. Surprisingly, we found extensive

antisense RNA levels throughout the genome (an average of sense:antisense = 114:1 in Brazil

A4 and 84:1 in Y C6). Higher levels of antisense RNAs occurred at the strand switch regions of

long PTUs (Fig 7A and 7B), but in some cases, matched or exceeded the sense strand tran-

scripts in gene-family-enriched regions containing shorter PTUs (Fig 7C). Thus, unlike T. bru-
cei and Leishmania, T. cruzi does not appear to tightly regulate antisense RNA production.

Discussion

T. cruzi is a highly heterogeneous species, with at least six DTUs and with extreme variation in

phenotype and virulence among isolates even of the same DTU. Gaining new understanding

of the genetic basis of this high strain-to-strain variation in the disease-causing potential in T.

cruzi has been challenging due to the lack of a high-quality reference genome, and notwith-

standing the excellent long-read sequencing-based assemblies recently provided [5–8], compa-

rable quality genomes of diverse genetic types for in-depth comparison. The high content of

repetitive sequences in the T. cruzi genome (>50%), including multiple families of surface pro-

tein-encoding genes each with>200 members, makes complete genome assembly from con-

ventional short-read sequences impossible. This study reports very high-quality genomes for

T. cruzi strains belonging to the presumed ancestral lineages of this species, TcI, represented

here by the Brazil strain and TcII by the Y strain. This significantly improved resource was

achieved by the application of long-read sequencing techniques and proximity ligation
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libraries to better resolve the full repertoires of gene content, thus allowing a detailed compari-

son of genetic variation between these strains.

Although DTU-specific associations have been frequently proposed for characteristics such

as virulence, disease presentation, geographic distribution, and host species restrictions, many

of these linkages falter when more extensive sampling is done and none has been linked to

DTU-specific genetic differences [58–60]. The current dataset provides the opportunity to

begin examination of representative strains of T. cruzi lineages that diverged from each other

an estimated 1–3 million years ago [23]. The most surprising revelations from this comparative

analysis were not the variability in unique gene content between these isolates, but rather the

extremes of the high similarity in core gene content and the comparative huge diversity in

gene family-rich portions of the genomes. As anticipated based upon previous strain-based

screens [39,61], a considerable degree of variation exists in the form of SNPs/Indels and addi-

tionally, a substantial number of strain-specific copy number variations were identified. How-

ever, the core (non-gene family) genome, contains only ~20 strain-unique gene models, and in

all cases, these are hypothetical genes encoding proteins with no recognizable protein domain

structures.

Fig 7. Antisense RNA levels in T. cruzi in relation to PTU structure, including both convergent strand switch regions (cSSR, A) and

divergent strand switch regions (dSSR, B). (C) Gene-family-enriched regions with frequent strand switches where antisense RNA was detected

in higher levels. HP, hypothetical protein; MP, mitochondrial protein; ANM, arginine N-methyltransferase; PCGP, parkin coregulated gene

protein; CTD-P, TFIIF-stimulated CTD phosphatase; ARP, ankyrin repeat protein; NDK, nucleoside diphosphate kinase; SAP-rich protein,

serine-alanine-and proline-rich protein; m, mucin; p, pseudogene.

https://doi.org/10.1371/journal.ppat.1009254.g007
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In very sharp contrast, the variation evident in the large gene families of T. cruzi is equally

remarkable, demonstrating vast diversity within and between strains with no perfect matches

and relatively few genes of the same family with even a 90% similarity. Structurally, these gene

families comprise ~25% of the genome and their members are spread widely throughout the

genome, with some on every chromosome and some of the largest chromosomes being almost

entirely composed of members of large gene families. The use of synteny detection tools and

Falcon-Phase validated by Hi-C methods allowed us to also conservatively document heterozy-

gosity in more than half of the chromosomes in each genome, and we suspect that this hetero-

zygosity extends to nearly all gene family-rich regions of the genome. Based upon the total

base count of the repeat-rich small scaffolds not assigned to chromosomes, we estimate that up

to 50% of all members of the large gene families have variants on the sister chromosome.

The quality of the genome assemblies also provided the opportunity to document the con-

tinuing diversification of these large gene families and to permit an understanding of how this

process might work. Select members of the large gene families in T. cruzi have clear and critical

functions in parasite biology, with the best-documented example being the enzymatically-

active trans-sialidases required for acquisition of sialic acid by T. cruzi trypomastigotes [41,62–

64]. However, the number, diversity, and potential for variation of genes in these large gene

families, and the exposure of the gene products to and response by the host immune system,

argue that these gene families evolve under intense immunological pressure. In all these

respects, the three largest and most diverse gene families in T. cruzi (TS, MASP and mucin)

are similar to other families of genes involved in antigenic variation in the protozoans T. brucei
(variant surface glycoproteins, VSGs), Plasmodium (var genes) and Giardia (Variant-specific

Surface Protein, VSPs) [65–69]. However in contrast to the “one-at-a-time” models of classical

antigenic variation best characterized in the sister kinetoplastid T. brucei [65], T. cruzi
expresses many gene family variants simultaneously. This difference in strategy likely relates to

the fact that T. cruzi lives predominantly intracellularly in mammals and must effectively

evade cell-mediated (rather than exclusively antibody-mediated) immunity. But expressing

many antigen variants at one time may also require a larger antigen repertoire and/or an

enhanced ability to generate new variants and a genetic system with the flexibility that such

generation entails.

Classically, segmental duplication creates the source material on which mutational and

recombinational events act to derive new genes and new gene functions [70]. The presence of

segmental duplications (one gene or multiple genes as a unit) also encourages additional

rounds of duplications that can rapidly change gene content [71–73]. These processes of gene

duplication, recombination and mutation-driven diversification, functioning in concert to

ensure high and constant antigenic diversity, is strongly evident in the large gene families of T.

cruzi. Although we are able to track a significant number of these events, all occurring inde-

pendently in these two T. cruzi strains, we are presumably only observing the most recent

occurrences, as recombinations and mutations ultimately obscure the origins of new genes.

Certainly the repeat-rich structure and dense representation of retrotransposons of the T.

cruzi genome facilitates maintenance of these processes and the dispersion of members of

large gene families throughout the genome, and interestingly not restricted to chromosome

ends as is the case in T. brucei [11,43–46]. However, the specific structural elements that ini-

tially established and continue to allow for these apparently constant rearrangements through-

out the genome, but without impacting overall genome integrity, remain unidentified. From

our analysis, no consistent pattern of structures, such as the A/T tracks associated with gene

application events in Plasmodium [74] were evident.

The apparent high frequency and continued evolution of gene families in T. cruzi also cre-

ate structures and products apparently unique among closely related kinetoplastids, including
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the lack of segregation of large gene families to chromosome ends, absence of partitioning of

expression sites (as in T. brucei VSGs[45,75,76]), tolerance for the generation of short PTUs

and frequent strand switching, and most surprisingly, an abundance of antisense RNAs. The

latter may well explain why a high functioning RNAi system like that present in T. brucei is

absent in T. cruzi [77,78]. The presence of abundant and nearly genome-wide antisense RNAs

also suggests that T. cruzi does not adhere to the full set of rules for transcription termination

as defined in T. brucei and Leishmania [57,79] and may explain the differential impact of base

J knockdown in T. cruzi relative to other kinetoplastids [80].

Interestingly, there are several subsets of members of these large gene families that appear

to be exceptions to these processes of recombination, diversification and distribution through-

out the genome. The previously characterized SMUG families are the best examples. Two sub-

groups of TcSMUG genes, TcSMUG L and S, involved in development and infectivity of

insect-dwelling stages [48–50], distribute as tandem arrays in the respective subgroups within

the same PTU and exhibit minimal diversification. Here we also identify an ancient, lineage-

specific duplication event that created a new hypothetical gene and a mucin gene in a tandem

array and which, like the SMUGS, has remained with minimal changes. It will be of interest to

determine if further diversification of this and other gene family subsets are restricted because

of their location in the genome, or if, like the SMUGS, this hypothetical gene/mucin tandem is

under selective pressure due to their unique function. One common feature of these tandem

arrays is that they all locate in and are flanked by large PTUs (>220 kb) containing only core

genes with no members from the large gene families (other than the mucins in the mucin

+�HP array), suggesting that they are maintained in an environment largely devoid of large-

gene-family-related diversification.

An additional strain-dependent difference documented here is the higher recombination

frequency in Brazil A4 compared to Y and in CL Brener [34]. The ~2X greater number of

recombination events in all large gene families in Brazil vs Y suggests that this is an inherent

property of this strain and perhaps of DTUI strains in general. Alternatively, because we very

conservatively call recombination events which then eventually become concealed by further

mutations/recombinations over time, it is also possible that the Brazil A4 has been under

stronger, or more recent, selective pressure.

The apparent high levels of gene amplification and dispersion readily documented in the

large gene families in this species also extends to a fraction of core genes as well, and represents

a second major source of between-strain diversity and perhaps the one primarily responsible

for the broad between-strain phenotypic variation in T. cruzi (S12 Table). Retention of these

core gene amplifications implies a fitness benefit, perhaps under certain environmental/host

conditions; others may also occur regularly but engender a fitness cost and thus are lost.

In summary, the careful analysis of these two T. cruzi strains soundly confirms the vast

genetic diversity of parasite lines within this species, and identifies the bulk of diversity to be

represented in 3 compartments: 1) rapidly evolving families of genes involved in immune eva-

sion, 2) a subset of “core” genes not linked to evasion but which vary greatly in copy number

and perhaps expression, and 3) SNPs and Indels common to all genomes. We hypothesize that

the gene family diversity is driven by immune selection and that the same processes that pro-

vide for this diversity also allow for copy number variation and diversification of select core

genes. We believe it is this latter process, rather than DTU type, that accounts for much of the

biological diversity of T. cruzi lines. With these high-quality genomes in hand for these strains,

we can now test these hypotheses by further modifying these gene sets and exposing both

wild-type and modified parasite lines to various levels of selection pressure and observing the

genomes of the lineages that emerge.
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Materials and methods

Parasite cultures, DNA/RNA extraction and sequencing

Epimastigotes of Brazil and Y strains were cultured at 26˚C in supplemented liver digested-

neutralized tryptose (LDNT) medium as described previously [81]. Single-cell clones were

made for each strain by depositing epimastigotes into a 96-well plate at a density of 0.5 cell/

well by using a MoFlow cell sorter (Dako-Cytomation, Denmark). One healthy clone that has

been confirmed to have cycled through all life stages was chosen for sequencing for each strain.

High molecular weight DNA was isolated using MagAttract HMW DNA kit (Qiagen) before

submitting to Duke Center for Genomic and Computational Biology (GCB) for SMRT

sequencing. Brazil A4 was sequenced using PacBio RS II sequencer, while PacBio Sequel

sequencer was used for Y C6.

Genomic DNA of the selected clone of both strains was isolated using QIAamp DNA blood

mini kit (Qiagen) for whole genome sequencing using Illumina HiSeq 150 PE. An RNase treat-

ment step was included to eliminate RNA in the samples. For RNA-seq sampling, extracellular

amastigotes and trypomastigotes isolated from infected Vero cells were pooled with epimasti-

gotes for total RNA-extraction. Following ribo-depleted RNA library construction, RNA

sequencing using Illumina Nextseq 75PE was performed by Georgia Genomics and Bioinfor-

matics Core (GGBC). Illumina reads from either DNA or RNA sequencing with mean quality

lower than 30 (Phred Score based) were removed for analysis.

Genome assembly

The draft genome of Brazil A4 was assembled with SMRT Link v3.1, and Y C6 with SMRT

Link v5.0. The parameters were set to default except for the expected genome size, which was

set to 40 Mb for both strains. Chicago and Hi-C libraries were constructed and sequenced by

Dovetail Genomics, and HiRise pipeline was run for scaffolding the draft assembly by incorpo-

rating data from both libraries.

The Chicago library was prepared as described previously [12]. Briefly, ~500ng of HMW

gDNA (mean fragment length = 48Kbp) was reconstituted into chromatin in vitro and fixed

with formaldehyde. Fixed chromatin was digested with DpnII, the 5’ overhangs filled in with

biotinylated nucleotides, and then free blunt ends were ligated. After ligation, crosslinks were

reversed, and the DNA was purified from protein. Purified DNA was treated to remove biotin

that was not internal to ligated fragments. The DNA was then sheared to ~350 bp mean frag-

ment size and sequencing libraries were generated using NEBNext Ultra enzymes and Illu-

mina-compatible adapters. Biotin-containing fragments were isolated using streptavidin beads

before PCR enrichment of each library.

The Dovetail HiC library was prepared in a similar manner as described previously [82].

Briefly, for each library, chromatin was fixed in place with formaldehyde in the nucleus and

then extracted Fixed chromatin was digested with DpnII, the 5’ overhangs filled in with bioti-

nylated nucleotides, and then free blunt ends were ligated. After ligation, crosslinks were

reversed, and the DNA was purified from protein. Purified DNA was treated to remove biotin

that was not internal to ligated fragments. The DNA was then sheared to ~350 bp mean frag-

ment size and sequencing libraries were generated using NEBNext Ultra enzymes and Illu-

mina-compatible adapters. Biotin-containing fragments were isolated using streptavidin beads

before PCR enrichment of each library. Both Chicago and Hi-C libraries were sequenced on

an HiSeqX to produce 2x151 bp paired end reads.

The draft assembly, Chicago library reads, and Dovetail HiC library reads were used as

input data for HiRise, a software pipeline designed specifically for using proximity ligation
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data to scaffold genome assemblies [12]. An iterative analysis was conducted. First, Chicago

library sequences were aligned to the draft input assembly using a modified SNAP read map-

per (http://snap.cs.berkeley.edu). Only reads with map quality > = 50 (uniquely mapped

reads) are retained. The separations of Chicago read pairs mapped within draft scaffolds were

analyzed by HiRise to produce a likelihood model for genomic distance between read pairs,

and the model was used to identify and break putative misjoins, to score prospective joins, and

make joins above a threshold. After aligning and scaffolding Chicago data, Dovetail HiC

library sequences were aligned and scaffolded following the same method. A gap was gener-

ated whenever two contigs were joined by HiRise, and since the distance between two contigs

was unknown, all gaps were given 100 Ns.

Gap filling was performed by PBJelly [83] using the SMRT subreads with the minimum per-

cent identity at 85% and minimum coverage at 5. There were 122 and 4 gaps extended for Bra-

zil and Y, respectively. Correction of the genomes using Illumina short reads was run by Pilon

[84] and iCORN2 [85] through multiple iterations to eliminate errors from SMRT sequencing.

Repeat annotation

RepeatModeler v1.0.11 (http://www.repeatmasker.org/RepeatModeler) was used to build a de
novo repeats library using ‘tcruzi’ database, and then used RepeatMasker v 4.0.7 (http://www.

repeatmasker.org) with search engine parameter as “ncbi” to annotate all the repetitive sequences.

Genome annotation

To develop open reading frame (ORF) in the new genome sequences, WebApollo 2.0 [86] was

deployed with the genome sequence, and the following tracks of evidence were added:

1. Gene prediction from COMPANION [87] using Trypanosoma brucei as reference.

2. Gene prediction using AUGUSTUS [88,89] which was self-trained by CL Brener genome.

3. Annotation transfer from CL Brener by Exonerate [90].

4. ESTs from available EST sequencing libraries in T. cruzi (retrieved from https://tritrypdb.

org/tritrypdb/app/record/dataset/DS_6889a51dab).

5. Proteins from available Mass spec data for T. cruzi [91].

6. Strand-specific RNA-seq alignment data, the pipeline of which was followed as previously

described [79].

Each ORF along the genome was manually produced by the integration of all tracks.

InterProScan v5.31–70.0 [92] was used to detect protein families, domains and sites with all 11

default databases. Gene Ontology (GO) term was assigned by InterProScan based on the protein

domains results. Besides, BLASTP was used to search protein homology against T. cruzi CL

Brener, T. brucei, L. major databases from TriTrypDB release 39 (https://tritrypdb.org/tritrypdb/)

and RefSeq non-redundant protein database, respectively, to determine the best hit for protein

naming by in-house scripts. The parameter used for BLASTP was E value<1e-10, identity>70%

and coverage (length of alignment/length of target protein)>70%. Predicted pseudogenes were

named by homology in RefSeq non-redundant nucleotide database with E value<1e-30.

Annotation of large gene families

A customized computational pipeline automated using PERL and Python scripts were devel-

oped for identifying members of large gene families in the genome (https://github.com/
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duopeng/Large-gene-family-search-pipeline). First, the annotated members of each gene fam-

ily were searched against the Brazil A4 and Y C6 genome using BLASTN (version ncbi-blast-

2.8.1+) with num_alignments and max_hsps arguments set to 100, the perc_identity argument

set to 85. BLAST hits that have an overlap longer than 100 bp were merged if they match mem-

bers from the same gene family. BLAST hits that were bracketed by longer hits from the same

family were removed. A minimum length cutoff of 150 bp was applied to the BLAST hits. The

remaining BLAST hits were considered new family member gene candidates. BLASTN was

used to match the new candidate genes to all annotated transcripts from the genome of T.

cruzi CL Brener strain (TriTrypDB release 34) (BLAST argument settings: num_alignments

and max_hsps set to 50, perc_identity not set). Candidate genes were retained only if one of its

top two best matches is a member of the candidate gene’s corresponding gene family.

Next, the boundaries of the candidate genes were refined by using model genes of each fam-

ily in two steps. (1) Extending the candidate gene boundaries to include possible segments

missed by previous steps. Using model gene sequences of each family to search the new

genomes, and compare the coordinates of the matches to that of candidate genes. If > 50%

overlap was found, and the non-overlapping length was< 1,000 bp, then the boundary of the

candidate was extended according to the genomic match of the model gene. (2) The boundary

of candidate genes was next subjected to small-scale trimmings. The candidate genes were

mapped against model genes of the corresponding gene family (num_alignments and

max_hsps arguments set to 100, the perc_identity argument set to 85). If a match was found

within 100bp distance to the boundary of candidate genes, the candidate gene boundary was

trimmed to match that of the model gene.

The start of mucin candidate genes was further refined using a conserved signal peptide

sequence (in an alignment format allowing for minor variations). BLASTN was used to match

the signal peptide sequences to mucin candidate genes (BLAST argument settings: num_align-

ments and max_hsps set to 200, perc_identity set to 65, gapopen and gapextend set to 1).

Sequence upstream of signal peptide matches in the candidate genes was removed.

A final trim was applied to the boundaries of all candidate genes, as many of our BLAST steps

could lead to inaccurate boundary identification due to 25% chance of a random matching to an

extra nucleotide base at the boundary and 6.25% chance for two extra bases and so forth, which

could obscure start and stop codons. As an attempt to address this issue, we trimmed up to 10

bases which could reveal a start/stop codon that is in-frame with an existing stop/start codon.

Manual corrections of boundaries for members of large gene families were performed

when necessary.

Comparative analysis and synteny detection

Protein sequences of the annotated genes in Brazil A4 were used for BLASTP search against all

genes in Y C6, and only the top two hits with an e-value < 10−5 were kept as homologous

pairs. These homologous pairs were used for syntenic block detection through MCscanX [93]

with a match score of 50, match size of 5, gap penalty of -1, overlap window of 5, e-value of 1e-

5, and max gaps of 25. The output of MCScanX was further parsed using in-house script, and

was submitted to Circa (OMGenomics, http://omgenomics.com/circa/) to draw comparative

plot. The same workflow was applied to detect synteny blocks between smaller scaffolds and

chromosomes for identifying allelic variations.

SNP calling

Illumina reads were first filtered by removing bases with quality score < 30, and then mapped

to the genome with Bowtie2 using the parameters—maxin 900—no-discordant—no-mixed.
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SNP calling was performed by the HaplotypeCaller module in the Genome Analysis Toolkit

(GATK) version 3.4 [94] under default parameters.

Clustering of orthologous groups

The clustering of orthologous groups for T. cruzi, T. brucei and Leishmania strains was carried

out using OrthoFinder [40] with default parameters. All sequences were retrieved from Tri-

TrypDB database (https://tritrypdb.org/tritrypdb/) release-44.

Identification of recombination events

Discovery of gene recombination events was done as previously described [34]. In brief, the

pipeline used the RDP4 program with default parameters (for details see the RDP4 handbook

at http://web.cbio.uct.ac.za/~darren/martin%202015.pdf). RDP4 first detects recombination

signals by employing a variety of methods, including RDP, BOOTSCAN, MAXCHI, CHI-

MAERA, 3SEQ, GENECONV, LARD, and SISCAN (see references for these in the RDP4

handbook above). Following the detection of a ‘recombination signal’ with these methods,

RDP4 determines approximate breakpoint positions using a hidden Markov model, BURT,

and then identifies the recombinant sequence using the PHYLPRO, VISRD, and EEEP

methods.

Hi-C contact matrix

Hi-C contact matrix were analyzed by following the manual of https://github.com/hms-dbmi/

hic-data-analysis-bootcamp/, and then visualized in HiGlass [95].

Multidimensional scaling

K-tuple distance between genes was calculated with Clustal-Omega 1.2.4 [96] using unaligned

sequences with option parameters: “—full" and “—distmat-out". Full alignment distance

between genes was calculated with Clustal-Omega 1.2.4 using aligned sequences (aligned with

Clustal-Omega 1.2.4 using default parameters) with option parameters:—full—full-iter—dis-

tmat-out. MDS is performed with the “cmdscale” function built-in R 3.6.3 with the input of a

matrix of either pairwise K-tuple distances or full alignment distances. The results of MDS are

visualized using the Shiny package 1.4.0.2 in R 3.6.3. Scripts are available at https://github.

com/duopeng/Shiny-gene-families.

Phylogenetic inference

Multiple sequence alignment was performed using MUSCLE [97]. The resulting alignment

was manually edited. Bayesian inference of phylogeny was performed using MrBayes v.3.2.6

[98] with the following parameters: nst = 6, rates = invgamma, Ngammacat = 8,

Ngen = 10,000,000, nruns = 2, nchains = 4, and burn-infraction = 0.5. Convergence was deter-

mined by 25,000 post burn-in samples from two independent runs. The resulting phylogenetic

tree was rendered in Figtree v.1.4.4. Node support values are given in percent posterior

probability.

Supporting information

S1 Fig. Link density histogram mapped with Hi-C reads. The x and y axes give the mapping

positions of the first and second read in the read pair, respectively, grouped into bins. The

color of each square gives the number of read pairs within that bin. White vertical and black

horizontal lines have been added to show the borders between scaffolds. Only scaffolds > 1
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Mb are shown.

(TIF)

S2 Fig. Overview of the Brazil A4 and Y C6 genomes. Tracks from outer to inner circles indi-

cate: lengths, chromosome number, gaps, gene density (window size: 20kb, range: 6–23 in Bra-

zil A4, 1–22 for Y C6), GC content (window size: 10kb, range: 0.36–0.70 in Brazil A4, 0.33–

0.70 in Y C6), repetitive content (window size: 10kb, range: 0–10000), heterozygous SNPs

(window size: 20kb, range: 0–120 in Brazil A4, 1–390 in Y C6) and heterozygous Indels (win-

dow size: 20kb, range: 65–1 in Brazil A4, 129–1 in Y C6).

(TIF)

S3 Fig. Assembly improvement compared to CL Brener. (A) An example of filled gaps. Syn-

tenic regions between Chr1 in Brazil A4 and Chr8 in CL Brener were aligned with the Artemis

Comparison Tool (ACT) [99]. All five gaps were filled in Brazil A4. (B) An example of recov-

ered genes. Two pieces of an adenosine monophosphate (AMP) gene were identified flanking

a gap, while the syntenic region in Brazil A4 shows the intact AMP gene. (C) An example of

extended repeats. With 8 copies of histone H4 in Chr2 of CL Brener separated by a gap, the

syntenic region of Brazil had the gap filled, extending the copy number of histone H4 to 41.

Solid while boxes: gaps; green bars: genes.

(TIF)

S4 Fig. Repetitive composition of the scaffolds. Chromosomes are calculated individually,

while small scaffolds are calculated by averaging a range of scaffolds as indicated on the x axis.

(TIF)

S5 Fig. Workflow used to predict full repertoire of large gene families (taking TS as an

example).

(TIF)

S6 Fig. Distribution of large gene families and retrotransposons on the chromosomes.

Rings from outer to inner: chromosome number, retrotransposons, TS, MASP, mucin, GP63,

RHS and DGF-1 gene families.

(TIF)

S7 Fig. Size distribution of hypothetical proteins identified in kinetoplastids. Genomes of

T. brucei TRE92 and L. major Friedlin were downloaded from TriTrypDB database (https://

tritrypdb.org/tritrypdb/) release-44 [100].

(TIF)

S8 Fig. Estimation of chromosome copy number. (A) Relative read depth of each chromo-

some normalized to the mean read depth of all chromosomes at non-repetitive regions. Chro-

mosomes with more than two copies are indicated in red. (B) Allele frequency calculated by

the proportion of heterozygous SNPs/Indels at the non-repetitive regions of each chromo-

some. ‘Counts (%)’ on the Y axis indicate the percentage of SNPs/Indels called at certain fre-

quency which was calculated as previously described [39]. A diploid chromosome shows the

peak of allele frequency around 50% as shown in Chr8 and Chr31, whereas an aneuploid chro-

mosome shows peak of allele frequency lower than 50% as shown in Chr24 and Chr28 in Brazil

A4. Note that 5 chromosomes (Chr35, 36, 38, 39 and 42) in Brazil A4 were not included in this

analysis due to their high proportion of repetitive features.

(TIF)

S9 Fig. Alignment of TS (A) and their flanking regions (B) of the cluster in Fig 5, as well as

the Bayesian inference of phylogeny of all the TS genes (C). IR: intergenic region.
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Alignments were analyzed using the same method as in Fig 4.

(TIF)

S10 Fig. An example of in situ diversification. (A) A tight cluster of GP63 genes from MDS

plot are distributed in different chromosomes. (B) Alignment of these GP63 genes showed

high identity as well as a number of diversifications including SNPs and Indels. (C) Bayesian

inference of phylogeny of GP63 in the cluster (left), and GP63 plus flanking sequences on both

sides (right). IR: intergenic region.

(TIF)

S11 Fig. Correlation analysis of copy number variation in kinetoplastids. Copy numbers of

152 orthologous gene sets from S12 Table are highly correlated (Spearman correlation > 0.7)

in pairwise comparisons between T. brucei strains and subspecies and between Leishmania
species, but poorly correlated between T. cruzi strains (Spearman correlation in a range

between 0.006 and 0.6).

(TIF)

S12 Fig. Examples of long or short PTUs with tandem gene arrays. (A) Tandem arrays of

conserved gene sets are contained within long PTUs devoid of large gene family members.

Chromosomes containing TcSMUG S/L in Brazil A4 (top) and Y C6 (middle), and TcMUCI

+�HP in Y C6 (bottom). In contrast, members of the large gene families, including some tan-

demly duplicated genes, show frequent strand switches and are in short PTUs (B). Blue bars

indicate genes other than members of large gene families, while yellow bars indicate members

of these gene families.

(TIF)

S1 Table. Number of joins and breaks generated by Chicago or Hi-C libraries.

(PDF)

S2 Table. Summary of assembly metrics among all available T. cruzi genomes assembled

by long-read sequencing. All sequences were retrieved from TriTrypDB database (https://

tritrypdb.org/tritrypdb/) release-44. �No scaffolding was applied to these genomes, so no gaps

were generated. ��47 are not de novo assembled contigs or scaffolds, but rather pseudomole-

cules produced by aligning the core regions of scaffolds to the core regions of CL Brener refer-

ence genome. Therefore, although the genome showed higher N50 and lower L50, it left an

extensively high number of gaps behind. ���Genome sequence is not available.

(PDF)

S3 Table. Repetitive sequences characterized in Brazil A4 and Y C6.

(XLSX)

S4 Table. Assessment of genome assembly and annotation completeness using single-copy

ortholog benchmarking. 5 PacBio-assembled genomes with annotation were compared using

either ‘eukaryota_odb9’ or ‘protists_ensembl’ datasets using default parameters. The ‘eukaryo-

ta_odb9’ dataset contains 303 single-copy genes conserved in 100 eukaryote species, while the

“protists_ensembl’ dataset’ contains 215 single-copy genes that are present among 33 protist

species. �Note that TCC is a hybrid strain, so its genome is a mixture of two haplotypes, while

all other genomes contain one haplotype.

(PDF)

S5 Table. Members of 6 largest gene families in the Brazil A4 and Y C6 genomes.

(XLSX)
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S6 Table. Copy number of large gene families characterized in the new genomes.

(PDF)

S7 Table. Annotation summary.

(PDF)

S8 Table. Scaffolds that were detected to be allelic variants. Syntenies were examined

between small scaffolds and chromosomes. Only those with multiple syntenic regions

throughout the entire scaffold with part of the chromosome were considered as allelic variants.

(XLSX)

S9 Table. Synteny blocks identified between Brazil A4 and Y C6.

(XLSX)

S10 Table. Heterozygous SNPs/Indels identified in Brazil A4 and Y C6.

(XLSX)

S11 Table. Homozygous SNPs/Indels identified between Brazil A4 and Y C6.

(XLSX)

S12 Table. Orthologous groups in T. cruzi, T. brucei and Leishmania species with total

gene count > 6. All sequences were retrieved from TriTrypDB database (https://tritrypdb.org/

tritrypdb/) release-44.

(XLSX)

S13 Table. List of unique genes in the respective strains. Genes are unique under the condi-

tion that no orthologs or only orthologs with either< 50% identity or < 50% coverage were

discovered in the other genome. Genes derived from amplification with high identity are con-

sidered as one unique gene.

(XLSX)

S14 Table. BLASTP result of the best match analysis in 6 large gene families between the

two strains.

(XLSX)

S15 Table. Prominent tandem arrays of large gene families identified in Brazil A4 and Y

C6 (> = 3 genes in the array, < = 5kb between two tandem genes).

(XLSX)
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