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Seco-sativene sesquiterpenoids are an important member of phytotoxins and plant
growth regulators isolated from a narrow spectrum of fungi. In this report, eight seco-
sativene sesquiterpenoids (1–8) were first analyzed using the UPLC-Q-TOF-MS/MS
technique in positive mode, from which their mass fragmentation pathways were
suggested. McLafferty rearrangement, 1,3-rearrangement, and neutral losses were
considered to be the main fragmentation patterns for the [M+1]+ ions of 1–8. According
to the structural features (of different substitutes at C-1, C-2, and C-13) in compounds
1–8, five subtypes (A–E) of seco-sativene were suggested, from which subtypes A, B/D,
and E possessed the diagnostic daughter ions at m/z 175, 189, and 203, respectively,
whereas subtype C had the characteristic daughter ion at m/z 187 in the UPLC-
Q-TOF-MS/MS profiles. Based on the fragmentation patterns of 1–8, several known
compounds (1–8) and two new analogues (9 and 10) were detected in the extract of
plant pathogen fungus Bipolaris sorokiniana based on UPLC-Q-TOF-MS/MS analysis,
of which 1, 2, 9, and 10 were then isolated and elucidated by NMR spectra. The UPLC-
Q-TOF-MS/MS spectra of these two new compounds (9 and 10) were consistent with
the fragmentation mechanisms of 1–8. Compound 1 displayed moderate antioxidant
activities with IC50 of 0.90 and 1.97 mM for DPPH and ABTS+ scavenging capacity,
respectively. The results demonstrated that seco-sativene sesquiterpenoids with the
same subtypes possessed the same diagnostic daughter ions in the UPLC-Q-TOF-
MS/MS profiles, which could contribute to structural characterization of seco-sativene
sesquiterpenoids. Our results also further supported that UPLC-Q-TOF-MS/MS is a
powerful and sensitive tool for dereplication and detection of new analogues from crude
extracts of different biological origins.

Keywords: Bipolaris sorokiniana, seco-sativene sesquiterpenoids, McLafferty rearrangement, NMR analysis,
antioxidant activity
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INTRODUCTION

Seco-sativenes are a member of sesquiterpenoids possessing
a unique bicyclo[3.2.1]octane ring system and different
substitutions including glycosylation, methylation, and
acylation; different heterocyclic rings such as lactone, furan,
and pyran ring; and diverse oxygenation sites (hydroxylation)
on the core skeleton, increasing the chemical diversity. The
structural differences of seco-sativenes mainly lie in the
diverse substituents at C-1, C-2, and C-13 (Li et al., 2020a).
From the structural features, it is implied that seco-sativenes
come from a sesquiterpene pathway but not from a direct
farnesyl pyrophosphate cyclization product. Rearrangement
and oxidative cleavage reactions might play a pivotal role
in the biosynthetic pathway, which is supported by the
isolation of different precursors and intermediates (Mayo et al.,
1962a, 1965; Mayo and Williams, 1965; Li et al., 2020a,b).
Fungus B. sorokiniana is known for producing a variety of
secondary metabolites, with sesterterpene, cyclic peptides, and
sesquiterpenoids as the most representative classes (Nihashi et al.,
2002; Ali et al., 2016; Qader et al., 2017; Phan et al., 2019). Qader
et al. (2017) isolated three seco-sativene sesquiterpenoids from B.
sorokiniana, in which helminthosporal acid and helminthosporol
displayed a strong phytotoxic effect on lettuce seed germination
and toxicity against brine shrimps, and helminthosporal acid
also showed antifungal activity. Phan et al. (2019) isolated
and elucidated 12 seco-sativene sesquiterpenoids including
a new seco-sativene sesquiterpenoid and three new sativene
analogues from B. sorokiniana, in which helminthosporic acid
and dihydroprehelminthosporol displayed weak necrotic activity
against wheat leaves and helminthosporol showed an inhibitory
effect on seed germination. Seco-sativene analogues displayed
strong phytotoxic effects on cereals and gramineous plants,
(Ludwig et al., 1956; Ludwig, 1957; Mayo et al., 1961, 1962b, 1963;
Spencer, 1965; Katsumi et al., 1967; Taniguchi and White, 1967;
White and Taniguchi, 1972; Pena-Rodriguez et al., 1988; Pena-
Rodriguez and Chilton, 1989; Qader et al., 2017; Phan et al., 2019)
whereas others possessed plant-growth-promoting biological
activities to rice, lettuce, cucumber, and wheat seedlings (Briggs,
1966; Hashimoto et al., 1967; Nukina et al., 1975; Pena-Rodriguez
and Chilton, 1989; Miyazaki et al., 2017, 2018; Qader et al., 2017).
In addition, some seco-sativene sesquiterpenoids also possessed
antifungal, cytotoxic, and toxic effects, and other analogues
could inhibit the growth of the malaria-causing protozoan
of Plasmodium falciparum and exhibited certain anti-NO
production activities (Li et al., 2020b). The novel core skeleton
and diverse biological activities attracted us to chemically
investigate this unique member of sesquiterpenoids. Recently,
a series of new seco-sativene sesquiterpenoids were isolated
from the endophytic fungus Cochliobolus sativus (teleomorph:
Bipolaris sorokiniana) inhabiting in a desert plant, Artemisia
desertorum, and their structures were mainly determined by
NMR experiments, X-ray diffraction, and high-resolution mass
analysis. Helminthosporic acid (2) could promote plant leaf
growth, whereas cochliobolin F, helminthosporic acid (2),
drechslerine B (8), and helminthosporal acid displayed strong
phytotoxic effects on corn leaves (Li et al., 2020a). However, the

traditional isolation method was used as the main technique for
the isolation of seco-sativene sesquiterpenoids, (Ramos et al.,
2019) which precluded discovery of new/novel analogues of seco-
sativene sesquiterpenoids. Thus, efficient approaches for mining
novel structures of seco-sativene sesquiterpenoids are urgent.

Mass spectrometry, especially tandem mass spectrometry, has
been one of the most important physicochemical approaches
for the characterization of secondary metabolites due to its
rapidity and sensitivity (Jin et al., 2018; Liang et al., 2018;
Conceição et al., 2020; Scupinari et al., 2020). Molecular weight
and formula are often inconclusive for metabolite identification;
however, fragmentation patterns represent a specific feature
for a certain structural class. Chen et al. (2018) applied
neutral loss scan in QqQ-MS and molecular formula calculation
in UPLC-Q-TOF-MS to detect amorfrutin analogues, which
provided the idea of detection and structural dereplication in
the complex crude extract. Yang et al. (2017) used UPLC-Q-
TOF-MS/MS coupled with neutral loss scan and diagnostic ions
to analyze the secondary metabolites of Schisandra chinensis.
Ahad et al. (2020) combined UPLC-Q-TOF-MS with SCX-SPE
to achieve the enrichment and structural identification of the
same skeleton metabolites. Thus, much evidence demonstrated
that fragmentation patterns coupled with UPLC-Q-TOF-MS/MS
analysis were an efficient and convenient tool for the detection
and dereplication of similar metabolites.

A series of seco-sativene sesquiterpenoids (1–8, Figure 1) were
isolated and elucidated in our previous work (Li et al., 2020a).
According to the structural features (of different groups at C-1,
C-2, and C-13), five subtypes of seco-sativenes were suggested
(subtypes A-E) (Figure 1). Interestingly, each subtype of the
structure has the same diagnostic daughter ions in the mass
spectrometric profile, which could provide a reliable approach
to analyze structures of seco-sativenes and target potent new
analogues. To date, no investigations about electrospray tandem
mass/mass of seco-sativenes sesquiterpenoids were reported. The
potential application prospect and unique skeleton of seco-
sativenes prompted us to investigate the mass spectrometric
cleavage mechanisms of this unique member of sesquiterpenoids.

In this report, the UPLC-Q-TOF-MS/MS fragmentation rules
of seco-sativene sesquiterpenoids (1–8) were presented; some
known and new seco-sativene sesquiterpenoids were detected
from the extract of the plant pathogen fungus Bipolaris
sorokiniana based on UPLC-Q-TOF-MS/MS analysis. Two
new (9 and 10) and two known (1 and 2) seco-sativene
sesquiterpenoids were then isolated and elucidated by HR-ESI-
MS and NMR spectra, and the antioxidant activities of these
seco-sativene sesquiterpenoids (1, 2, 9, and 10) were assessed.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured on a 241 polarimeter
(PerkinElmer, Waltham, United States). UV-2102 (Unico,
Shanghai, China) was used to record UV data. IR spectra were
recorded on an FTIR-8400S spectrophotometer (Shimadzu,
Kyoto, Japan). NMR data were acquired on a Bruker 500
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FIGURE 1 | Structures of seco-sativene sesquiterpenoids (1–10).

TABLE 1 | NMR spectroscopic data of compounds 9 and 10 in CDCl3.

Pos. 9 10

δH
a (J in Hz) δC

b, mult. 1H-1H
COSY

HMBC NOESY δH
a (J in Hz) δC

b, mult. 1H-1H
COSY

HMBC NOESY

1 5.64, s 127.5, CH H7 C3, C6, C12, C13 134.8, C H7, H12, H13

2 141.0, C H4, H7, H8, H12,
H13

177.2, C H4, H7, H8, H12,
H13

3 47.0, C H1, H4, H5, H7, H8,
H12, H13, H14

46.9, C H4, H5, H7, H8, H13,
H14

4 1.36, ddd (13.5, 6.5, 1.5) 34.5, CH2 H5 C2, C3, C5, C6, C8,
C13

1.57, m 34.5, CH2 H15 C2, C3, C5, C6, C8,
C13

1.29, m

5 1.67, m 25.1, CH2 H4, H6 C3, C4, C6 1.89, m 25.8, CH2 H4, H6 C3, C4, C6, C7

1.11, m 0.89, m

6 1.09, m 43.9, CH H7 C4, C7, C10, C11,
C13

H13 1.21, m 43.8, CH H5, H7, H9 C9, C10, C11 H13

7 2.70, s 42.2, CH H6, H13 C3, C5, C6, C9, C13,
C14

H10 3.04, s 41.0, CH H1, H6, H13 C1, C2, C3, C5, C6,
C14

H10

8 1.01, s 18.6, CH3 C2, C3, C4, C13 1.16, s 18.1, CH3 C2, C3, C4, C13

9 1.21, dtd (13.5, 6.5, 2.0) 32.5, CH H6, H10,
H11

C5, C6, C10, C11 1.26, m 32.4, CH H6, H10,
H11

C5, C6, C10, C11

10 0.93, d (6.5) 21.2, CH3 H9, H11 C6, C9, C11 H7 1.04, d (6.0) 21.5, CH3 H9, H11 C6, C9, C11 H7

11 0.83, d (6.5) 20.8, CH3 H9, H10 C6, C9, C10 0.83, d (6.0) 20.7, CH3 H9, H10 C6, C9, C10

12 4.59, d (13.5) 62.9, CH2 C1, C2, C3, C2′ 4.83, dd (18.0, 1.5) 67.5, CH2 C1, C2

4.52, d (13.5) 4.73, d (18.0)

13 1.57, dd (8.5, 5.0) 62.6, CH H7, H14 C1, C2, C3, C4, C6,
C14

H6 2.16, dd (9.0, 5.5) 63.5, CH H7, H14 C1, C2, C3, C4, C6,
C14

H6

14 3.73, dd (10.5, 5.0) 63.0, CH2 H13 C3, C7, C13 4.24, dd (11.0, 5.5) 64.0, CH H13 C3, C7, C13, C2′

3.50, dd (10.5, 8.0) 3.82, dd (11.0, 9.0)

15 170.8, C H12

1′ 2.07, s 21.0, CH3 C12, C2′ 2.05, s 21.2, CH3 C14, C2′

2′ 171.2, C H12, H1′ 171.2, C H14, H1′

aRecorded at 500 MHz.
bRecorded at 125 MHz.

spectrometer using solvent signal (CDCl3; δH 7.26/δC 77.6) as
reference. Sephadex LH-20 and silica gel were purchased from
Pharmacia (Biotech, Sweden) and Shanghai Titan Scientific Co.,
Ltd. (Shanghai, China), respectively. Semi-preparative HPLC
separation was performed on a SEP LC-52 with an MWD UV
detector (Separation (Beijing) Technology Co Ltd., Beijing,
China) packed with a YMC-Pack ODS-A column. HR-ESI-MS
spectra were analyzed using an ESI-Q-TOF-MS (Waters Xevo
G2-XS QTof, United States).

General Experimental Procedures
Eight seco-sativene sesquiterpenoids were analyzed using
a UPLC-Q-TOF-MS/MS system (Waters, United States).
Chromatographic analysis was carried out with a Waters

ACQUITY UPLC-PDA system equipped with an analytical
reverse-phase C-18 column (2.1 × 100 mm, 1.7 µm, ACQUITY
BEH, Waters, United States) with an absorbance range of
200 to 400 nm. The column temperature was maintained at
40◦C. As the mobile phase, 0.1% formic acid in water (A) and
0.1% formic acid in acetonitrile (B) were used. The gradient
conditions were as follows: 0–2 min, 35% B; 2–17 min, 35–
98% B; 17–19 min, 98% B; and 19.1–21 min, 35% B. The
flow rate from the UPLC system into the ESI-Q-TOF-MS
detector was 0.3 ml/min. The auto-injected volume was 0.3 µl.
Time-of-flight MS detection was performed with the Xevo
G2-XS QTof system (Waters) combined with an ESI source in
positive ion scan mode. The desolvation temperature was set
at 450◦C with desolvation gas flow at 900 L/h, and the source
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TABLE 2 | Elemental constituents of major product ions from [M+Na]+ for
compound 1 (subtype A).

Fragment ion Formula Calculated Observed Error (PPM)

[M+Na]+ C15H22O4Na 289.1416 289.1412 −1.4

[M+H-H2O]+ C15H21O3 249.1491 249.1499 +3.2

[M+H-2H2O]+ C15H19O2 231.1385 231.1378 −3.0

[M+H-H2O-CO]+ C14H21O2 221.1542 221.1537 −2.3

[M+H-H2O-HCO2H]+ C14H19O 203.1436 203.1429 −3.4

[M+H-H2O-HCO2H-CO]+ C13H19 175.1487 175.1479 −4.6

temperature was 80◦C. The lock mass in all analyses was leucine-
enkephalin [(M+H)+ = 556.2771], used at a concentration of
200 µl/ml and infused at a flow rate of 10 L/min. Raw data
were acquired using the centroid mode, and the mass range
was set from m/z 100 to 1,000. The capillary voltage was set at
2.5 kV with 30 V of sample cone voltage. The collision energy
was set as 6 eV for low-energy scan and a ramp from 30 to
50 eV for high-energy scan. The instrument was controlled by
MassLynx 4.1 software.

Strain and Fermentation
The strain of Bipolaris sorokiniana (strain number: ACCC36805)
was isolated from the seed of wheat and provided by the Chinese
Academy of Agricultural Sciences. The fungus was grown on
PDA (potato dextrose agar) plates at 25◦C for 10 days. Then
the fresh mycelium was inoculated into the autoclaving sterilized
solid medium with the formula of rice (60.0 g) and distilled water
(80 ml) in Fernbach flasks (500 ml) for further fermentation at
25◦C for 30 days.

Extraction and Isolation
The fermented rice substrate was extracted with EtOAc three
times, and the solvent was evaporated to dryness under vacuum
to afford 200 g of crude extract. The original extract was
fractionated on a silica gel column using petroleum ether-acetone
(1:0–0:1) progressively to give five fractions (Fr. 1 to Fr. 5). Fr.

2 (8.0 g) was separated on a silica gel column to obtain eight
fractions (Fr. 2.1 to Fr. 2.8). Fr. 4 (27.8 g) was separated on a
silica gel column to obtain five parts (Fr. 4.1 to Fr. 4.5). Fr. 4.1
was separated on a silica gel column and RP-HPLC (0–5 min 80%
MeOH in H2O, 5–25 min 80–100% MeOH in H2O, 5 ml/min) to
obtain Fr. 4.1.1 (13.8 mg, tR = 10.5 min). Fr. 4.1.1 (13.8 mg) was
purified by semi-preparative HPLC (0–5 min 70% acetonitrile
in H2O, 5–25 min 70–90% acetonitrile in H2O, 2 ml/min) to
obtain compound 10 (1.8 mg, tR = 15.2 min). Fr. 4.2 (5.6 mg)
was purified by semi-preparative HPLC (60% acetonitrile in H2O,
2.5 ml/min) to obtain compound 9 (2.3 mg, tR = 23.5 min). Fr.
4.3 (3.5 g) was purified by semi-preparative HPLC (0–25 min
80–100% MeOH in H2O, 5 ml/min) to obtain compound 2
(230.1 mg, tR = 10.3 min). Fr. 4.4 (4.02 g) was separated on a silica
gel column, Sephadex LH-20 (dichloromethane:methanol = 1:1
v/v) and semi-preparative HPLC to obtain four fractions (Fr.
4.4.1–Fr. 4.4.4). Fr. 4.4.1 (24.7 mg) was purified by semi-
preparative HPLC (75% MeOH in H2O, 2 ml/min) to obtain 1
(10.0 mg, 21.6 min).

12-Acetyl-Drechslerine A (9)
Colorless oil: [α]D

25-18 (c 0.1, MeOH); UV (MeOH) λmax (log
ε) 215 (2.98) nm; IR (neat) νmax 3,420, 2,931, 1,742, 1,456,
1,367, 1,235, 1,031 cm−1; for 1H NMR and 13C NMR data, see
Table 1; positive HR-ESI-MS: m/z 267.1957 [calcd. for C16H27O3
[M+H]+, 267.1960].

14-Acetyl-Drechslerine B (10)
White powder: [α]D

25-16 (c 0.1, MeOH); UV (MeOH) λmax (log
ε) 205 (2.84), 234 (2.97) nm; IR (neat) νmax 2,958, 1,747, 1,645,
1,456, 1,367, 1,338, 1,234, 1,031 cm−1; for 1H NMR and 13C NMR
data, see Table 1; positive HR-ESI-MS: m/z 293.1683 [calcd. for
C17H25O4 [M+H]+, 293.1675].

Antioxidant Activity
DPPH Scavenging Capacity
Take 15 µl of compounds 1, 2, 9, and 10 with a concentration
of 10 mM/L and a serial dilution of seven times, and then mix

SCHEME 1 | Possible fragmentation pathway of 1.
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TABLE 3 | Elemental constituents of major product ions from [M+Na]+ for
compound 2 (subtype B).

Fragment ion Formula Calculated Observed Error (PPM)

[M+Na]+ C15H24O3Na 275.1623 275.1618 −1.8

[M+H]+ C15H25O3 253.1804 253.1797 −2.8

[M+H-H2O]+ C15H23O2 235.1698 235.1703 +2.1

[M+H-2H2O]+ C15H21O 217.1592 217.1582 −4.6

[M+H-2H2O-CO]+ C14H21 189.1643 189.1631 −6.3

with DPPH solution. After 30 min, the remaining amount of the
DPPH radical was measured spectrophotometrically at 517 nm.
In this test, for comparison, VC was considered as the positive
control, and ethanol was considered as the negative control.

The clearance rate E is E = [1 – (AS – A0)/(AC – A0)]× 100%,
where A0 is the absorbance of the water, AC is the absorbance

of ethanol solution, and AS is the absorbance after adding
the sample solution. The IC50 value was processed by
GraphPad Prism 8.

ABTS+ Scavenging Capacity
Take 15 µl of compounds 1, 2, 9, and 10 with a concentration
of 10 mM/L and a serial dilution of seven times, and then mix
with ABTS+ solution. After 6 min, the remaining amount of the
ABTS+ radical was measured spectrophotometrically at 405 nm.
In this test, for comparison VC served as the positive control, and
ethanol served as the negative control.

The clearance rate E is E = [1 – (AS – A0)/(AC – A0)]× 100%,
where A0 is the absorbance of the water, AC is the absorbance
of ethanol solution, and AS is the absorbance after adding
the sample solution. The IC50 value was processed by
GraphPad Prism 8.

SCHEME 2 | Possible fragmentation pathways of 2–4.
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SCHEME 3 | Possible fragmentation pathways of 5 and 6.

RESULTS

Fragmentation Mechanisms of
Seco-Sativene Sesquiterpenoids (1–8)
The protonated parent ion m/z 267, [M+H]+ of cochliobolin
A (1) was not observed in the UPLC-Q-TOF-MS/MS spectra,
and it might be that this ion could easily lose one molecule
of H2O to produce a daughter ion at m/z 249 [M+1-H2O]+.
The abundance of ion m/z 249 was the highest in the profile.
Thus, the precursor protonic molecular ion [M+1-H2O]+ of 1
was selected for analysis in the UPLC-Q-TOF-MS/MS spectrum.
The high-resolution mass and fragment ions together with the
elemental constituents of cochliobolin A (1) were listed in
Table 2. The fragmentation routes according to ESI-Q-TOF-
MS/MS analysis were depicted in Scheme 1, in which typical
neutral losses, McLafferty rearrangement, and 1,3-rearrangement
were the main fragmentation patterns for the parent ion m/z 267
[M+1]+ (Liang et al., 2018). The daughter ion (m/z 249) was
formed from the parent ion (m/z 267) through the McLafferty
rearrangement and 1,3 rearrangement by loss of one molecule of
H2O (−18). Then, the daughter ion (m/z 221) was produced from
the precursor ion (m/z 249) through neutral loss of one molecule
of CO (−28). The daughter ion (m/z 231) was yielded from the
precursor ion (m/z 249) through the McLafferty rearrangement
by neutral loss of one molecule of H2O (−18). The diagnostic
daughter ion (m/z 175) might have originated from the precursor

TABLE 4 | Elemental constituents of major product ions from [M+Na]+ for
compound 5 (subtype C).

Fragment ion Formula Calculated Observed Error (PPM)

[M+Na]+ C21H36O7Na 423.2359 423.2361 +0.5

[M+H]+ C21H37O7 401.2539 401.2535 −1.0

[M+H-C6H12O6]+ C15H25O 221.1905 221.1901 −1.8

[M+H-C6H12O6 -H2O]+ C15H23 203.1800 203.1790 −4.9

ion (m/z 249) by loss of one molecule of HCO2H (−46)
(m/z 203) and one molecule of CO (−28) (m/z 175) through
the McLafferty rearrangement and neutral loss (Scheme 1 and
Supplementary Figure 1).

The protonated parent ion m/z 253, [M+H]+ of compound 2
was observed in the mass profile with a relatively low abundance,
which easily lost one molecule of H2O (−18) to produce the
intermediate ion m/z 235 through the McLafferty rearrangement
and 1,3-rearrangement or neutral loss of one molecule of H2O (–
18) with H-13. Then, the intermediate ion m/z 235 successively
lost one molecule of H2O (–18) and one molecule of CO (–28) by
neutral loss to form the key diagnostic daughter ion (m/z 189).
The high-resolution mass and fragment ions together with the
elemental constituents of compound 2 were listed in Table 3.
Compounds 3 and 4 had similar fragmentation pathways to that
of compound 2 (Scheme 2, Supplementary Figures 2–4, and
Supplementary Tables 1, 2).

The protonated parent ions of 5 and 6 were m/z 401
[M+H]+ and m/z 443 [M+H]+, respectively, in the UPLC-
Q-TOF-MS/MS spectra. These two ions lost one molecule of
glucose (–180) by the McLafferty rearrangement to form the
intermediate ions m/z 221 and m/z 263, respectively, which
yielded the same diagnostic ion m/z 203 through neutral loss of
one molecule of H2O (−18) and one molecule of CH3COOH
(−60) (Scheme 3 and Supplementary Figures 5, 6). The high-
resolution mass and fragment ions together with the elemental
constituents of compounds 5 and 6 were listed in Table 4 and
Supplementary Table 3.

The abundance of protonated parent ion of 7 m/z 225
[M+H]+ was relatively low in the UPLC-Q-TOF-MS/MS
spectra. It might be the neutral loss of one molecule of H2O (−18)
and one molecule of CH3CO2H (−60) to form an intermediate
ion m/z 207. The abundance of the ion (m/z 207) was the highest
in the mass profile. The diagnostic ion (m/z 189) was formed
from ion m/z 207 by loss of one molecule of H2O (−18) through
the McLafferty rearrangement (Scheme 4 and Supplementary
Figure 7). The high-resolution mass and fragment ions together
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SCHEME 4 | Possible fragmentation pathways of 7 and 9.

with the elemental constituents of compound 7 are listed in
Table 5.

The protonated parent ion of 8 was m/z 251 [M+H]+ in
the UPLC-Q-TOF-MS/MS spectra with the highest abundance.
The McLafferty rearrangement produced the intermediate ion
m/z 233 from m/z 251 by loss of one molecule of H2O (−18).
Successive neutral losses of one molecule of H2O (−18) and
one molecule of CO (−28) or vice versa yielded the diagnostic
daughter ion (m/z 187). The detailed MS analysis is shown in
Scheme 5 and Supplementary Figure 8. The high-resolution
mass and fragment ions together with the elemental constituents
of compound 8 are listed in Table 6.

With the UPLC-Q-TOF-MS/MS fragmentation mechanisms
of 1–8 in hand, it implied that each subtype seco-sativene
sesquiterpenoids had a diagnostic daughter ion in the MS profile
(subtype A→ m/z 175; subtypes B/D→ m/z 189; subtype C→
m/z 203; subtype E→ m/z 187). Though both subtypes B and D
had the same diagnostic daughter ion m/z 189, the last cleavage
in the sub-type B was the neutral loss of one molecule of CO
(−28), whereas the neutral loss of one molecule of H2O (−18)
was the last cleavage in subtype D, which differentiated these two
subtypes B and D. Thus, it could give the possible subtype of seco-
sativene sesquiterpenoids based on the diagnostic daughter ion
from the corresponding ESI-Q-TOF-MS/MS data.

Then, the crude extract of the ethyl acetate fraction of
the plant pathogen Bipolaris sorokiniana was then analyzed
by UPLC-Q-TOF-MS/MS (Supplementary Figure 11). There

TABLE 5 | Elemental constituents of major product ions from [M+Na]+ for
compound 7 (subtype D).

Fragment ion Formula Calculated Observed Error (PPM)

[M+Na]+ C14H24O2Na 247.1674 247.1668 −2.4

[M+H]+ C14H25O2 225.1855 225.1843 −5.3

[M+H-H2O]+ C14H23O 207.1749 207.1754 +2.4

[M+H-2H2O]+ C14H21 189.1643 189.1640 −1.6

were some peaks (compound 8: m/z 251.1664, tR = 3.53 min,
λmax = 217 nm; compound 7: m/z 225.1843, tR = 3.56
min, λmax = 206 nm; compound 2: m/z 253.1797, tR = 4.86 min,
λmax = 244 nm; compound 1: m/z 249.1548, tR = 4.93
min, λmax = 248 nm; compound 3: m/z 295.1900, tR = 8.24 min,
λmax = 243 nm) in the TOF MS profiles possessing typical
fragment ions including m/z 175, 187, 189, 203, 205, 207, 215,
217, 231, 233, and 235. However, there are other unidentified
compounds (251.1639, tR = 2.85 min; 353.0418, tR = 5.78 min;
237.1855, tR = 5.88 min; 293.1748, tR = 7.03 min; 207.1744,
tR = 7.26 min; 235.1693, tR = 7.86 min; 235.1693, tR = 8.68 min;
235.1692, tR = 8.85 min) that had similar cleavage fragments as
compounds 1–8, indicating that many known and undescribed
analogues existed in the extract.

Compounds 1 (tR = 4.93 min) and 2 (tR = 4.86 min) as the
main constituents were isolated from the plant pathogen Bipolaris
sorokiniana crude extract.

Two ions (tR = 7.23, 7.01 min) at m/z 267 [M+1]+ (9)
and m/z 293 [M+1]+ (10) were detected in the crude extract,
and their molecular weights were determined to be C16H26O3
and C17H24O4, respectively (Supplementary Figures 9, 10).
The diagnostic ions of 9 and 10 were m/z 189/187 and
λmax = 234/215 nm, respectively, implying that structures of 9
and 10 possessed the same subtypes as 7 and 8. The UPLC-Q-
TOF-MS/MS fragmentation pathways of these two compounds
were nearly the same as those of 7 and 8, except for an additional
acetyl group. To confirm this hypothesis, 9 and 10 were isolated
from the extract and elucidated by IR, NMR, and HR-ESI-MS
spectra. The IR absorption bands at 3,420 cm−1 showed the
hydroxyl group in 9, and 2,931 and 1,747 cm−1 revealed the
presence of alkyl and ester moieties, respectively, which were
also present in that of 10. The 1H-NMR spectrum revealed
the similarity of 9/10 with 7/8, except that the chemical shift
values of –CH2-12 of 9 and –CH2-14 of 10 were down-fielded
in 9/10 (Osterhage et al., 2002) and an additional methyl signal
was observed in the 1H-NMR spectrum of 9/10. This implied
that the additional acetyl group was connected at C-12 in 9
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and C-14 in 10. The key HMBC correlations from –CH2-
12/CH2-14 and 1′-Me to C-2′ (δC 171.2 in 9/10) supported the
conclusion (Figure 2 and Supplementary Figures 12–29). Thus,
the structures of 9 and 10 were determined, and their ESI-Q-
TOF-MS/MS fragmentation pathways were consistent with those
of 7/8 (Schemes 4, 5 and Supplementary Tables 4, 5).

Antioxidant Activity
The antioxidant activities of compounds 1 and 2 were evaluated
by the DPPH and ABTS+ free radical scavenging test, and the
results were presented as IC50 values. The results demonstrated
that compound 1 displayed moderate antioxidant activities with
IC50 of 0.90 and 1.97 mM for DPPH and ABTS+ scavenging
capacity, respectively. However, compound 2 did not show the
obvious antioxidant activity. They were measured by comparing
the scavenging ability of DPPH free radical and ABTS+ free
radical with VC, a well-known potent antioxidant and free radical
scavenger with IC50 of 0.14 and 0.42 mM for DPPH and ABTS+
scavenging capacity, respectively (Table 7).

DISCUSSION

This report analyzed the fragmentation patterns of eight
representative seco-sativene sesquiterpenoids (1–8) using
UPLC-Q-TOF-MS/MS, and McLafferty rearrangement, 1,3-
rearrangement, and neural loss (−18, −28) were the main

TABLE 6 | Elemental constituents of major product ions from [M+Na]+ for
compound 8 (subtype E).

Fragment ion Formula Calculated Observed Error (PPM)

[M+Na]+ C15H22O3Na 273.1467 273.1461 −2.2

[M+H]+ C15H23O3 251.1647 251.1664 +6.8

[M+H-H2O]+ C15H21O2 233.1542 233.1536 −2.6

[M+H-2H2O]+ C15H19O 215.1436 215.1426 −4.6

[M+H-H2O-CO]+ C14H21O 205.1592 205.1585 −3.4

[M+H-2H2O-CO]+ C14H19 187.1487 187.1478 −4.8

fragmentation patterns. The results indicated that dehydration
(−18) occurred easily in seco-sativenes with strong abundance
of dehydration peak observed in 1-8, and similar reports were
found in other studies (McLafferty and Gohike, 1959; Alén,
1987; Nawamaki and Kuroyanagi, 1996; Sun et al., 2012; Giri
et al., 2017; Qian et al., 2018). This may be due to an electron
impact inducing fragmentations of alkene monocarboxylic acids
to form an active OH ion, which combines an available methyl-
hydrogen atom to one lost molecule of H2O (−18) through the
McLafferty rearrangement in a six-membered system (Baldas
et al., 1969; Alexander et al., 1972). The molecular ion peak
[M+H]+ of 1–7 and 9 was not easily observed in the UPLC-
Q-TOF-MS/MS profile, whereas [M+Na]+ and [M+H-H2O]+
abundances of these compounds were relatively strong. As there
was a characteristic 40 Da difference between [M+Na]+ and
[M+H-H2O]+, the molecular ion peak of 1–7 and 9 can be
inferred. Compounds 8 and 10 possess a lactone ring at C-1
and C-2, which is different from 1–7 and 9. The special group
in 8 and 10 leads to their molecular ion peaks [M+H]+ easily
being observed in MS profiles. This might be a key signal for
differentiating subtype E from other subtypes. Although the
McLafferty rearrangement together with 1,3-rearrangement
in alkene monocarboxylic molecules to produce a base peak
of dehydration has been reported, this was the first report in
seco-sativene sesquiterpenoids mass analysis, which provided a
base for the seco-sativenes structural elucidation.

Diagnostic daughter ions of five subtypes of seco-sativene
sesquiterpenoids were provided base on UPLC-Q-TOF-MS/MS
analysis in this report. Subtypes A, B/D, and E possessed
diagnostic daughter ions at m/z 175, 189, and 203, respectively,
whereas subtype C showed a characteristic daughter ion at m/z
187 in the UPLC-Q-TOF-MS/MS profiles. The main difference
between subtypes B and D was that the last cleavage was the
neutral loss of one molecule of CO (−28) in subtype B, not
the neutral loss of one molecule of H2O (−18) in subtype D.
Diagnostic ions provided signals for the different subtypes of
seco-sativenes, and the rearrangement and neutral loss (H2O, CO,
and HOAc) in the fragmentation patterns provided the possible
groups on the structures of seco-sativene sesquiterpenoids.
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FIGURE 2 | Key 2D-NMR correlations of 9 and 10.

Thus, the structures of the seco-sativenes could be inferred by
fragmentation patterns combined with the diagnostic ions and
molecular formula based on the UPLC-Q-TOF-MS/MS profile.
This report provides a reliable method for the structural analysis
of seco-sativene sesquiterpenoids.

Compounds 1, 2, 9, and 10 and other seco-sativenes are a
class of phytotoxins. Compound 1 was previously isolated from
C. sativus (teleomorph: B. sorokiniana) without phytotoxicity
on corn leaves, but helminthosporal acid with an aldehyde
group at C-1 (a carboxyl group at C-1 in 1) possessed strong
phytotoxic activity (Li et al., 2020a). Therefore, the aldehyde
group in helminthosporal acid might be a potential active group
for phytotoxicity. Compound 2 exhibited bidirectional regulation
activities. On the one hand, it was the gibberellin-like plant
growth regulator, which could promote the growth of plant roots
and leaves at low concentrations (Qader et al., 2017; Li et al.,
2020a). On the other hand, it showed phytotoxicity on corn
leaves (Li et al., 2020a). Compounds 9 and 10 did not show
obvious antioxidant activity in this report, and no more activities
of 9 and 10 were tested due to limited amounts. Compared
with 7 and 8, 9 and 10 possess an extra acetyl group at 12-OH
and 5-OH, respectively. Osterhage et al. reported that 7 showed
inhibitory activity against tyrosine kinase p56, Microbotryum
violaceum, Eurotium repens, and Escherichia coli (Osterhage et al.,
2002) and that 8 showed antifungal activity against M. violaceum
(Osterhage et al., 2002) and phytotoxicity on corn leaves (Li et al.,
2020a). Several reports suggested that 5-CH2OH might be the
potent active group of seco-sativenes sesquiterpenoids for their
phytotoxicity (Nakajima et al., 1994; Li et al., 2020b). Therefore,
9 might possess phytotoxicity against barley seeds and corn
leaves. But their structure–activity relationships (SARs) need to

TABLE 7 | DPPH and ABTS+ scavenging capacity of compounds 1, 2, 9, and 10.

Compound DPPH (IC50) ABTS+ (IC50)

1 0.90 ± 0.17 mM >1 mM

2 >1 mM >1 mM

9 >1 mM >1 mM

10 >1 mM >1 mM

Vc 0.14 ± 0.05 mM 0.42 ± 0.30 mM

be further studied. At present, the reports on the activities of seco-
sativene sesquiterpenoids mainly focused on phytotoxicity and
growth-promoting effects with few reports about other activities
(Li et al., 2020b). To further explore the medicinal value of seco-
sativenes, the antioxidant activity of these compounds (1, 2, 9,
and 10) were studied in this report. Only then did compound
1 show moderate activity on DPPH scavenging capacity, which
indicated that 13-COOH might be a possible active group, and
further biological exploration should be needed in the future.

UPLC-Q-TOF-MS/MS spectrometry has evolved to be a
mature and common technique, which is now widely used to
analyze secondary metabolites from diverse biological resources.
Most of researchers used this technology to identify (new/novel)
metabolites or dereplicate in different crude extracts (Jin et al.,
2018; Wang et al., 2020). Recently, a molecular networking
technique based on (U)HPLC-MS/MS combined with different
databases was used in the dereplication and targeting of new
natural products from diverse biological resources (Watrous
et al., 2012; Yang et al., 2013; Aksenov et al., 2017; Hou et al.,
2019; Ramos et al., 2019; Rivera-Chaìvez et al., 2019; Shi et al.,
2019; Wu et al., 2019; Chao et al., 2020; Zang et al., 2020; Lei
et al., 2021; Lin et al., 2021). The molecular networking technique
used the known or new compound as the “seed” to realize the
visualization of analogues. In the network, MS data were collected
from LC-MS and uploaded to the GNPS database for data
processing to produce total molecular network profiles. Every
node in the same network represented a compound possessing
the same core skeleton. Known or new analogues can be quickly
inferred according to molecular weight, molecular formula, and
fragmentation patterns based on node analysis through searching
different databases or house libraries. The targeted isolation of
the seed analogues could be realized by searching the location of
the “seed” (Klitgaard et al., 2015; Allard et al., 2016; Trautman
and Crawford, 2016; Naman et al., 2017; Olivon et al., 2017a,b;
Nothias et al., 2018). When a molecular network is combined
with fragmentation patterns, the range of metabolites would be
narrowed, and the precision of targeted-isolation-compounds
would be improved (He et al., 2021). Thus, molecular networking
based on the (U)HPLC-MS/MS technique would provide a more
convenient approach for dereplication and targeting-isolation of
new seco-sativene sesquiterpenoids in the future.
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CONCLUSION

Eight seco-sativene sesquiterpenoids (1–8) were analyzed
using the UPLC-Q-TOF-MS/MS technique in positive mode,
from which their possible mass fragmentation patterns were
suggested, and neural loss, McLafferty rearrangement, and 1,3-
rearrangement were the main clearage patterns. These eight
seco-sativene sesquiterpenoids (1–8) were summarized to be five
subtypes according to their structural features. Each subtype
possessed a diagnostic daughter ion, which, in return, could
contribute to the elucidation of seco-sativene sesquiterpenoids.
Based on the fragmentation mechanism mentioned above, some
analogues including two potentially new ones were detected.
Two known (1 and 2) and two new analogues (9 and 10) were
then isolated from the extract of the plant pathogen Bipolaris
sorokiniana. Their structures were elucidated mainly by NMR
spectra and supported based on their UPLC-Q-TOF-MS/MS
analysis. The results demonstrated that diagnostic mass ions
of seco-sativene sesquiterpenoids in the UPLC-Q-TOF-MS/MS
profiles provided a convenient and high-performance approach
for structural characterization and also support that UPLC-Q-
TOF-MS/MS is a powerful and sensitive tool for dereplication
and detection of new analogues in crude extracts. This study will
pave the way for the structural analysis and targeting isolation of
seco-sativene sesquiterpenoids in different fungal crude extracts.
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