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The 6-cysteine protein family is one of the most abundant surface antigens that are
expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-
cysteine family have critical roles in parasite development across the life cycle in parasite
transmission, evasion of the host immune response and host cell invasion. The common
feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is
conserved across Aconoidasida. This review summarizes the current approaches for
recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-
cysteine proteins that block transmission and the growing collection of crystal
structures that provide insights into the functional domains of this protein family.
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INTRODUCTION

Malaria and Disease Burden
Malaria is a parasitic disease caused by the Plasmodium genus. Six species of malaria parasite are
responsible for human disease, namely P. falciparum, P. vivax, P. ovale curtisi, P. ovale wallikeri, P.
malariae and P. knowlesi, with P. falciparum responsible for most deaths. The global burden of
malaria is significant, with over half of the world’s population at risk of infection. In 2020, there was
an estimated 241 million cases and 627,000 deaths, with over three quarters of deaths occurring in
children under five (WHO, 2021).

Having steadily declined over the last 20 years, malaria deaths increased between 2019 and 2020,
reflecting the impact of the COVID-19 pandemic on services in endemic regions (WHO, 2021). In
addition, resistance to anti-malarial drugs is a growing issue, with recent reports of resistance to
first-line drugs in Africa (Uwimana et al., 2020; Balikagala et al., 2021; Uwimana et al., 2021), the
region that accounts for approximately 95% of cases and 96% of deaths (WHO, 2021). In 2021, the
WHO recommended the RTS,S/AS01 vaccine for children at risk of malaria. While this has
potential for positive public health impacts, the vaccine shows a moderate efficacy of <40% (RTS S
Clinical Trials Partnership, 2015). These challenges to effective malaria treatment and prevention
highlight the urgency of developing effective vaccines and novel drugs to progress on-going malaria
elimination programs.
gy | www.frontiersin.org July 2022 | Volume 12 | Article 9459241

https://www.frontiersin.org/articles/10.3389/fcimb.2022.945924/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.945924/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.945924/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.945924/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:dietrich.m@wehi.edu.au
https://doi.org/10.3389/fcimb.2022.945924
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.945924
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.945924&domain=pdf&date_stamp=2022-07-08


Lyons et al. Plasmodium 6-Cysteine Proteins
There has been considerable interest in 6-cysteine proteins, a
family of surface-exposed and conserved Plasmodium proteins
which are expressed throughout the parasite life cycle
(Figure 1A) as new vaccine candidates or targets for antibody
therapies that stop malaria transmission and infection.

The 6-Cysteine Family
The first member of the 6-cysteine family to be characterized was
Pfs230, a protein originally thought to be 230 kDa in size and
notable for its ability to elicit antibodies that block transmission
of malaria to mosquitoes (Quakyi et al., 1987). Sequencing of
Pfs230 led to the identification of a cysteine-rich motif shared by
Pf12 (Williamson et al., 1993) and with the increasing availability
of P. falciparum genome sequences, this motif was subsequently
identified in 14 P. falciparum proteins, namely Pf36, Pf52,
PfLISP2, PfB9, Pf12, Pf12p, Pf41, Pf38, Pf92, Pfs48/45, Pfs230,
Pfs230p, Pfs47 and PfPSOP12 (Figure 1A) (Templeton and
Kaslow, 1999; Kappe et al., 2001; Thompson et al., 2001;
Gardner et al., 2002; Gerloff et al., 2005; Arredondo et al.,
2012; Orito et al., 2013; Annoura et al., 2014). These proteins
are highly conserved and most have orthologues across
Plasmodium species (Arredondo and Kappe, 2017).

The common feature of the family is the 6-cysteine domain,
also referred to as the s48/45 domain (Arredondo et al., 2012;
Annoura et al., 2014), which is conserved across Aconoidasida.
For the purpose of this review, we will refer to this domain as the
6-cysteine domain. It is related to the SAG1-related sequence
(SRS) domain that characterizes the SRS superfamily of
Toxoplasma proteins (Arredondo et al., 2012), and both
domains are likely derived from an ephrin-like host protein
acquired by a common ancestor. The 6-cysteine domain folds
into a b-sandwich and has up to six cysteines involved in
stabilization through disulfide bonding (Templeton and
Kaslow, 1999; Gerloff et al., 2005; Arredondo et al., 2012). All
6-cysteine family members have a signal sequence and between
one and 14 6-cysteine domains (Figure 1B). In addition, some
members have putative or confirmed GPI-anchors, repetitive
regions, or an N-terminal b-propeller domain (Figure 1B).

The 6-Cysteine Proteins in P. falciparum
Members of the 6-cysteine family are present across the parasite
life cycle (Figure 1A), fulfilling many critical roles in parasite
development. The life cycle of P. falciparum begins when an
infected female Anopheles mosquito takes a blood meal from a
human. Sporozoites are injected from the mosquito’s salivary
glands into the skin and travel through the bloodstream to the
liver. Within the liver, sporozoites mature into liver schizonts,
which in turn rupture and release merozoites into the
bloodstream. Merozoites invade red blood cells to initiate the
blood stage cycle. Within 48 hours, the malaria parasite replicates
into 16-36 new merozoites that proceed to invade more red
blood cells. Within the bloodstream a subset of parasites
differentiates to form male and female gametocytes. When a
female Anopheles mosquito takes a blood meal, gametocytes are
taken up into the mosquito midgut, where male microgametes
and female macrogametes egress from red blood cells.
Fertilization occurs between microgametes and macrogametes,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
forming zygotes. Zygotes elongate to form ookinetes, which then
develop into oocysts on the mosquito midgut. Oocysts rupture
and release sporozoites, which travel to the mosquito’s salivary
glands, ready to infect another human during the next
blood meal.

We will provide an overview of the 6-cysteine protein family
on their functional diversity, respective recombinant protein
expression, transmission blocking capability and structural
scaffold. Their cellular localization and orthologues have been
reviewed in detail previously (Arredondo and Kappe, 2017).

Pre-Erythrocytic Stages
Pf36, Pf52, PfLISP2 and PfB9 are expressed during the liver
stages. Pf36 and Pf52 have two 6-cysteine domains, but only Pf52
contains a predicted GPI anchor. These two proteins are
localized to the micronemes of salivary sporozoites and are
important for parasitophorous vacuole membrane formation
within hepatocytes (Arredondo et al., 2018). Pf36 is attached to
the parasite membrane where it binds host receptors EphA2
(Kaushansky et al., 2015), CD81 and SR-B1 (Manzoni et al.,
2017) to facilitate sporozoite invasion, although the exact
mechanisms by which it is anchored to the membrane or
facilitates invasion have not yet been elucidated. In P. yoelii,
P36 forms a complex with GPI-anchored P52 and both proteins
are likely involved in the formation of the liver stage
parasitophorous vacuole (Arredondo et al., 2018). A genetically
attenuated parasite (GAP) vaccine with deletions of Pf36, Pf52
and another liver stage antigen SAP1 has undergone a Phase I
clinical trial (NCT03168854), and was able to elicit antibodies
that inhibited sporozoite invasion and traversal (Kublin
et al., 2017).

PfLISP2, also known as Sequestrin, has two 6-cysteine
domains (Annoura et al., 2014). It is expressed in the mid to
late liver stages and can be used as a marker of liver stage
development (Gupta et al., 2019). PfLISP2 is exported into the
host hepatocyte (Orito et al., 2013). The precise function of
PfLISP2 is not clear but it may have a dual role in schizogony and
egress from the liver as well as immune evasion. A GAP vaccine
including a PfLISP2 deletion has been shown to protect mice
from malaria infection (Vaughan et al., 2018).

PfB9 has three 6-cysteine domains and a predicted GPI
anchor (Figure 1B). It is predicted to localize to the plasma
membrane of liver stage parasites (Annoura et al., 2014) and the
micronemes of sporozoites in P. berghei (Fernandes et al., 2021).
The function of PfB9 has not been precisely defined, but
knockout parasites display growth arrest in the liver and a lack
of parasitophorous vacuole markers, indicating a critical role for
PfB9 in liver-stage development and parasitophorous vacuole
integrity (Annoura et al. , 2014). A Phase I/2a trial
(NCT03163121) of a GAP vaccine including a PfB9 deletion
showed the vaccine to be safe and immunogenic, although the
strength of protective efficacy is yet to be established
(Roestenberg et al., 2020).

Erythrocytic Stages
Pf12, Pf12p, Pf41, Pf92 and Pf38 are expressed during the blood stage
cycle. Pf12 is the structural archetype of the 6-cysteine family as well
July 2022 | Volume 12 | Article 945924
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FIGURE 1 | (A) Schematic of Plasmodium falciparum life cycle. 6-cysteine proteins are expressed in the pre-erythrocytic and erythrocytic stages (merozoite) of the
human host and the mosquito stages (gametocyte, gametes, zygote, ookinete, and sporozoite). Mn, microneme; Rh, rhoptry; DG, dense granule. (B) Domain
architecture of the 14 P. falciparum 6-cysteine proteins. The illustration shows the signal peptide (SP), the number of cysteines within each domain (number in the
boxes), A-type (black box), B-type (grey box) 6-cysteine domains, validated or putative GPI-anchors, and other specific features (i.e. repetitive/non-structured region
or putative b-propeller domain). Colored regions represent the part(s) of the protein for which crystal structures are available.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org July 2022 | Volume 12 | Article 9459243
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as being its smallest member (Gerloff et al., 2005). It is comprised of
two 6-cysteine domains and a GPI anchor (Tonkin et al., 2013). Pf12
is expressed on the surface of schizonts and merozoites
(Taechalertpaisarn et al., 2012; Tonkin et al., 2013). Pf12 forms a
heterodimer with Pf41 (Taechalertpaisarn et al., 2012; Crosnier et al.,
2013; Tonkin et al., 2013; Parker et al., 2015; Dietrich et al., 2022),
another blood stage 6-cysteine protein with similar localization
patterns (Sanders et al., 2005). Pf41 has two 6-cysteine domains
and no GPI anchor, likely being tethered to the membrane via its
interaction with Pf12. Deletions of these genes in P. falciparum
produced no observable phenotype in blood stage parasites
(Taechalertpaisarn et al., 2012) and thus the functions of these
proteins remain unknown. Seroprevalence for anti-Pf12 and -Pf41
antibodies is high in malaria-exposed individuals, although this does
not always correlate strongly with protection against clinical disease
(Richards et al., 2013; Osier et al., 2014; Kana et al., 2018; Kana
et al., 2019).

Pf12p, a paralog of Pf12, has two 6-cysteine domains and a
GPI anchor. The recently solved crystal structure of Pf12p
revealed its structural similarity to Pf12, despite which it does
not interact with Pf41 (Dietrich et al., 2021). Transcription of
P12p has been reported in the blood stages (Bozdech et al., 2003;
Lopez-Barragan et al., 2011; Toenhake et al., 2018; Tang et al.,
2020) and expression has been detected in sporozoites (Lasonder
et al., 2008; Lindner et al., 2013) but its localization, function and
precise expression patterns are unknown.

Pf92 has three 6-cysteine domains and a confirmed GPI
anchor (Figure 1B). It is expressed in blood stage schizonts
and merozoites, where it is localized to the parasite surface
(Sanders et al., 2005; Gilson et al., 2006). Pf92 recruits Factor
H, a host complement regulator, to the surface of merozoites as
an immune evasion strategy to prevent complement-mediated
lysis (Kennedy et al., 2016). Pf92 is the only member of the 6-
cysteine proteins without a known orthologue in rodent
Plasmodium species.

Pf38 has two 6-cysteine domains and a confirmed GPI anchor
(Sanders et al., 2005; Gilson et al., 2006). In P. falciparum it has
been detected on the surface (Feller et al., 2013) and apical end
(Sanders et al., 2005) of the asexual blood stages, as well as on
gametocytes, gametes and zygotes (Feller et al., 2013; Arredondo
and Kappe, 2017). In P. yoelii P38 has also been localized to the
micronemes of sporozoites (Harupa, 2015). The function of this
protein has yet to be fully elucidated. In P. berghei and P. yoelii,
P38 gene deletions have no obvious effect on asexual or sexual
parasite development (van Dijk et al., 2010). However, in P.
falciparum, Pf38-derived peptides have an inhibitory effect on
red blood cell invasion (Garcia et al., 2009) and polyclonal anti-
Pf38 antibodies are capable of inhibiting blood-stage growth and
zygote formation (Feller et al., 2013).

Mosquito Stages
Pfs48/45, Pfs230, Pfs47, Pfs230p and PfPSOP12 are expressed
during the sexual stages. Pfs48/45 has three 6-cysteine domains
and a putative GPI-anchor and is localized to the surface of
gametocytes and gametes (Vermeulen et al., 1986; Kocken et al.,
1993). Knockout studies in P. falciparum and P. berghei implicate a
role in male fertility, with P48/45-deficient males unable to attach to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
female gametes, leading to reduced ookinete production (van Dijk
et al., 2001; van Dijk et al., 2010; Ramiro et al., 2015). It remains
unclear, however, whether this effect is due to the loss of Pfs48/45
itself or due to an absence of Pfs230 from the parasite surface, which
is anchored to the membrane by its interaction with Pfs48/45 (Eksi
et al., 2006). Recognition of Pfs48/45 by human sera correlates with
the ability of sera to block parasite transmission (Graves et al., 1998;
Mulder et al., 1999; van der Kolk et al., 2006; Bousema et al., 2010;
Ouédraogo et al., 2011; Stone et al., 2018) and antibodies against
Pfs48/45 have transmission-blocking activity (Targett, 1988; Targett
et al., 1990; Roeffen et al., 2001; Outchkourov et al., 2008; Lennartz
et al., 2018; Stone et al., 2018). Pfs48/45-based transmission-
blocking vaccines are under development against both P.
falciparum (Theisen et al., 2017; Mistarz et al., 2017; Singh et al.,
2017a; Singh et al., 2017b; Mamedov et al., 2019; Lee et al., 2020;
Singh et al., 2021a) and P. vivax (Arevalo-Herrera et al., 2015;
Tachibana et al., 2015; Cao et al., 2016; Arevalo-Herrera et al., 2021;
Arevalo-Herrera et al., 2022).

Pfs230 is the largest member of the 6-cysteine family at >300
kDa and with 14 6-cysteine domains. It is expressed from stage II
gametocytes until the end of fertilization and is localized to the
surface of gametocytes and gametes (Rener et al., 1983;
Vermeulen et al., 1985; van Dijk et al., 2010), likely via its
interaction with GPI-anchored Pfs48/45 (Kumar, 1987;
Williamson et al., 1996). In addition to this interaction, it is
suggested that Pfs230 forms a multimeric protein complex
involving other sexual stage antigens, Pfs25 and PfCCp family
proteins (Simon et al., 2016). Pfs230 undergoes two independent
N-terminal cleavage events during gametogenesis, resulting in
300 and 307 kDa versions of the protein (Williamson et al., 1996;
Brooks and Williamson, 2000). Knockout studies show that
Pfs230 is critical for male fertility, with Pfs230-deficient males
unable to bind to red blood cells and establish exflagellation
centers in P. falciparum (Eksi et al., 2006). In P. berghei, Pbs230-
deficient males fail to recognize female gametes (van Dijk et al.,
2010). Pfs230 has long been considered as a potential
transmission-blocking malaria vaccine candidate (Quakyi et al.,
1987) and seropositivity of human sera against Pfs230 is a
predictor for transmission-blocking immunity (Premawansa
et al., 1994; Graves et al., 1998; Mulder et al., 1999; van der
Kolk et al., 2006; Bousema et al., 2010; Ouédraogo et al., 2011;
Stone et al., 2018). As such, a number of recombinant N-terminal
fragments of Pfs230 are under investigation as vaccine
candidates (Farrance et al., 2011; Tachibana et al., 2011;
MacDonald et al., 2016; Lee et al., 2017; Chan et al., 2019;
Wetzel et al., 2019; Miura et al., 2019; Lee et al., 2019a; Lee et al.,
2019b; Coelho et al., 2019; Huang et al., 2020; Healy et al., 2021;
Coelho et al., 2021) in addition to a Pfs230-Pfs48/45 chimera
(Singh et al., 2019; Singh et al., 2020; Singh et al., 2021b).

Pfs47, the paralog of Pfs48/45, is comprised of three 6-
cysteine domains and a predicted GPI anchor. It is localized to
the surface of female gametes and gametocytes (van Schaijk et al.,
2006) and ookinetes (Molina-Cruz et al., 2013). Pfs47 binds to a
mosquito receptor protein, termed P47Rec, through which it is
thought to mediate evasion of the mosquito complement-like
system (Molina-Cruz et al., 2013; Ramphul et al., 2015; Molina-
July 2022 | Volume 12 | Article 945924
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Cruz et al., 2020). In P. berghei, Pbs47 serves a dual function in
gamete fertility and evasion of the mosquito complement-like
response (van Dijk et al., 2010; Ukegbu et al., 2017). A number of
Pfs47-based vaccine candidates have been developed and shown
to elicit transmission-blocking antibodies against P. falciparum
(Canepa et al., 2018; Yenkoidiok-Douti et al., 2019; Yenkoidiok-
Douti et al., 2021) and P. berghei (Yenkoidiok-Douti et al., 2020).

Pfs230p, the paralog of Pfs230, contains 12 6-cysteine
domains. Pfs230p is expressed only in male gametocytes
(stages IV-V) and is the only 6-cysteine protein known to be
localized to the cytoplasm in P. falciparum (Eksi andWilliamson,
2002; van Dijk et al., 2010; Schneider et al., 2015). A critical role
for P230p in ookinete formation has been described in P.
falciparum, although this function is not observed in rodent
malaria parasites (van Dijk et al., 2010; Marin-Mogollon
et al., 2018).

PfPSOP12 has three predicted 6-cysteine domains
(Figure 1B). It is expressed in gametocytes, ookinetes and
oocyts and is localized to the surface of the parasite (Sala et al.,
2015), although this protein has no predicted GPI anchor
(Figure 1B). Knockout studies in P. berghei have demonstrated
a mild effect on oocyst production and anti-PbPSOP12
antibodies have transmission-blocking activity (Ecker et al.,
2008; Sala et al., 2015), both suggesting a potential role in
fertility. In contrast, the function of P. falciparum PfPSOP12
has yet to be characterized.

The 6-cysteine proteins act throughout the malaria life and
some have critical roles in parasite development. However, the
precise function, structure and transmission-blocking potential
of many members have not been fully elucidated. Below we
describe methods that have been used to produce and
characterize this protein family thus far and discuss methods
that could be used to further understand the interactions of the
6-cysteine proteins and target them effectively.
EXPRESSION OF RECOMBINANT 6-
CYSTEINE PROTEINS

Recombinant protein expression of properly folded 6-cysteine
proteins is important for the structural and biochemical
characterization of this protein family and the generation of
specific antibodies. However, there are significant challenges for
expressing sufficient yields of correctly folded protein. In
prokaryotic expression systems, additional components such as
conjugation to a fusion partner or co-expression of folding
catalysts are often required for proper disulfide bonding of the
6-cysteine domain. In eukaryotic systems, glycans on
Plasmodium proteins are truncated compared to those of other
eukaryotes (Bushkin et al., 2010; Swearingen et al., 2016) and
incorrect glycosylation can affect the conformation of proteins
expressed in these systems. Enzymatic deglycosylation or
mutation of glycosylation sites can be employed to prevent
erroneous glycosylation, although glycosylation patterns may
still differ to the native protein. Due to the AT richness of the
Plasmodium genome, codon optimization is often required for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
optimum yields between the different recombinant expression
systems. Below and in Supplementary Table 1 we summarize
the various protein expression systems used to produce
recombinant 6-cysteine proteins and the strategies employed to
induce correct conformation.

Prokaryotic Systems for the Expression of
6-Cysteine Proteins
Escherichia coli Expression
Initial attempts to express recombinant 6-cysteine proteins were
carried out in E. coli (Kocken et al., 1993; Williamson et al., 1993;
Riley et al., 1995; Williamson et al., 1995). However, correct
disulfide bond formation can be difficult to achieve in this system
as protein production occurs largely in the cytoplasm, while
disulfide bond formation is carried out by oxidoreductases in the
periplasm. For this reason, early attempts to produce full length
Pfs48/45 resulted in incorrectly folded protein unable to elicit
transmission-blocking antibodies in mice or rabbits (Milek
et al., 1998).

Solubility tags such as glutathione-S-transferase (GST) or
maltose binding protein (MBP) fused to the recombinant
protein can assist folding. MBP was used for the early
expression of Pfs230 fragments (Williamson et al., 1993; Riley
et al., 1995; Williamson et al., 1995; Milek et al., 1998;
Bustamante et al., 2000) and GST for Pfs48/45 fragments
(Kocken et al., 1993; Milek et al., 1998; Outchkourov et al.,
2007). Co-expression of anMBP-tagged Pfs48/45 fragment (10C,
aa 159-428) with periplasmic folding catalysts produced a
properly folded protein with an increased yield relative to the
GST fusion of the same fragment (Outchkourov et al., 2007;
Outchkourov et al., 2008). The full ectodomain and single
domain constructs of Pfs47 have been expressed as a fusion to
E. coli protein thioredoxin. These proteins were used to identify
domain 2 (D2) as the region of Pfs47 targeted by transmission-
blocking antibodies (Canepa et al., 2018) and to elucidate the
essential function of Pbs47 (Ukegbu et al., 2017). A fusion of the
Pvs48/45 ectodomain to thioredoxin was recognized by sera
from naturally infected individuals and elicited transmission-
blocking antibodies (Arevalo-Herrera et al., 2015). A fusion of
Pfs48/45 10C with the granule lattice protein of Tetrahymena
thermophila similarly yielded a correctly folded protein that
elicited transmission-blocking antibodies (Agrawal et al., 2019).

Other strategies to encourage correct folding without reliance
on a fusion partner include the use of E. coli strains that enhance
disulfide bond formation in the cytoplasm, which was used to
investigate the immunogenicity and immunoreactivity of Pvs48/
45 (Arevalo-Herrera et al., 2015; Arevalo-Herrera et al., 2021;
Arevalo-Herrera et al., 2022). Correctly folded full-length Pfs48/
45 has also been reported without a fusion partner through
codon harmonization (Chowdhury et al., 2009).

Despite the challenges, E. coli remains a popular expression
system and has recently been used for pre-clinical evaluation
of vaccine candidates Pfs47 (Yenkoidiok-Douti et al., 2019;
Yenkoidiok-Douti et al., 2021), Pbs47 (Yenkoidiok-Douti
et al., 2020) and Pfs48/45 (Pritsch et al., 2016) in animal
immunization studies. The system has been used to produce
July 2022 | Volume 12 | Article 945924
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Pf12 D2 for structural characterization (Arredondo et al.,
2012) and the full ectodomains of Pfs48/45 and Pvs48/45 to
demonstrate the cross-reactivity of immune responses to these
antigens (Cao et al., 2016).

Lactococcus lactis Expression
The L. lactis system has been used to express Pf12, Pf38 and Pf41
(Singh et al., 2018; Kana et al., 2018) in addition to Pfs48/45- and
Pfs230-based vaccine candidates. This system can be optimized
to produce correctly folded protein with yields of 25 mg/L, which
is sufficient for use in clinical studies (Singhet al., 2017a; Singh
et al., 2021).

Vaccine candidates based on a fusion of a P48/45 fragment
with the R0 region of glutamate-rich protein (GLURP) have
been expressed in L. lactis. Fusion of the Pfs48/45 10C
fragment to R0 yielded a correctly folded protein that
elicited transmission-blocking antibodies (Theisen et al.,
2014; Roeffen et al., 2015) and it is hypothesized that fusion
to R0 stabilizes Pfs48/45 and enhances expression. A vaccine
candidate comprised of R0 and the Pfs48/45 6C fragment (aa
291-428) is also capable of eliciting transmission-blocking
antibodies (Singh et al., 2015; Singh et al., 2017a), and
protocols have been developed for expression of this
construct as a virus-like particle (VLP) (S.K. Singh et al.,
2017b) and under cGMP settings (Singh et al., 2021a). A
fusion of Pfs48/45 6C to R0 and a region of merozoite surface
protein 3 (GMZ2.6C) elicited parasite-specific antibodies
(Baldwin et al., 2016) and a 10C version of this vaccine
candidate (GMZ2’.10C) elicited transmission-blocking
antibodies (Mistarz et al . , 2017). A fusion protein
comprising Pfs48/45 6C and the pro-domain of Pfs230 (aa
443-590) is under investigation as a vaccine candidate, with
the glutamate-rich pro-domain assisting the proper folding of
Pfs48/45 in a similar manner to the R0 region of GLURP
(Singh et al., 2019; Singh et al., 2021b).

Successful expression of Pfs48/45 6C and a region of Pfs230
(aa 443-590) in L. lactis without fusion partners has also been
reported, enabling investigation of the immune response
against these 6-cysteine proteins without needing to account
for the immune response generated by the fusion partner
(Acquah et al., 2017).

Eukaryotic Systems for the Expression of
6-Cysteine Proteins
Baculovirus/Insect Cell Expression
The baculovirus/insect cell system was used to express Pfs48/45
in the first reported expression of a 6-cysteine protein (Kocken
et al., 1993) and has since been employed for investigation of 6-
cysteine protein structure, interactions and immunogenicity.

Expression of recombinant Pf12 (Tonkin et al., 2013),
Pf12p (Dietrich et al., 2021) and Pf41 (Parker et al., 2015)
via this system has yielded high resolution crystal structures of
these proteins, as well as the Pf12-Pf41 complex (Dietrich
et al., 2022). Recombinant Pfs47 expressed using the
baculovirus system was used to identify its binding partner,
the mosquito receptor protein P47Rec, and elucidate the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
involvement of this interaction in evading the mosquito
immune system (Molina-Cruz et al., 2020).

The baculovirus system also produced full-length Pfs48/45
and Pfs48/45 6C vaccine candidates, though only the latter
elicited transmission-reducing antibodies (Lee et al., 2020). A
PbPSOP12 vaccine candidate produced in this system showed
modest transmission-reducing activity (Sala et al., 2015).
Pfs230C1 (aa 443-731) produced in this system was able to
elicit antibodies that hinder parasite development (Lee et al.,
2017; Miura et al., 2019; Huang et al., 2020). Optimization of the
production of Pfs230C1 resulted in a final yield of 10 mg/L with
the potential to produce over 1g of protein (Lee et al., 2019a).
Expression of a shorter Pfs230 fragment, Pfs230D1+ (aa 552-
731), also elicited antibodies with transmission-blocking activity
and yields were two-fold higher than obtained for Pfs230C1 at 23
mg/L (Lee et al., 2019b).

Mammalian Cell Expression
Recombinant proteins expressed in HEK293 cells were used to
elucidate the interactions of Pf12 and Pf41 (Taechalertpaisarn
et al., 2012) and of P. yoelii P36, which in complex with P52
engages host receptor EphA2 (Kaushansky et al., 2015). Pfs48/45
6C was expressed in this system for crystallization in complex
with transmission-blocking mAb 85RF45.1 (Kundu et al., 2018).
The Chinese Hamster Ovary (CHO) cell line was used to express
fu l l - l ength Pvs48/45 , which demonst ra ted h igher
immunogenicity than when expressed in E. coli (Arevalo-
Herrera et al., 2021; Arevalo-Herrera et al., 2022).

The scalability of mammalian cell expression was utilized to
produce a library of recombinant proteins including P12, P38,
P41 and P92 from P. falciparum, P. vivax, P. malariae, P. ovale
and P. knowlesi. The library was used to investigate cross-
reactivity of sera across Plasmodium as a serological assay for
diagnosing exposure to P. ovale, P. malariae or P. knowlesi
(Muller-Sienerth et al., 2020). In P. falciparum, a library of
secreted and surface merozoite proteins including Pf12, Pf12p,
Pf38, Pf92 and Pf41 was produced. The library was used to
confirm the interaction of Pf12 with Pf41 and demonstrate that
these 6-cysteine proteins, with the exception of Pf12p, are
immunoreactive with immune sera (Crosnier et al., 2013).
Similarly, a recombinant protein library of P. vivax antigens
confirmed the interaction of Pv12 with Pv41 and identified
additional potential interaction partners for Pv12 (Hostetler
et al., 2015).
Plant-Based Expression
The Australasian tobacco plant Nicotiana benthamiana has been
used for the expression of recombinant 6-cysteine proteins
including Pf38, which was recognized by sera of semi-immune
donors and elicited antibodies with transmission-reducing
activity upon immunization of mice, although only a low yield
of 4 mg/kg of fresh leaf biomass was obtained (Feller et al., 2013).
In contrast, expression of a Pfs230 region referred to as 230CMB
(aa 444-730) in N. benthamiana resulted in yields of 800 mg/kg
of fresh whole leaf tissue (Farrance et al., 2011). Antibodies
generated against this recombinant protein in rabbits were able
to bind native parasite and demonstrated transmission-blocking
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activity with a reduction of >99% in oocyst counts (Farrance
et al., 2011).

In this system, in vivo deglycosylation of 6-cysteine
proteins has been explored through co-expressing 6-cysteine
proteins with enzymes PNGase F or Endo H. Co-expression of
a region of Pfs48/45 (aa 28-401) referred to as Pfs48F1, which
contains seven putative N-glycosylation sites, and PNGase F
to remove all N-linked glycans resulted in a yield of 50 mg/kg
of fresh leaf biomass. Anti-Pfs48/45 monoclonal antibodies
(mAbs) showed higher affinity to the in vivo deglycosylated
protein compared to the glycosylated protein and slightly
higher affinity to the protein deglycosylated in vivo
compared to in vitro (Mamedov et al., 2012). Developments
to this protocol have included expressing Pfs48F1 and
PNGase F from a single vector (Prokhnevsky et al., 2015)
and co-expressing full length Pfs48/45 (aa 28-428) or Pfs48/45
10C with Endo H, which removes only certain types of N-
linked carbohydrates. This resulted in a higher yield of protein
than co-expression with PNGase F (52 mg/kg vs 27 mg/kg,
respectively) that was more stable and elicited antibodies with
stronger transmission-reducing activity (Mamedov et al.,
2017; Mamedov et al., 2019).

Yeast-Based Expression
Expression of Pfs48/45 in Saccharomyces cerevisiae was initially
attempted but did not produce sufficient levels of protein for
detection. In contrast, recombinant Pfs48/45 could be detected in
P. pastoris, but with an expression efficiency of only 1% (Milek
et al., 2000). More recently, efficient expression of Pfs230D1M
(aa 542-736) was achieved in P. pastoris for use in a vaccine
currently undergoing Phase I and II clinical trials (MacDonald
et al., 2016; Coelho et al., 2019; Healy et al., 2021). This system
has produced recombinant Pfs230D1 for crystallization with
transmission-blocking antibodies LMIV230–01 (Coelho et al.,
2021) and 4F12 (Singh et al., 2020). H. polymorpha has been
employed to express Pfs230 constructs in a VLP alongside sexual
stage antigen Pfs25, which elicited antibodies with transmission-
reducing activity (Chan et al., 2019; Wetzel et al., 2019).

Other Eukaryotic Expression Systems
The stable Drosophila Schneider-2 cell line was employed to
express full-length Pfs48/45 due to its ability to produce large
quantities of correctly folded protein without the need for a
fusion partner or carrier protein. The recombinant protein
was recognized by known anti-P48/45 mAbs and induced
antibodies with transmission-blocking activity in mice,
suggesting it had adopted the correct conformation
(Lennartz et al., 2018). A Pfs48/45 6C fragment produced by
the same method was crystal l ized in complex with
transmission-blocking antibody 85RF45.1, representing one
of the first crystal structures of a Pfs48/45 fragment (Lennartz
et al., 2018).

Chlamydomonas reinhardtii, a species of green algae, has been
investigated as a low-cost option for production of vaccine
candidate Pfs48/45. A region comprising aa 178-448 was
successfully expressed and could be recognized by the mAb
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
IIC5-10, known to recognize Pfs48/45, indicating the protein
folded in the correct conformation (Jones et al., 2013).

Cell Free Systems
Cell free systems such as the wheat germ cell-free (WGCF) system
offer the potential for rapid, high-throughput protein expression of
Plasmodium proteins (Tsuboi et al., 2008). For this reason, cell free
systems have been used to express multiple antigens for high-
throughput screening of patient sera against an array of antigens.
Such studies have shown that antibodies against Pf38 have an
intermediate association with protection against symptomatic
malaria (Richards et al., 2013) and antibody levels against
Pfs230C may be associated with age (Muthui et al., 2021).
Unfortunately, not all antigens appear to be amenable to
expression via this system, with production of recombinant Pfs48/
45, Pfs47 and PfPSOP12 proving unsuccessful (Muthui et al., 2021).
This system has also been used to produce multiple vaccine
candidates for functional comparison, supporting the further
development of Pfs230C as a vaccine candidate (Miura et al., 2013).

The WGCF system was used to express multiple fragments
of Pfs230, which due to its size is difficult to express as a full-
length protein. Expression of fragments spanning the Pfs230C
region (aa 443-1132) demonstrated that truncated fragments
were capable of eliciting transmission-blocking antibodies
(Tachibana et al., 2011). This contrasts observations for E.
coli where only the full Pfs230C fragment was capable of
eliciting transmission-blocking antibodies (Bustamante et al.,
2000), suggesting the native topology of the proteins was
better retained by the WGCF-produced fragments .
Expression of protein fragments that together span the
entirety of Pfs230 was used to further pinpoint the
functional transmission-blocking epitopes of Pfs230
(Tachibana et al., 2019; Miura et al., 2022).

Cell free systems have been used to express P. vivax orthologues
Pv12 (Li et al., 2012) and Pv41 (Cheng et al., 2013), demonstrating
the immunoreactivity of naturally acquired sera with these antigens.
The recombinant proteins were also used to generate anti-Pv12 and
anti-Pv41 antibodies used to reveal the subcellular localization of
these proteins. High-throughput screening of immune sera against
P. vivax proteins identified 18 highly immunoreactive proteins, with
Pv12 and Pv41 being among them (Chen et al., 2010). A panel of
20 P. vivax proteins including Pv12 were expressed by nucleic acid
programmable protein array/in vitro transcription/translation,
confirming the interaction of Pv12 with Pv41 as well as
identifying additional putative interaction partners (Arevalo-
Pinzon et al., 2018).

Recombinant protein expression is a bottleneck for the structural
and biochemical characterization of 6-cysteine proteins. Differences
between the cellular machinery of Plasmodium and the expression
system often requires additional measures such as codon
harmonisation, conjugation to a fusion partner and
deglycosylation to produce properly folded protein. The choice of
an appropriate expression system will depend on the protein and
domain being expressed, considering its size, the numbers of
disulphide bonds and glycosylation sites it contains and its
intended downstream applications.
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MONOCLONAL ANTIBODIES FOR THE
CHARACTERIZATION OF
6-CYSTEINE PROTEINS

Monoclonal antibodies generated against the 6-cysteine proteins
have been used to elucidate protein structure and functional
domains, and some are capable of inhibiting parasite
development and transmission. In this review, we will focus on
the description of these inhibitory mAbs against the three
transmission-blocking vaccine candidates, Pfs230, Pfs48/45,
and Pfs47 (Supplementary Table 2).

Pfs230
The mature form of Pfs230 contains an additional non-
structured pro-domain region of ˜100 amino acids upstream of
the first 6-cysteine domain (D1) (Carter et al., 1995; Brooks and
Williamson, 2000; Gerloff et al., 2005). Epitope mapping of anti-
Pfs230 antibodies suggests that part of the pro-domain and D1 of
Pfs230 can elicit transmission-blocking antibodies (Tachibana
et al., 2019; Miura et al., 2022) (Supplementary Table 2).

To date, 20 inhibitory mAbs specific for P. falciparum Pfs230
have been reported (Supplementary Table 2), which reduce the
formation of oocysts on the mosquito midgut to varying degrees
(42.2%-100%) when assayed using the standard membrane feeding
assay (SMFA) (Supplementary Table 2). Of these antibodies, 16
(63F2A2.2a & 2b, 2B4, 1B3, 11E3, 12F10, 1H2, 3G9, 7A6, 8C11,
17E9, 4C10, 11C12F7, 21C1, 12A1A5, and 1A3-B8) were generated
via direct animal immunization with the sexual stage parasites
(either intact cells or whole cell lysate) (Rener et al., 1983; Quakyi
et al., 1987; Read et al., 1994; Roeffen et al., 1995a; Roeffen et al.,
1995; Williamson et al., 1995). Two mAbs, 4F12 and 5H1, were
obtained via animal immunization with recombinant protein
(MacDonald et al., 2016; Singh et al., 2020), and two mAbs,
LMIV230-01 and LMIV230-02, were directly isolated from
memory B cells of vaccinated Malian adults (Coelho et al., 2019).
In these studies, recombinant Pfs230 proteins containing parts of
the pro-domain region and D1 of Pfs230 were used as antigens
(MacDonald et al., 2016; Coelho et al., 2019; Singh et al., 2020).
Using structural biology approaches, the 4F12 and LMIV230-01
binding epitopes were identified to be within conserved regions of
Pfs230 D1 (Coelho et al., 2019; Singh et al., 2020). Three additional
transmission-blocking mAbs (1A3-B8, 11C5-B10, and 29F432) are
reactive against both Pfs230 and Pfs48/45 (Rener et al., 1983;
Quakyi et al., 1987; Read et al., 1994; Roeffen et al., 1995a;
Roeffenet al., 1995b; Williamson et al., 1995).

The inhibitory mechanism of anti-Pfs230 antibodies has
been thought to be predominantly complement-dependent
(Healer et al., 1997), which could explain the higher
transmission reducing activity observed for Pfs230 in a
Phase I clinical trial compared to benchmark transmission-
blocking vaccine candidate Pfs25 (Healy et al., 2021). Indeed,
many Pfs230 mAbs lose their transmission-blocking ability in
the absence of human serum (Supplementary Table 2). The
chimeric rh4F12 mAb, containing the original mouse
fragment antigen binding (Fab) region fused with human
IgG1 crystallizable fragment (Fc), showed increased potency
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
relative to the original mouse antibody, possibly due the
presence of human IgG1 Fc, which is thought to enhance
complement fixing activity (Singh et al., 2020). However,
4F12, LMIV230-01 and 1A3-B8 can inhibit transmission in
the absence of complement activity (Rener et al., 1983;
MacDonald et al., 2016; Singh et al., 2020; Coelho et al.,
2021) (Supplementary Table 2 ) , sugges t ing tha t
complement-independent inhibitory mechanisms exist for
anti-Pfs230 antibodies.

Pfs48/45
Anti-Pfs48/45 antibodies with transmission-blocking activity
target at least four epitope groups (epitopes I, IIb, III, and V)
that span all three 6-cysteine domains of Pfs48/45 (N. Targett,
1988; Targett et al., 1990; Roeffen et al., 2001b; Outchkourov
et al., 2007; Outchkourov et al., 2008; Lennartz et al., 2018)
(Supplementary Table 2). The disulfide bonds within the
central and C-terminal 6-cysteine domains are critical for the
presentation of the transmission-blocking epitopes, but
dispensable for epitope presentation on the N-terminal
domain of Pfs48/45 (Outchkourov et al., 2007).

There are 15 reported transmission-blocking anti-Pfs48/45
mAbs, with relatively well characterized epitopes. When assessed
by SMFA, all 15 mAbs were able to reduce oocyst formation by
55.5%-100% under the conditions tested (Supplementary Table 2).
Six mAbs, 85RF45.1 and its humanized version TB31F, 85RF45.5,
32F3, 32F5, and 3E12, were generated by animal immunization with
intact sexual stage parasites (Vermeulen et al., 1985; Targett, 1988;
Carter et al., 1990; Targett et al., 1990; Roeffen et al., 2001a). All
these antibodies recognize the C-terminal domain of Pfs48/45
except for 85RF45.5, which recognizes the N-terminal domain.
The remaining eight antibodies were generated via animal
immunization with full-length Pfs48/45 protein obtained either
through affinity purification from P. falciparum cell lysate (82C4-
A9, 81D3-D2, 42A6-F3, 84A2-A4, and 82D6-A10) (Targett, 1988),
or recombinant protein expression (1F10, 3G3, 6A10, 10D8)
(Lennartz et al., 2018). These eight antibodies, including two
unique IgM antibodies 82C4-A9 and 81D3-D2, recognize either
the N-terminal or central domains of Pfs48/45 (Targett, 1988;
Lennartz et al., 2018).

The most potent anti-Pfs48/45 mAb is the humanized
version of mAb 85RF45.1 (TB31F), which reduces oocyst
formation in mosquitos by 80% at a concentration of 1-2 mg/
mL (Roeffen et al., 2001a; Kundu et al., 2018), approximately
15x more potent than the anti-Pfs25 mAb 4B7 (IC80 of 30.7 mg/
mL) (de Jong et al., 2021). The crystal structures of mAb
85RF45.1 and its humanized version TB31F in complex with
recombinant C-terminal domain of Pfs48/45 (Pfs48/45-6C)
suggest that the antibody binds to a relatively conserved
conformational epitope (Kundu et al., 2018; Lennartz et al.,
2018) and existing field polymorphisms do not alter antibody
binding and transmission-reducing efficacy substantially
(Kundu et al., 2018; Lennartz et al., 2018; Stone et al., 2018;
de Jong et al., 2021) (Supplementary Table 2). In contrast to
Pfs230, the inhibitory mechanism of anti-Pfs48/45 antibodies
are complement-independent (Patel and Tolia, 2021).
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Pfs47
Recent studies show that immunization with D2 of Pfs47 and Pbs47
elicited antibodies with transmission-blocking activity (Canepa
et al., 2018; Yenkoidiok-Douti et al., 2020), whereas antibodies
that preferentially bind D1 and D3 did not exhibit transmission-
blocking activity (Canepa et al., 2018; Yenkoidiok-Douti et al.,
2020). Pfs47 D2-specific inhibitory mAbs, IB2 and BM2, have
been shown to bind to the linear epitope on the central region of
D2 and reduce transmission by >85% at 200 mg/mL. In contrast,
JH11, which binds the N-terminal region of D2, increases
transmission (Canepa et al., 2018). The transmission-blocking
activity of the Pfs47 mAbs is complement-independent like mAbs
to its paralogue Pfs48/45 (Canepa et al., 2018; Yenkoidiok-Douti
et al., 2020; Patel and Tolia, 2021) (Supplementary Table 2).
STRUCTURAL CHARACTERIZATION OF 6-
CYSTEINE PROTEINS

The 6-Cysteine Domain
The common structural feature of the family is the 6-cysteine
domain. The 6-cysteine domain folds into a b-sandwich of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
parallel and antiparallel b-strands and contains up to six
cysteines that form disulfide bonds, where cysteines C1–C2,
C3–C6, C4–C5 are connected (Figure 2A) (Gerloff et al., 2005;
Arredondo et al., 2012). ‘Degenerate’ domains containing less
than six cysteines have been identified (Templeton and Kaslow,
1999). The b-sandwich is formed by two b-sheets and is usually
stabilized by two disulfide bonds. A third disulfide bond connects
a loop region to the core structure. Typically, a small b-sheet of
two antiparallel b-strands runs perpendicular along the side of
the b-sandwich. (Figure 2A) (Arredondo et al., 2012; Tonkin
et al., 2013; Parker et al., 2015; Dietrich et al., 2021). 6-cysteine
domains are present in each member, with the number of
domains ranging from 2-14, and are often found in tandem
pairs of A- and B-type 6-cysteine domains (Figure 1B and
Figure 2A) (Carter et al., 1995; Gerloff et al., 2005). In
comparison to A-type domains, the first b-strand in B-type
domains is split into two parallel b-strands (b1 and b1’ in
Figure 2A). Compared with SAG1, the prototypic member of
the SRS-superfamily the 6-cysteine domains share a structural
scaffold. However, differences in b-strand topology and disulfide
bond connectivity exist between 6-cysteine and SRS domains
(Gerloff et al., 2005; Arredondo et al., 2012) (Figure 2A).
Tandem domains of SRS-proteins characterized to date adopt a
B

A

C

FIGURE 2 | The structural scaffold of 6-cysteine domains. (A) Schematic representation of 6-cysteine protein Pf12p with its N-terminal A-type 6-cysteine domain
(D1) and C-terminal B-type 6-cysteine domain (D2). The b-strands of the top b-sheet of the b-sandwich are colored orange and the bottom b-sheet are colored red.
Cysteines forming disulfide bonds are shown in ball-and-stick representation in yellow (PDB ID 7KJ7). Dotted lines indicate unmodeled regions. Topology diagram of
Pf12p colored similarly to the schematic representation. Disulfide bond connectivity is indicated by yellow lines. Topology diagram and schematic representation of
SAG1 from Toxoplasma gondii, the prototypic member of the SRS-superfamily (right, PDB ID 1KZQ). The b-strands of the top b-sheet of the b-sandwich are colored
light green and the bottom b-sheet are colored green. (B) Crystal structure of single 6-cysteine domains of Pfs230 D1 (left) and Pfs48/45 D3 (right). (C) Crystal
structures of 6-cysteine proteins containing a tandem pair of A- and B-type 6-cysteine domains. PDB IDs with corresponding resolution, N-terminal domain 1 (D1),
C-terminal domain 2 (D2) as well as N- and C-termini are indicated (NH2 and COOH, respectively).
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linear head-to-tail orientation with limited D1-D2 interdomain
contacts, which suggests potential mobility between SRS-
domains (Figure 2A) (He et al., 2002; Crawford et al., 2009;
Crawford et al., 2010). In contrast, tandem domains of 6-cysteine
domains have a non-linear organization, potentially with
restricted mobility (Tonkin et al., 2013; Parker et al., 2015;
Dietrich et al., 2021).

Of the 14 members of the 6-cysteine protein family, structural
information is available for five P. falciparum proteins, namely
Pf12, Pf12p, Pf41, Pfs48/45 and Pfs230 (Figures 2B, C and
Figure 3). The 6-cysteine domain was first described in 2012 by
the nuclear magnetic resonance (NMR) structure of the C-
terminal Pf12 D2 domain, which confirmed the structural
similarities with the Toxoplasma SRS domain (Arredondo
et al., 2012). Crystal structures with single 6-cysteine domains
are available for Pfs48/45 and Pfs230, which have been
characterized in the presence of antibody fragments
(Figure 2B and Figure 3C) (Kundu et al., 2018; Lennartz
et al., 2018; Singh et al., 2020; Coelho et al., 2021). The Pf12
D2 and the Pfs48/45 D3 domains are B-type 6-cysteine domains
containing three disulfide bonds. Pfs230 D1 is a degenerate 6-
cysteine domain in which two disulfide bonds pin the b-
sandwich together. In comparison to other 6-cysteine domains,
Pfs230 D1 contains an N-terminal extension (residues 557-579)
that packs against the 6-cysteine domain core (Coelho
et al., 2021).

Crystal structures of the tandem domains of Pf12, Pf12p and
Pf41 have been determined (Figure 2C) (Tonkin et al., 2013; Parker
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et al., 2015; Dietrich et al., 2021). Their overall structural
architecture is similar in that the two 6-cysteine domains are
connected by a short linker and tilted against each other. The
domain-domain organization appears rather rigid as networks of
interdomain contacts bury extended surface areas between 461-911
Å2 in these crystal structures. The domain-domain contacts are
predominantly formed between residues of b-strands connecting
loops of D1 and residues of the top b-sheet of D2. Two nanobodies,
Nb B9 and Nb D9, were successfully crystallized in complex with
recombinant Pf12p and both bind specifically to the Pf12p
interdomain (D1-D2 junction) area (Figure 3B) (Dietrich et al.,
2021). These Pf12p nanobodies were highly specific, showing very
little cross-reactivity against Pf12 or Pf41, despite these proteins
adopting the same two 6-cysteine domain arrangement (Dietrich
et al., 2021). While the overall fold and the spatial position of the
disulfide bonds are similar in Pf12, Pf41 and Pf12p, their amino acid
sequence identity is low (18-27%), and loops connecting b-strands
vary especially in length and conformation. In the case of Pf41, a
~110 amino acid insertion, termed the inserted domain-like region
(ID), connects the last two b-strands of the D1 domain and is
critical for the interaction with Pf12 (Parker et al., 2015; Dietrich
et al., 2022).

Several members of the 6-cysteine protein family form hetero-
complexes, such as Pfs230 and Pfs48/45, Pf12 and Pf41, and Pf36
and Pf52 (Kumar, 1987; Kumar andWizel, 1992; Taechalertpaisarn
et al., 2012; Parker et al., 2015; Arredondo et al., 2018). Recently, the
first crystal structure of a 6-cysteine hetero-complex of Pf12 and
Pf41 was determined (Figure 3A) (Dietrich et al., 2022). This Pf12-
B

C

A

FIGURE 3 | Crystal structures of the 6-cysteine proteins of P. falciparum in complex with another 6-cysteine protein or antibody fragments. (A) Crystal structure of
the hetero-dimeric complex of Pf12 and Pf41 with indicated D1 and D2 domains and the inserted domain-like region (ID) of Pf41. (B) 6-cysteine proteins bound to
nanobodies. Pf12 bound to Nb G7 (left), Pf12p bound to Nb B9 (middle) and Nb D9 (right). (C) 6-cysteine protein domains bound to Fab and single-chain fragment
variable (scFv) regions. Pfs230 D1 in complex with scFv of LMIV230-01 (left) and Fab of 4F12 (middle). Pfs48/45 D3 bound to Fab of 85RF45.1 (right).
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Pf41 structure identified two distinct binding sites and showed that
the ID of Pf41 forms a 25 amino acid-long a-helix that binds to a
concave surface of the Pf12 D2 domain. The second interaction site
involves extended loops on one side of the Pf41 D2 domain that
recognize residues at the Pf12 D1-D2 domain junction. Critical
residues for complex formation have been identified on both
proteins, suggesting that both binding sites are important for the
interaction of Pf12 and Pf41. In addition, Pf12 specific nanobodies
were able to inhibit complex formation between Pf12 and Pf41
(Dietrich et al., 2022). The crystal structure of one of these
nanobodies, Nb G7, in complex with recombinant Pf12 showed
that Nb G7 bound to a hydrophobic groove on Pf12 that overlaps
with the Pf41 ID binding site (Figure 3B). However, Nb G7 was not
inhibitory to merozoite invasion or egress (Dietrich et al., 2022),
which is consistent with the genetic knockout of these proteins
being dispensable for blood stage growth (Taechalertpaisarn
et al., 2012).

Structures are available for Pf12 (PDB IDs 2YMO, 7S7R and
7S7Q), Pf41 (PDB IDs 4YS4 and 7S7Q) and Pfs48/45 (PDB IDs
6E62 and 6H5N) that were solved using different protein constructs
that vary in sequence, amino acid range, or recombinant protein
expression system (Supplementary Table 1). These structures agree
with each other, and all described 6-cysteine domains show their
predicted number of disulfide bonds.

6-Cysteine Protein Family Members in
Complex With Inhibitory
Antibody Fragments
The Fab fragment of 4F12 and the single chain fragment variable
(scFv) of LMIV230-01 were crystallized in complex with Pfs230
D1 (Singh et al., 2020; Coelho et al., 2021). Both antibody
fragments recognize distinct conformational epitopes on
different sides of the 6-cysteine domain (Figure 3C). 4F12
contacts Pfs230 D1 along one edge of the b-sandwich,
interacting with residues of both b-sheets and several residues
of the b-strand connecting loop formed by F595-K607. The light
chain of 4F12 forms more contacts with Pfs230 D1 than the
heavy chain. Both, light and heavy chain together bury an
average surface area of about 1500 Å2 on Pfs230 D1 (Singh
et al., 2020). Binding of LMIV230-01 involves all six CDRs and
buries a surface area of 1047 Å2 on Pfs230 D1 with heavy and
light chains contributing to 750 Å2 and 297 Å2, respectively
(Coelho et al., 2021). LMIV230-01 contacts residues of five b-
strands all located on one side of the b-sandwich, a b-strand
connecting loop and residues of the long N-terminal extension of
Pfs230 D1. The interaction of LMIV230-01 and Pfs230 D1 is
mostly stabilized by hydrophobic contacts, and five residues of
Pfs230 are involved in hydrogen bonds or salt bridges with
LMIV230-01. The epitope is conserved as all major
polymorphisms identified from 2512 analyzed sequences from
Africa and Asia are outside the binding site of LMIV230-01.

MAb 85RF45.1 is a potent transmission-reducing antibody
targeting the C-terminal D3 domain of Pfs48/45 (Roeffen et al.,
2001b; Kundu et al., 2018; Lennartz et al., 2018). There are two
crystal structures of the Fab fragment of 85RF45.1 in complex with
the D3 domain of Pfs48/45 at 2.7 Å (Kundu et al., 2018) and 3.2 Å
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(Lennartz et al., 2018) resolution. These two crystal structures,
Protein Data Bank (PDB) entry 6E62 and 6H5N, align well with
root mean square deviations (r.m.s.d.) of ~0.977 Å. The r.m.s.d. of
two superimposed protein structures describes the average distance
between corresponding atom positions. The smaller the r.m.s.d.
value the more similar the two structures are, where a value of zero
means a perfect fit. Here, we will describe the interactions between
the Fab of 85RF45.1 and Pfs48/45 using the higher resolution
structure (Kundu et al., 2018). Binding of 85RF45.1 to Pfs48/45
involved all six CDRs and led to a total buried surface area of
1039 Å2 on Pfs48/45 with the heavy chain contributing with 650 Å2

and the light chain with 389 Å2 (Kundu et al., 2018). 85RF45.1 binds
at an edge of the b-sandwich of Pfs48/45 D3, by engaging many
residues of the b-strand connecting loops and forming several
hydrogen bonds and salt bridges (Figure 3C). Sequence analysis
showed that three low frequency polymorphisms (I/V349, Q/L355,
K/E414) are located within the epitope but 85RF45.1 can recognize
single-point mutant proteins representing these polymorphisms
with nanomolar affinity (Kundu et al., 2018).

TB31F, a humanized version of the potent transmission-
blocking antibody 85RF45.1 has been generated for potential
usage as a biologic for malaria interventions (Kundu et al., 2018).
The crystal structure of TB31F bound to Pfs48/45 revealed a
conserved mode of antigen recognition compared to the parental
antibody (Kundu et al., 2018). TB31F retained a similar low
nanomolar affinity for antigen binding (~3 nM affinity) and
potent transmission-reducing activity in SMFA while showing an
improved pH tolerance and thermostability with a ~10°C higher
melting temperature.
DISCUSSION

Structural Characterization of the 6-
Cysteine Proteins
Structural characterization is important for understanding the
interactions of the 6-cysteine proteins and how they can be
inhibited. Most 6-cysteine protein structures have yet to be
solved, including structures of the complete ectodomain of the
major vaccine candidates Pfs230, Pfs48/45 and Pfs47. Confirmation
of their structures would enable functional epitopes to be further
defined, with implications for rational vaccine design. Below we
discuss some key advances in structural techniques that could help
to structurally characterize the 6-cysteine proteins.

AlphaFold for Structure Prediction of
6-Cysteine Proteins
AlphaFold enables prediction of protein structures with atomic
accuracy, even in cases where no similar structures have been
solved before (Senior et al., 2020; Jumper et al., 2021). It has
already been employed to predict structures of Plasmodium
proteins that are difficult to express (Kaur et al., 2022) and to
study the interactions of Plasmodium proteins with inhibitors
(Chagot et al., 2022). AlphaFold appears capable of predicting
Plasmodium protein structures with high accuracy (Chagot
et al., 2022).
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For the 6-cysteine proteins of P. falciparum, AlphaFold could be
utilized for construct and novel antigen design. For this purpose,
AlphaFold predictions could assist in defining domain boundaries
to obtain well-folded, soluble protein. In addition, it could simplify
the process of structural determination. Due to the low amino acid
sequence identity between the 14 different family members (17-
36%) and the few available crystal structures, phasing viamolecular
replacement has been challenging for 6-cysteine proteins.
Experimental phasing was used to determine the structure of Pf41
(Parker et al., 2015), or in the case of 6-cysteine-antibody complexes
initial phases were obtained by molecular replacement using
antibody fragments as search models only (Kundu et al., 2018;
Lennartz et al., 2018; Singh et al., 2020; Coelho et al., 2021). The 6-
cysteine part of these structures were built from scratch by iterative
cycles of model building and refinement. Instead, AlphaFold
predictions could be valuable search models for molecular
replacement to solve the phase problem of structurally
uncharacterized 6-cysteine proteins.

AlphaFold-Multimer is an AlphaFold model trained on
multimeric inputs for the prediction of oligomers and multi-chain
protein complexes of known stoichiometry. It could be utilized for
P. falciparum to provide insights into ligand recognition by 6-
cysteine proteins (Evans et al., 2022). This is exemplified by the high
accuracy that AlphaFold-Multimer predicts the Pf12-Pf41 hetero-
dimer even when excluding the PDB entry of the hetero-complex in
the template search of the pre-processing step (Figure 4A). The
AlphaFold model and the crystal structure of the Pf12-Pf41 hetero-
complex overlay with a low r.m.s.d. value of 0.902 Å across 1778
atoms (Figure 4B). The core structures of both proteins are
predicted with high confidence, as well as most parts of the Pf41
ID. The fold of the Pf41 ID has not been fully characterized by X-ray
crystallography, likely due to its flexible nature. In the crystal
structure of Pf41 alone the Pf41 ID was likely proteolyzed and
therefore mostly absent (PDB 4YS4) (Parker, Peng, and Boulanger
2015). In the crystal structure of the hetero-complex parts of this
region were not visible in the electron density and are not connected
to the core structure of the 6-cysteine domain (PDB 7S7Q) (Dietrich
et al., 2022). Low and very low confidence regions of the AlphaFold
model comprise mostly the N-terminal signal sequence of the two
proteins and the C-terminal region of Pf12. The arrangement of
Pf12 and Pf41 in relation to each other resembles the crystal
structure of the complex (Dietrich et al., 2022) and important
interactions as shown by mutagenesis studies are predicted within 4
Å. Hence, AlphaFold predicted the overall hetero-complex with
high accuracy compared with an experimentally determined
structure, and may have shed insights into the fold of a
previously uncharacterized region of Pf41. The prediction of
hetero-complexes of other 6-cysteine proteins such as P36-P52 or
P48/45-P230, or the prediction of 6-cysteine proteins in complex
with specific antibodies or nanobodies might be informative but
validation with experimental methods remains important.

To date only single and tandem 6-cysteine domains have been
structurally characterized by NMR and X-ray crystallography.
AlphaFold predictions of larger members of the 6-cysteine protein
family will be useful to better understand the arrangement and
three-dimensional organization of multiple 6-cysteine domains. For
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6-cysteine proteins that contain three 6-cysteine domains, namely
P47, P48/45, B9, PSOP12 and P92 (Figure 1B), AlphaFold
predictions have high and very high per residue confidence scores
(pLDDT, predicted local distance difference test) for the core
structure of the 6-cysteine domains as well as for most b-strand
connecting loops (https://alphafold.ebi.ac.uk/). The models show
that all three 6-cysteine domains are highly engaged with each other
with many inter-domain contacts between them. The predicted
aligned error plot of the AlphaFold models allows assessment of the
inter-domain accuracy. Except for Pf92, the expected position error
has low values across the whole predicted inter-domain regions of
the 6-cysteine domains indicating a high inter-domain accuracy for
the 6-cysteine domain arrangement in Pf47, Pfs48/45, PfB9 and
PfPSOP12. The proteins Pf92, PfPSOP12 and PfB9 contain in
addition to their 6-cysteine domains a predicted N-terminal b-
propellor domain which structures are predicted with confidence
and have mostly high and very high pLDDT values. The relative
position of the b-propellor domains towards the 6-cysteine domains
are predicted with confidence for the Pf92 and the PfPSOP12
models. The b-propellor domains were first suggested by
structure prediction using HHpred which is now further
supported by the AlphaFold predictions.

For Pfs230, the largest member of the family, an AlphaFold
prediction shows 14 6-cysteine domains and indicates a mostly
unstructured N-terminal pro-domain, where residues 1-575 have
very low per-residue confidence scores (Figure 4C). Several pro-
domain residues form contacts with the first 6-cysteine domain
similar to the crystal structures of Pfs230 D1 in complex with
antibody fragments (Singh et al., 2020; Coelho et al., 2021). The
core structure of the 14 6-cysteine domains and inter-domain
regions of A-type and B-type tandem pairs are predicted with
high and very high confidence scores. In contrast, several
extended loops of the 6-cysteine domains and linker regions
between following tandem pairs have low or very low pLDDT
values. Some inter-domain contacts are suggested between
domains that are not directly adjacent. However, due to the
low pLDDT values which could indicate flexibility between
tandem domains the model may not allow an accurate
description of the inter-domain organization of Pfs230. The
predicted model describes one static representation of a
possible arrangement of the 14 domains. It remains possible
that the packing of the multiple domains is different or requires
other interaction partners for its native organization. Similarly, it
is possible that the tandem pairs could be mobile relative to each
other with no fixed packing, at least in absence of other
interaction partners. While the inter-domain arrangement of
the Pfs230 model may differ from the native structure, the model
provides details about individual tandem pairs of 6-cysteine
domains with high confidence and could be valuable for
antigen design and as fit and search models for cryo-electron
microscopy (cryo-EM) and X-ray crystallography, respectively.

Taken together, structure prediction using AlphaFold will
benefit research of 6-cysteine proteins by assisting in construct
design, contributing to a better understanding of their fold and
interactions with binding partners although validation of the models
and their interactions will still require experimental validation.
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Cryo-EM for Structural Characterization of 6-
Cysteine Proteins In Situ
Cryo-EM is increasingly used for structural characterization and
has been used to solve the structures of key Plasmodium proteins
at resolutions higher than 4 Å (Kim et al., 2019; Dijkman et al.,
2021; Schureck et al., 2021; Lyu et al., 2021). Recent advances
have enabled resolutions of under 1.5 Å, allowing direct
visualization of atom positions (Nakane et al., 2020; Yip
et al., 2020).

Cryo-EM requires less sample than X-ray crystallography
and could therefore be particularly valuable for the structural
characterization of 6-cysteine proteins that are difficult
to express recombinantly. Techniques such as microcrystal
electron diffraction (MicroED) allow for structural
determination of proteins from as little as a single
nanocrystal of protein (Yonekura et al., 2015; Assaiya
et al., 2021).

Experimental confirmation of the structure of Pfs230 is
important for vaccine design; however, its size complicates
expression and crystallization of the full-length protein. The
amount of sample required for cryo-EM is sufficiently low to
enable structure determination from endogenous Plasmodium
proteins (Ho et al., 2018; Ho et al., 2021; Anton et al., 2022),
which will be useful for proteins such as Pfs230 that cannot be
easily expressed recombinantly. Further, with advances in cryo-
electron tomography (cryoET) workflows and image processing
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techniques it is possible to solve the structure of proteins in situ
at a resolution of 3.5 Å (Wagner et al., 2020; Tegunov et al.,
2021). These techniques could be employed to determine the
structure of Pfs230 in situ, allowing the 14 domains of this
protein to be studied in their native conformation.

Structural Characterization of
Inhibitory Antibodies
Supplementary Table 2 highlights the paucity of reported
inhibitory antibodies for several proteins in the 6-cysteine
family. Despite the essentiality of at least nine out of 14 P.
falciparum 6-cysteine proteins, inhibitory mAbs have only
been identified for three proteins, namely Pfs230, Pfs48/45
and Pfs47. Generation and characterization of inhibitory
antibodies for the remaining proteins could produce
valuable research tools and identify additional vaccine
candidates. Moreover, there is a lack of structural
information for transmission-blocking antibodies in
complex with proteins. Structural data for inhibitory mAbs
in complex with Pfs48/45 6C and Pfs230 D1 indicate that the
mAbs bind to conserved regions of the proteins (Kundu et al.,
2018; Lennartz et al., 2018; Singh et al., 2020; Coelho et al.,
2021). Structural characterization of additional mAbs
interacting with 6-cysteine proteins would aid discovery of
conserved binding epitopes and non-competing antibodies
that have the potential to act synergistically.
B CA

FIGURE 4 | AlphaFold predictions of selected 6-cysteine proteins. (A) AlphaFold-Multimer prediction of the hetero-dimeric complex of Pf12 and Pf41. Amino acids are
colored based on their per-residue confidence score (pLDDT), which values can be between 0 and 100. Low values indicate low confidence and high numbers indicate very
confident predictions. Amino acids are either colored orange (pDLLT <50), yellow (70> pDLLT >50), light blue (50< pDLLT >70), or dark blue (pDLLT >90). Regions with
pLDDT <50 may be unstructured in isolation. (B) Alignment of the AlphaFold prediction (dark purple and dark green) of the Pf12-Pf41 hetero-dimeric complex with the Pf12-
Pf41 crystal structure (light purple and light green, PDB ID 7S7Q). Regions of the Pf41 ID which are not defined in the crystal structure are indicated by dotted circles. (C)
AlphaFold prediction of Pfs230 colored from blue to red from N- to C-terminus. The N-terminal residues 1-575 have low pDLLT values of <50. Residues 1-442 are not shown
for clarity of the image. The 14 6-cysteine domains are indicated from D1-D14. AlphaFold models were generated at WEHI (Australia) using the AlphaFold algorithm.
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Synergistic Antibodies for Investigating and
Targeting 6-Cysteine Proteins
Much of the work on 6-cysteine proteins to date has focused on
characterizing individual mAbs and there has been little
investigation into the potential synergistic effects of antibody
combinations. Antibody synergy occurs when the activity of an
antibody is enhanced by the presence of other antibodies and can be
achieved by combining synergistic mAbs in a cocktail or by
including multiple epitopes or antigens in an immunogen to elicit
synergistic polyclonal antibodies.

Combining mAbs against different antigens has the potential to
increase transmission-blocking activity, as does combining mAbs
against different epitopes of the same antigen, which can increase
activity through heterotypic interactions (Ragotte et al., 2022).
Combining mAbs against different epitopes of Pfs230 D1 or
Pfs230 D1 and Pfs48/45 significantly increased transmission-
blocking activity (Singh et al., 2020), warranting further
investigation of different mAb combinations. Combinations of
antibodies with and without transmission-blocking activity may
also act synergistically, as was observed for antibodies against PfRh5,
where a non-neutralizing antibody was found to enhance the
activity of neutralizing antibodies by increasing the time available
for them to bind (Alanine et al., 2019). This warrants further
characterization of mAbs against 6-cysteine proteins without
transmission-blocking or neutralizing activity. The design of
bispecific antibodies combining synergistic antibodies targeting
multiple epitopes or antigens may enhance activity (Alanine et al.,
2019). Synergistic mAbs have therapeutic potential; an antimalarial
mAb administered to patients in a Phase I trial demonstrated
prophylactic effects (Gaudinski et al., 2021) and treatment with a
cocktail of synergistic mAbs could enhance protection.

There are also implications for vaccine design. Targeting
multiple epitopes or antigens can induce a synergistic polyclonal
response, increasing immune response and reducing the likelihood
of escape mutations. A number of 6-cysteine multi-antigen vaccine
candidates are under investigation, including Pfs48/45-GLURP
(Theisen et al., 2014; Roeffen et al., 2015; Singh et al., 2015; Singh
et al., 2017a; Singh et al., 2017b; Singh et al., 2021a), Pfs48/45-
GLURP-MSP3 (Baldwin et al., 2016; Mistarz et al., 2017), Pfs230-
Pfs48/45 (Singh et al., 2019; Singh et al., 2020; Singh et al., 2021b)
and Pfs230-Pfs25 (Menon et al., 2017; Healy et al., 2021). A recent
study found a higher prevalence of naturally infected individuals
with antibodies against a Pfs48/45-GLURP-MSP3-based vaccine
than against the individual proteins, suggesting the combination of
antigens has an additive effect on immune response (Baptista et al.,
2022). Moreover, animal immunization with the Pfs230-Pfs48/45
chimera elicited transmission-blocking antibody responses three-
fold higher than the single antigens alone (Singh et al., 2019),
suggesting further investigation of 6-cysteine antigen combinations
is warranted.

The epitopes displayed by immunogens should be carefully
considered; displaying multiple antigens can elicit antibodies that
work synergistically but eliciting a wide polyclonal response can
elicit antagonistic antibodies that reduce transmission-blocking
activity (Alanine et al., 2019; Ragotte et al., 2022). In addition,
synergistic effects appear to be dependent on antigen combination;
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vaccination with both Pfs230 and Pfs25 was found to elicit antibody
responses no higher than those elicited by each antigen individually
(Menon et al., 2017; Healy et al., 2021) and combinations of anti-
Pfs230 and -Pfs25 mAbs did not show increased transmission-
blocking activity (Singh et al., 2020). Identifying antibodies that
work synergistically and carefully targeting key epitopes is
important for effective malaria control strategies.
CONCLUSIONS

The 6-cysteine proteins are a family of highly conserved,
surface exposed proteins expressed throughout the
Plasmodium life cycle. Structural and functional insights have
been derived from mAbs and crystal structures generated using
recombinantly expressed 6-cysteine proteins. The structural
and functional characterization of Pfs230, Pfs48/45 and Pfs47
as key candidates for transmission-blocking vaccines is a key
priority. However, there is still a paucity of structural
information for these proteins and their inhibitory antibodies
and further characterization, exploiting advances in techniques
such as AlphaFold and cryo-EM, would further elucidate the
interactions of these proteins and specify functional epitopes
for effective targeting of the 6-cysteine proteins.
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