
ORIGINAL RESEARCH
published: 23 July 2020

doi: 10.3389/fchem.2020.00618

Frontiers in Chemistry | www.frontiersin.org 1 July 2020 | Volume 8 | Article 618

Edited by:

Irving Robert Epstein,

Brandeis University, United States

Reviewed by:

Baptiste Blanc,

Brandeis University, United States

Olga Kuksenok,

Clemson University, United States

*Correspondence:

Anna C. Balazs

balazs@pitt.edu

†ORCID:

Victor V. Yashin

orcid.org/0000-0002-9991-0877

Specialty section:

This article was submitted to

Physical Chemistry and Chemical

Physics,

a section of the journal

Frontiers in Chemistry

Received: 07 May 2020

Accepted: 12 June 2020

Published: 23 July 2020

Citation:

Shklyaev OE, Yashin VV and

Balazs AC (2020) Effects of an

Imposed Flow on Chemical

Oscillations Generated by Enzymatic

Reactions. Front. Chem. 8:618.

doi: 10.3389/fchem.2020.00618

Effects of an Imposed Flow on
Chemical Oscillations Generated by
Enzymatic Reactions
Oleg E. Shklyaev, Victor V. Yashin † and Anna C. Balazs*

Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, United States

Using analytical and computational models, we determine how externally imposed flows

affect chemical oscillations that are generated by two enzyme-coated patches within

a fluid-filled millimeter sized channel. The fluid flow affects the advective contribution

to the flux of chemicals in the channel and, thereby, modifies the chemical reactions.

Here, we show that changes in the flow velocity permit control over the chemical

oscillations by broadening the range of parameters that give rise to oscillatory behavior,

increasing the frequency of oscillations, or suppressing the oscillations all together.

Notably, simply accelerating the flow along the channel transforms time-independent

distributions of reagents into pronounced chemical oscillations. These findings can

facilitate the development of artificial biochemical networks that act as chemical clocks.

Keywords: chemical oscillations, enzymatic reactions, fluid flow, surface-bound enzymes, microfluidic channels

INTRODUCTION

Oscillating chemical reactions in living systems are known to regulate circadian rhythms, varieties
of metabolic processes, the transcription of DNA and other important biological functions (Novak
and Tyson, 2008; Lim et al., 2013). Within the small-scale dimensions of a biological cell, the
diffusion of chemicals is sufficient to ensure the homogeneous mixing of the reagents and therefore,
the chemical oscillations are solely functions of time (Elowitz and Leibler, 2000; Novak and
Tyson, 2008; Lim et al., 2013; Shum et al., 2015). On a larger spatial scale, when the diffusive
homogenization cannot be considered instantaneous, the combination of non-linear chemical
reactions and diffusive transport gives rise to chemical Turing patterns (Turing, 1952) and traveling
chemical waves (Prigogine and Lefever, 1968). The behavior of the spatio-temporal pattern
formation can be adequately described by coupled reaction-diffusion equations. The introduction
of an externally imposed flow, however, will modify the chemical fluxes produced by the reaction-
diffusion processes and hence, will not only alter the dynamics of the system, but could also provide
an effective means of regulating the oscillatory behavior within the solution. Here, we probe how
an externally imposed flow affects the chemical oscillations due to coupled enzymatic reactions
within a fluid-filled, millimeter sized channel and show that characteristic features of the oscillatory
behavior are highly sensitive to the velocity of the applied flow fields.

The chemical oscillations in our systems result from interactions between two enzyme-coated
patches, which are localized on the bottom wall of a fluidic chamber. These enzymatic reactions
involve two steps. The product of the first enzymatic reaction acts as a promoter for the second
reaction. On the other hand, the product of the second reaction acts as an inhibitor for the first.
These promoting and inhibiting signals enable the system to exhibit both the positive and negative
feedback loops that enable the chemical oscillations. The imposed pressure-driven flow will affect
the transport of the reactants between the enzyme-coated patches and hence can alter oscillatory
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behavior produced by the feedback loops. We also
anticipate that the overall dynamic behavior and
chemical oscillations in this system will depend on
the relative positions of the catalyst patches within
the channel.

In order to test the above hypotheses, we analyze the
properties of two distinct examples. In the first example, the
promotor and inhibitor enzymes are placed in a periodically
alternating pattern; with this assumption, we can model the
system within a single, periodic unit cell. In the second
example, the enzymes are localized at two specific points
within an infinitely long pipe. To study these cases, we
develop a one-dimensional analytic model for the behavior
of chemical phenomena within a long and narrow channel.
To validate the 1D model, we compare the predictions from
this analytic model to computer simulations of chemical
oscillations occurring within two-dimensional channels. The
results of both modeling approaches reveal that the distance
between the catalytic patches dictates the existence of the
chemical oscillations. Furthermore, the speed of the imposed
fluid flows can promote or suppress the chemical oscillations
in the system. In particular, we show that the imposed
flow can enlarge the region in phase space where the
chemical oscillations are stable and increase the frequency of
the oscillations.

THEORETICAL MODEL

We consider a mixture of chemicals transported along a narrow
channel, which has a rectangular cross-section of size Ly × Lz ,
and a long-axis pointing in x-direction, as shown in Figure 1A.
The solution contains a number of reactants, but only the
two key species, A and B, are essential for producing chemical
oscillations in the system. Specifically, in the presence of a
flowing solution that contains the substrate S, the immobilized
enzymes E1 and E2 (see Figure 1A) catalyze the chemical

reactions S
E1→A and S + A

E2→B. In addition to the latter
reactions, the species A and B undergo deactivation over time.
We assume that the concentrations of the reactant substrate
S are constant (Prigogine and Lefever, 1968), and neglect the
reverse reactions. Experimentally, this system could be realized
in a continuous flow reactor. It is important to note that our
theoretical model does not provide an explicit description of
all chemical transformations possible in the system. Instead,
we design a minimal model that takes into account only
the processes that involve the two key reactant species, A
and B.

The chemical transformations of the reagents A and B
can be viewed as a simplified model of the biosynthesis of
glutathione that occurs as a two-step process (Jez and Cahoon,
2004; Jez et al., 2004) in all living organisms. During the first
step, glutamate-cysteine ligase (GCL) catalyzes production of
γ-glutamylcystein from glutamate, cysteine, and ATP. At the
second step, glutathione synthetase (GS) catalyzes the formation
of glutathione from γ-glutamylcystein, glycine, and ATP. The
two-step process (Jez and Cahoon, 2004; Jez et al., 2004) can be

expressed as

L-glutamate + L-cysteine + ATP
GCL−−→

γ -glutamylcysteine + ADP (R1)

γ -glutamylcysteine + glycine + ATP
GS−→

glutathione + ADP (R2)

In the living cells, there are mechanisms that maintain
concentrations of chemicals within certain range necessary
for proper functioning. To mimic the self-regulation in the
biological process, we assume that γ-glutamylcystein promotes
the production of glutathione, while glutathione inhibits the
production of γ-glutamylcystein. Identifying chemicals A and
B with γ-glutamylcystein and glutathione, respectively, and the
enzymes GCL and GS with E1 and E2, respectively, we use
Michaelis-Menten type reaction rates to realize the proposed
regulation mechanism. The substrate for the reaction contains
a mixture of all the other components including L-glutamate,
L-cystein, glycine, ATP, and ADP; this allows us to represent

the reactions (R1) and (R2) as S
E1→A and S + A

E2→B. Note, that
unlike the cell environment where the enzymes GCL and GS
are mixed throughout the solution, in our case the enzymes
are immobilized at the two surfaces, allowing us to spatially
separate the two chemical reactions and, ultimately, generate
chemical oscillations.

We note, however, that the proposed reaction scheme is
a model that enables us to study the response of chemical
oscillations to the advective chemical flux. Because the latter
response depends on the relative contribution of the diffusive
and advective fluxes, which transport chemicals throughout the
solution, the effect should apply to a range of catalytic reactions
that promote chemical oscillations by localized catalysts.

The behavior of the system, characterized by the
concentrations CA and CB of the reagents A and B, and the
fluid velocity u = (ux, uy, uz), can be described by the continuity,
Navier-Stokes (in the Boussinesq approximation Chandrasekhar,
1961), and reaction and diffusion equations

∇ · u = 0, (1)

∂tu+ (u · ∇)u = −
1

ρ
∇p+ ν∇2u, (2)

∂tC
j + (u · ∇)Cj + γ jCj = Dj∇2Cj, j = A,B. (3)

Here and in what follows, ∂y is the derivative with respect to a
variable y, ∇ is the spatial gradient operator, ρ is the density
of solution, ν is the kinematic viscosity, γ j is the deactivation
(decay) rate constant, and Dj is the diffusivity of respective
reactants Cj, j = A,B. We assume that the fluid flow with the
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FIGURE 1 | (A) Schematic of a fluidic channel that supports chemical oscillations promoted by the enzyme-coated patches, Enzyme 1 and Enzyme 2. The patches

initiate transformations of the reactants A (red) and B (blue), and the fluid flow modifies the chemical kinetics. (B) The quasi-1D model of the system that models a

channel with the longitudinal size L being much greater than the transversal dimensions.

velocity u = (u, 0, 0) in the x-direction along the channel is
generated by the pressure gradient ∇p = (f , 0, 0) created by an
external fluidic pump. For simplicity, we assume that the system
is uniform in the y-direction and develop a 2D model descibed
by x and z spatial variables.

The chemical reactions, which occur due to the enzyme-
coated patches localized on the bottom wall of the channel
at z = 0 (see Figure 1A), are introduced through the
boundary conditions:

{

z = 0, x1 −
δx

2
≤ x ≤ x1 +

δx

2

}

:

−DA∂zC
A = k1σ1F1(C

B), DB∂zC
B = 0, (4)

{

z = 0, x2 −
δx

2
≤ x ≤ x2 +

δx

2

}

:

−DA∂zC
A = k2σ2F2(C

A),DB∂zC
B = k2σ2F2(C

A). (5)

Here, the patch α, where α = 1, 2, is centered at xα and
coated with the enzyme α, at a surface density of σα . Each patch
has length δx. The enzymes are characterized by the reaction
rate constants kα . The functions F1(C

B) and F2(C
A) describe

the concentration dependence of the inhibited and promoted
reactions, respectively, and are chosen to mimic those for the
glutathione biosynthesis pathway (Jez and Cahoon, 2004; Jez
et al., 2004):

F1(C
B) =

1

1+ (CB/KB)n1
, F2(C

A) =
(CA/KA)

n2

1+ (CA/KA)n2
, (6)

where KB and KA are the respective inhibition and dissociation
constants. As seen from Equations (4) to (6), the rate of
production of the chemical A decreases with an increase
in the concentration CB (inhibition), whereas an increase in
CA increases the rate of production of B until saturation
(promotion). Note that the reaction rates in Equations (4)–(6)
are taken to be dependent on the cooperativity parameters (Hill
coefficients) nα > 0, α = 1, 2. Cooperativity of the enzymatic
reactions is known to affect the dynamic regimes that could exist
in the system (Elowitz and Leibler, 2000; Shum et al., 2015).

Finally, for the solid walls that bound the channel at z = 0,
and z = H, we require zero velocity at the walls and zero flux of
the reagent concentrations normal to the walls

u(z = 0) = u(z = H) = 0,

∂zC
j (x, z = 0, t) = ∂zC

j (x, z = H, t) = 0. (7)

For periodic boundary conditions in the x-direction, we set:

x : u(0) = u(Lx), Cj(0) = Cj(Lx). (8)

To simplify the analysis, we reduce the number of model
parameters by setting DA = DB = D, γ A = γ B = γ , σ1 =
σ2 = σ , and KA = KB = K. Assuming that our solution is
aqueous, we take ν = 10−6m2s−1 and ρ = 103kgm−3. We
use the glutathione diffusion coefficient (Jin and Chen, 2000)
D = 0.67 × 10−9m2s−1 to characterize the diffusivity of both
reagentsA and B. The deactivation rate γ sets a time and distance
(Shklyaev et al., 2020) over which the diffusing reagents turn
unto products in the substrate, which we do not model explicitly.
To obtain chemical oscillations in a system with a millimeter
characteristic length scale, we set γ = 10−3s−1. The reaction
rates of glutamate-cysteine ligase (Jez et al., 2004) (GCL) and
glutathione synthetase (Jez andCahoon, 2004) (GS) were taken as
k1 = 114 s−1, and k2 = 3954s−1, respectively. The inhibition and
dissociation constants KB and KA both were set to K = 3.383 ×
10−2mol m−3, which is of the same order of magnitude as the
dissociation constants (Jez and Cahoon, 2004) for ATP glycine,
and γ -glutamylcystein participating in the reaction Equation
(R2). We chose the smallest equal cooperativity parameters n1 =
n2 = 3 that support the chemical oscillations controlled by the
non-linear Hill-type functions presented in Equation (6). Finally,
we fix the ratio of the reaction rates k1σ1/k2σ2 = const ≈ 0.0288,
and use k1σ1 as an independent variable to identify the domain
of chemical oscillations and the corresponding values of the
enzyme concentrations σ . Note that we obtain enzyme surface
densities σ ∼10−7mol m−2, which are available through current
fabrication techniques.

In what follows, we investigate the behavior of the system
controlled by the distance between the enzyme-coated patches
1x = x2 − x1; reaction rates k1σ1 and k2σ2, which regulate the
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kinetics of the chemical transformations; and the imposed fluid
velocity u, which controls the flux of the chemicals D∂xC

j + uCj.
For this purpose, the system behavior is characterized by the
group of parameters

(

1x, k1σ1, u
)

.

QUASI 1D APPROXIMATION

When the transversal dimensions Ly and Lz of the channel
are much smaller than the characteristic longitudinal scale
Lx as schematically shown in Figure 1A, the problem can
be reduced to a quasi-one-dimensional system described by
a single coordinate x (Figure 1B). In this approximation,
the externally imposed fluid flow that transports the
solution along the channel is characterized by a constant
velocity u. Appropriate averaging of Equation (3) under
the boundary conditions given by Equations (4) and
(5) yields the following set of one-dimensional (1D)
reaction-diffusion equations:

∂tC
A + u∂xC

A + γCA = D∂2xC
A +

k1σ1

H
F1δ(x− x1)−

k2σ2

H
F2δ(x− x2), (9)

∂tC
B + u∂xC

B + γCB = D∂2xC
B +

k2σ2

H
F2δ(x− x2). (10)

The non-linear terms describing the chemical reactions
pass from the boundary conditions (Equations 4
and 5), to the right-hand sides of the above 1D
equations. We also assume that the spatial extent
of the enzyme-coated patches, δx, is much smaller
than the length of the channel, Lx. Therefore, the
location the catalytic patches within the channel
and their characteristics are introduced in Equations
(8) and (9) by the terms with δ -functions. Finally,
the equations are complemented with the periodic
boundary conditions

x : Cj(0) = Cj(Lx), j = A,B (11)

For concreteness, we analyze two representative configurations
of the channel with specific locations of the enzyme-coated
patches. First, we consider an infinite array of alternating
enzyme-coated patches distributed equidistantly along an infinite
channel. In this case, we solve the problem within a periodic unit
cell of length Lx with the neighboring enzyme-coated patches
separated by a distance x2 − x1 = Lx/2 (see Figure 1B).
This configuration of the system possesses a symmetry with
respect to the velocity reversal from u to −u. In the second
case, we consider only two enzyme-coated patches (1 and
2) separated by a distance x2 − x1 and placed within an
infinite channel, Lx → ∞. This configuration does not
have the degeneracy with respect to the sign change of the
fluid velocity. For the both of cases under consideration, we
demonstrate that below certain critical values of the reaction
rates k1σ1 there exists a time independent solution, whereas

the chemical oscillations are possible above the threshold. To
find the domain of the oscillatory regime, we solve a relevant
stability problem.

BASE STATE SOLUTION

The equations (Equations 9–11), permit the existence of a time-
independent base state, which is governed by the following
1D equations:

D∂2xC
A
0 − u∂xC

A
0 − γCA

0 = −
k1σ1δ(x− x1)

1+ (CB
0 /K

B)
n1 +

k2σ2δ(x− x2)

1+ (CA
0 /KA)

−n2
, (12)

D∂2xC
B
0 − u∂xC

B
0 − γCB

0 = −
k2σ2δ(x− x2)

1+ (CA
0 /KA)

−n2
. (13)

The solution of Equations (12) and (13) could be presented in a
compact form in terms of the Green’s function G(x, x0) as

CA
0 (x) =

k1σ1G(x, x1)

1+ (CB
0 (x1)/K

B)
n1 −

k2σ2G(x, x2)

1+ (CA
0 (x2)/K

A)
−n2

, (14)

CB
0 (x) =

k2σ2G(x, x2)

1+ (CA
0 (x2)/K

A)
−n2

. (15)

The Green’s function G(x, x0) is given by the equation

G(x, x0) = eVξ0(x−x0)







c1e
ξ (x−x0) + c2e

−ξ (x−x0), x < x0,

c3e
ξ (x−x0) + c4e

−ξ (x−x0), x0 ≤ x

where c1 =
(

2Dξ (1− e−(ξ+Vξ0)Lx )
)−1

, c2 =
(

2Dξ (e−(ξ−Vξ0)Lx − 1)
)−1

, c3 =
(

2Dξ (e(ξ+Vξ0)Lx − 1)
)−1

,

and c4 =
(

2Dξ (1− e−(ξ−Vξ0)Lx )
)−1

with V = u/ (2Dξ0),

ξ0 = (γ /D)1/2, and ξ = ξ0
(

V2 + 1
)1/2

.
The representative time-independent base-state concentration
profiles CA

0 (x) and CB
0 (x) of the reactants A and B are shown

in Figure 2 with the red and blue lines, respectively. The
production of the reactants A and B appears as spikes in the
profiles of CA

0 and CB
0 around x1 and x2, respectively, where the

enzyme-coated patches are located. Figures 2A–C illustrate the
changes in the chemical concentration profiles in the periodic
system with Lx = 3 mm caused by the fluid velocity that
increases from u = 0 (Figure 2A), to u = 1 (Figure 2B), and
reaches u = 2µms−1 (Figure 2C). Figures 2D–H demonstrate
the changes in the chemical concentrations that occur in
the infinite system, Lx → ∞, as the fluid velocity either
increases in the positive direction (of the x-axis) from u =
0 (Figure 2D), to u = 1 (Figure 2E), and to u =
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FIGURE 2 | Distribution of the base state concentrations CA
0 (x) (red) and CB

0 (x) (blue) along the quasi-1D channel. The peaks in CA
0 (x) and CB

0 (x) occur at the respective

locations of the enzymes 1 and 2. For a periodic system (A–C) of length L = 3mm and the inter-patch distance 1x = 1.5 mm, the concentration profiles are plotted at

the fluid velocities u = (A) 0, (B) 1, and (C) 2µm · s−1. For an infinite system (Lx → ∞), the profiles are shown at (D) u = 0 µm · s−1 and 1x = 2 mm; (E) u = 1 µm · s−1

and 1x = 1.766 mm; (F) u = 1.5 µm · s−1 and 1x = 1.528 mm; (G) u = −1 µm · s−1 and 1x = 1.766 mm; and (H) u = −1.5 µm · s−1 and 1x = 1.528 mm.

1.5µms−1 (Figure 2F), or increases in the negative direction
to u = −1 (Figure 2G) and then to u = −1.5µms−1

(Figure 2H). The positive fluid velocities (Figures 2E,F) are
seen to suppress the spike in the concentration CB

0 at x2,
whereas the negative velocities (Figures 2G,H) promote the
latter. Note that in the infinite system, the concentrations
CA
0 (x) and CB

0 (x) exponentially decay to zero away from the
corresponding enzyme-coated patches located at x1 and x2 (see
Figures 2D–H).

THE LINEAR STABILITY PROBLEM

We study the stability of the base state (Equations 14 and 15), by
introducing small perturbations Cj = cj(x)eωt with a complex
growth rate ω = ωr + iωi, and linearizing Equations (9) and
(10) around the base state. The dynamics of the perturbations is

described by the following equations:

∂2x c
A − u∂xc

A − (γ + ω)cA = −k1σ1F
′
1c

Bδ(x− x1)+
k2σ2F

′
2c

Aδ(x− x2) (16)

∂2x c
B − u∂xc

B − (γ + ω)cB = −k2σ2F
′
2c

Aδ(x− x2) (17)

with the periodic boundary conditions cj(0) = cj(Lx). Here,
i =

√
−1 and the primes in Fα

′, α = 1, 2, denote the derivatives
of Fα with respect to Cj. Equations (16) and (17) are solved
numerically using the shooting method (Stoer and Burlisch,
1980). The boundary value problem has solutions satisfied by
the complex valuesω(1x, Lx, u, γ , kασα ,K

j). The stability curves,
(k1σ1)c(u) vs. 1x, are defined by the condition ωr = 0, and
separate the domain of the time-independent steady bases states
with ωr < 0 from the domain of oscillatory regimes, where
ωr > 0 and ωi 6= 0.
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FIGURE 3 | Domain of chemical oscillations for different velocities of the imposed flow. (A) Stability curves, (k1σ1)c(1x), for the fluid velocities of u = 0 (solid magenta

line), 1 (dashed green line), and 2µm · s−1 (dotted azure line) for a periodic system with the length of L = 4mm. (B) Periods of chemical oscillations as a function of the

distance 1x between the two enzymes-coated patches obtained along the stability curves in (A). (C) Stability curves, (k1σ1)c(1x), for the fluid velocities of u = 0 (solid

magenta line), 1 (dashed green line), and 1.5µm · s−1 (dotted azure line) for an infinite system with Lx → ∞. The respective critical distances between the

enzyme-coated patches are 1x = 2, 1.766, and 1.528mm. (D) Periods of chemical oscillations as a functions of the distance between the two enzymes obtained

along the stability curves in (C).

Results of the linear stability analysis performed for
representative values of the imposed fluid velocities are presented
in the Figure 3 for a finite systemwith Lx = 4mm (Figures 3A,B)
and an infinite system with Lx → ∞ (Figures 3C,D). In
particular, Figure 3A shows the stability curves, (k1σ1)c vs.
1x, calculated for the fluid velocities increasing from u =
0 (solid magenta line) to u = 1 (dashed green line), and
then to u = 2µms−1 (dotted azure line). The shape of the
stability curves demonstrates that the spatial separation 1x =
x2 − x1 between the enzyme-coated patches is a parameter
that controls the existence of the chemical oscillations in the
system. The periods of the critical chemical oscillations T =
2π/|ωi| for the same velocities are shown in Figure 3B. To
illustrate the effect of the imposed fluid flow, we consider a
system with 1x = 2mm. An increase in the fluid velocity
from zero (solid magenta line) to u = 2µms−1 (dotted
azure line) results in a 5-fold decrease in the critical reaction
rate (k1σ1)c required to start the chemical oscillations in the
system with 1x = 2mm (Figure 3A). At the same time,
the corresponding period of oscillation decreases from T(u =
0) ≈ 86min to T(u = 2µms−1) ≈ 56min (Figure 3B).

Note also that the critical distance between the enzyme-coated
patches 1xc, at which the chemical oscillations first appear
at the lowest value of (k1σ1)c, is not affected much by the
velocity variations.

For the infinite system (Lx → ∞), the stability curves
(k1σ1)c(1x) and corresponding plots of the period of the
chemical oscillations are shown in Figures 3C,D for the fluid
velocities increasing from u = 0 (solid magenta line) to u =
1 (dashed green line), and then to u = 1.5µm s−1 (dotted
azure line). For a fixed distance between the enzyme-coated
patches, 1x = 2mm, the increase of the fluid velocity from
u = 0 to 1.5µm s−1 requires more than a 2-fold increase in
the reaction rate in order to surpass the critical value (k1σ1)c
needed to excite the chemical oscillations. In contrast with the
case of finite system, an increase in the velocity for the infinite
system leads to a slight decrease in the critical distance between
the enzyme-coated patches from 1xc = 2mm at u = 0 to
1xc = 1.77mm at u = 1µm s−1, and then to 1xc = 1.56mm
at u = 1.5µm s−1. Therefore, in an infinite system, larger
reaction rates are required to start the chemical oscillations in the
presence of the flow. Simultaneously, the corresponding periods
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of the oscillation decrease substantially as shown in Figure 3D.
In particular, when the fluid velocity increases from u = 0 to
u = 1.5µm s−1, the period of oscillation decreases more than
twice, namely, from T ≈ 86min at 1xc = 2mm (solid magenta
line) to T ≈ 40min at 1xc = 1.56mm (dotted azure line).

The stability analysis reveals that for a fixed reaction rate
k1σ1, the chemical instability can occur only within a limited
range of distances between the enzyme-coated patches 1xmin <

1x < 1xmax. When k1σ1 < (k1σ1)c, the linear stability
analysis indicates that the system is in a stable steady state with
a time-independent distribution of the concentration profiles

C
j
0(x) along the channel (Figure 2). At the supercritical reaction

rate k1σ1 > (k1σ1)c (Figure 4), the linear stability analysis
predicts an instability, at which the concentrations of chemicals
A and B, Cj(x, t), j = A,B, exhibit temporal oscillations with a
frequency |ωi|.

The calculations also reveal that depending on the design
of the system, the imposed fluid flows can substantially reduce
the amount of the enzyme [determined by the critical reaction
rate (k1σ1)c] required to enable the chemical oscillations in the
channel. As well, the flows along the channel can substantially
increase the frequencies |ωi| = 2π/T of the chemical oscillation.
Moreover, there are conditions, such as at the point 1x =
1.5 mm and k1σ1 = 200µmol m−2s−1 shown in Figure 3C,
when the time-independent chemical distributions at zero flow
velocity could be turned into the chemical oscillations by simply
accelerating the flow to a velocity u = 2µm s−1.

The characteristic values of the physical parameters within
the instability regions (see Figures 3A,C), where the chemical
oscillations exist, determine the relevant time scales 1x/u,
1x2/D, and 1xC0/k1σ1 characterizing the rates of advective and
diffusive transport, and the reaction rate, respectively. Ratios
between these time scales indicate the relative importance of
the different mechanisms contributing to the dynamics of the
chemical oscillations. For example, the Peclet number, Pe =
u1x
D , is defined as the ratio of the diffusive to advective time

scales. For a characteristic length scale of 1x = 2 mm, reagent
diffusivity of D ∼ 10−9m2s-1 and fluid velocity of u ∼ 1µms−1,
the resulting value of Pe ∼ 2 indicates that the diffusive and
advective transport mechanisms are of comparable importance
in the system’s behavior. On the other hand, the comparison of
the stability curves shown in Figures 3A,C for velocities u = 0,
1, and 2 µms−1, with the corresponding values Pe = 0, 2, and
4, imply that the imposed fluid flow affects chemical oscillations
(i.e., noticeably reduces the reaction rate and time period) when
the Peclet number is comparable to one.

The relevant diffusive Damkohler number, Dad1 = k1σ11x
DC0

,
is defined as a ratio of the diffusive to reaction time scale,
and can be calculated as (k1σ1)c (from Figure 3) multiplied
by the factor 1x

DC0
∼ 2.106mol−1m2s (where the scale C0 ∼

1 molm−3 is suggested by the base state solutions in Figure 2).
For the given range, 10 < (k1σ1)c < 103 µmol m−2s−1, in
Figure 3, the diffusive Damkohler number varies between the
limits 2 · 10 < Dad1 < 2 · 103. The similarly defined advective

Damkohler number, Daa1 = k1σ1
uC0

, varies in the range 10 <

Daa1 < 103. The diffusive and advective Damkohler numbers,

which are substantially>1, indicate that chemical reactions occur
faster than the diffusive and advective mechanisms can transport
reagents along the channel between the enzyme-coated patches.
This transport-limited scenario for the chemical oscillations
provides conditions where the advective flux can significantly
amplify the diffusive transport.

1D REGIMES WITH SUPERCRITICAL
REACTION RATES

To investigate the system beyond the stability boundaries, we
numerically solve Equations (9) and (10) in a 1D cell −Lx/2 ≤
x ≤ Lx/2, with the periodic boundary conditions (Equation
11). We discretize the spatial domain of length Lx into Nx

nodes, each representing a cube with a side equal to the grid
spacing of dx = 100µm, and apply a second order finite
difference scheme to integrate the reaction-diffusion equations.
Each reaction source term (∝ Fα) was modeled as an element
of size dx. As initial conditions, we use the uniform spatial
distribution of reactants Cj(x, t = 0) = rj, where 0 ≤ rj ≤ 1
is a random number. To match the situations analyzed within the
linear stability theory, we perform computations in the domains
with two different lengths. The simulations in the short domain,
Lx = 4mm, are designed tomatch the stability analysis developed
for the periodically alternating enzyme-coated patches. In these
simulations, the chemical processes within one periodic cell affect
through the boundary conditions the dynamics of the reactants in
the neighboring cells. The simulations in the long domain of Lx =
50 mm ensure the absence of the chemical interactions between
the neighboring cells (because the chemical concentrations decay
exponentially with the distance away from the enzyme-coated
patches) and, therefore, match the prediction of the stability
analysis performed for the case of the infinitely long channel
with Lx → ∞.

The chemical oscillations, which occur at the supercritical

reaction rates k1σ1 > (k1σ1)c in the short domain of Lx =
4mm, are presented in Figure 4. Figure 4A displays the temporal

variations of the concentrations CA(x1, t) (red line) and CB(x2, t)

(blue line) that take place at the locations of the enzyme-
coated patches x1 and x2 for the control parameters u =
1 µs−1 and k1σ1 = 10 µmol m−2s−1. Figure 4B shows
maximal (dashed lines) and minimal (solid lines) values of the
concentrations CA(x, t) and CB(x, t) achieved during the period
of oscillation. Similarly, Figure 4C shows the temporal variations
of the reactant concentrations CA(x1, t) (red line) and CB(x2, t)
(blue line), while Figure 4D shows the maximal (dashed lines)
and minimal (solid lines) values of the concentrations CA(x, t)
and CB(x, t) calculated at the parameters u = 1µm s−1 and
k1σ1 = 98 µmol m−2s−1. Comparison of the oscillation
dynamics presented in Figure 4A for k1σ1 = 10 µmol m−2s−1

and Figure 4C for k1σ1 = 98 µmol m−2s−1 reveals that the
chemical oscillations at higher reaction rates deviate from the
sinusoidal kinetics observed at sufficiently low reaction rates.

To characterize the supercritical regimes of the chemical
oscillations, we define the oscillation amplitude of the reactant A
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FIGURE 4 | Chemical oscillations in a periodic system with Lx = 4mm and 1x = 2 mm at the supercritical reaction rates, µ1 > µc. The concentrations CA(x1, t) (red)

and CB(x2, t) (blue) as functions of time at u = 1µm · s−1, k1σ1 = (A) 10 and (C) 98 µmol ·m−2s−1. Maximal (dashed lines) and minimal (solid lines) values of the

concentrations within one period of the oscillation at u = 1µm · s−1, k1σ1 = (B) 10 and (D) 98µmol ·m−2s−1. (E) Amplitude and (F) period of the chemical oscillations

as functions of the reaction rate k1σ1 for the inter-patch distance 1x = 2 mm at u = 0 (solid magenta lines and squares), 1 (dashed green lines and triangles), and

2µm · s−1 (dotted azure lines and circles).

as AA = max
0≤t≤T

(

CA(x1, t)
)

− min
0≤t≤T

(

CA(x1, t)
)

. The amplitudes

as functions of the reaction rate k1σ1 are plotted in Figure 4E

for the values of fluid velocities increasing from u = 0 (solid
magenta line and squares) to u = 1 (dashed green line and
triangles), and then to u = 2µms−1 (dotted azure lines

and circles). The regimes are supercritical and the amplitudes

grow approximately in proportion to the square root of the

distance from the bifurcation point, AA ∝
(

k1σ1 − (k1σ1)c
)1/2

.

As seen in Figure 4E, the amplitude of oscillations decreases
with an increase in the velocity of the imposed flow. Finally,
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FIGURE 5 | Chemical oscillations in an infinite system with Lx → ∞ at the supercritical reaction rates µ1 > µc. Maximal (dashed lines) and minimal (solid lines)

concentration profiles CA (red) and CB (blue) within one period of oscillations for the set of parameter (1x, k1σ1, u) (A)
(

1.766mm, 117µmol ·m−2s−1, 1µm · s−1
)

; (B)
(

1.528mm, 117µmol ·m−2s−1, 1.5µm · s−1
)

; (C)
(

1.766mm, 117µmol ·m−2s−1,−1µm · s−1
)

; (D)
(

1.528mm, 128µmol ·m−2s−1,−1.5µm · s−1
)

. (E) Amplitudes and

(F) periods of the chemical oscillations as functions of the reaction rate k1σ1 for parameters u = 0 and 1x = 2 mm (dotted magenta line and circles), u = 1µm · s−1

and 1x = 1.766 mm (dashed green line and triangles), u = −1µm · s−1 and 1x = 1.766 mm (dashed brown line and squares), u = 1.5µm · s−1 and 1x = 1.528 mm

(solid azure line and triangles), and u = −1.5µm · s−1 and 1x = 1.528 mm (solid red line and squares).

Figure 4F shows that the period oscillations, T, decreases
with an increase in both the reaction rate k1σ1 and the
fluid velocity. The simulation results projected onto the onset
of chemical oscillations are in a good agreement with the
critical reaction rates (k1σ1)c predicted by the stability analysis
(Figures 3A,B).

The results for the chemical oscillations catalyzed by two
enzyme-coated patches placed in the long simulation domain
of Lx = 50 mm are presented in Figure 5. The periodic
temporal variations of the concentrations CA(x1, t) and CB(x2, t)
are qualitatively similar to those presented in Figures 4A,C.
Figures 5A–D show the maximal (dashed lines) and minimal
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(solid lines) values of the concentration profiles CA (red) and
CB (blues) achieved during one period of oscillation; the control
parameters are indicated in the figure and specified in the
caption. The oscillation amplitudes AA as functions of the
reaction rate k1σ1 are plotted in Figure 5E for the fluid velocity
increasing in the positive direction (of the x-axis) from u = 0
(dotted magenta line and circles) to u = 1µm s−1 (dashed green
line and triangles), and then to u = 1.5µm s−1 (solid azure
line and triangles). Figure 5E shows the amplitudes for the fluid
velocities increasing in the negative direction to u = −1µm s−1

(dashed brown line and squares) and u = −1.5µm s−1 (solid red
line and squares). At most tested parameter sets, the amplitude
of the oscillations decreases with an increase in magnitude of
the fluid velocity. In the case of negative velocity of the imposed
flow u = −1.5µm s−1 (solid red line and squares), however, the
amplitude of the chemical oscillations increase with an increase
in k1σ1 faster than that for the oscillations without fluid flow
(dotted magenta line and circles). Finally, Figure 5F shows the
period of the oscillations, T, which increases with an increase
in the reaction rate k1σ1 and decreases with the increasing fluid
velocities. In particular, at the fluid flows with velocity u =
1.5µm s−1 (solid azure line and triangles) the oscillation period,
T ≈ 46min, decreases almost twice relative to the case without
flow u = 0 (dotted magenta line and circles). The simulations
projected onto the onset of the chemical oscillations confirm the
values of the critical reaction rates (k1σ1)c predicted by the linear
stability analysis and presented in Figures 3C,D.

The non-linear 1D simulations reveal that an increase in the
frequency of the chemical oscillations under increasing velocities
of the imposed flow is in most of the cases accompanied by
a reduction of the oscillation amplitude. We found however
that there are some parameters and system configurations, for
which both the amplitude and frequency of chemical oscillation
exhibit a simultaneous increase as indicated by the red lines in
Figures 5E,F. Therefore, the design of the system and careful
choice of the control parameters, such as the reaction rates
and velocity of the imposed flow, are important for tuning the
frequency of chemical oscillations to either suppress or amplify
the oscillations.

2D CHEMICAL OSCILLATIONS UNDER
POISEUILLE FLOW

To test the relevance of the developed 1D model, we compare its
predictions with the results of simulations of a more realistic two-
dimensional system. We solve Equations (1)–(3) in a periodic
2D unit cell with 0 ≤ x ≤ Lx, 0 ≤ z ≤ H. At the solid
walls (z = 0,H) that bound the 2D channel, we require the
no-slip conditions for the fluid velocities and zero chemical flux
across the parts of the walls free of the enzymes, as described by
Equation (7). The periodic boundary conditions in the x direction
are enforced through the Equation (8). The chemical reactions
are catalyzed by the enzymes 1 and 2, which are immobilized at
the patches of a finite length δx and are introduced through the
boundary conditions given by Equations (4) and (5).

The solution to the Navier-Stokes equation (Equation 2),
with an imposed pressure gradient ∇p = (f , 0, 0) along
the channel and the no-slip boundary conditions (Equation
7), on the walls yields the Poiseuille flow, u = (ux, 0, 0),
with a parabolic velocity profile across the channel, ux =
f
2µ z (H − z). We use an average across the channel fluid velocity,

ua = H2f
12µ , in order to characterize the effects of the flow

on the chemical oscillations, and to compare the obtained
results with those of the 1D model controlled by a constant
velocity, u. For the sake of simplicity, we compare the results
obtained for the 1D and 2D models only for the short periodic
domain, Lx = 4mm.

In the 2D simulations, the results depend on the length of
a patch, δx, in addition to the inter-patch distance 1x and
the geometry of the channel described by Lx and H. These
simulations involve a rectangular domain of size Lx×H, which is
discretized using a grid 80dx × Nzdx with the grid spacing dx =
50µm; the number of nodes in the vertical direction Nz = H/dx
is defined by H. We use the Lattice Boltzmann method to solve
the continuity and Navier-Stokes equations (Equations 1 and 2).
A second order finite difference scheme is applied to solve the
reaction-diffusion equations (Equation 3). Additionally, we use
the patches of equal length δx = 0.2mm, and set the distance
between them to1x = 2 mm. The reaction rates are assigned the
values k1σ1 = 98µmol m-2s-1 and k2σ2 = 3403µmol m-2s-1.

Figure 6 demonstrates the effect of the imposed flow on
the 2D chemical oscillations for channels of different width
H. In particular, Figure 6A displays the parabolic profile ux(z)
of the imposed flow for the channel with H = 0.5mm and
the average velocity ua = 2µm s−1. Figure 6B shows the
temporal variations in the concentrations CA(x1, z, t) (red) and
CB(x2, z, t) (blue) of the reactantsA and B, respectively, calculated
at z = 0.1H for the velocity ua = 2µm s−1. Figures 6C,D
show the 2D distributions of the reactant CA (yellow) along
the channel corresponding to the maximal (Figure 6C) and
minimal (Figure 6D) values achieved within one period of the
oscillation (see Figure 6B). Figures 6E,F present the amplitude
AA and period of the chemical oscillations T as functions of
the channel height H plotted for the three values of averaged
velocity of the imposed flow ua = 1, 1.5, and 2µm s−1

labeled with green triangles, brown squares, and azure circles,
respectively. The amplitudes in Figure 6E are calculated as AA =
max
0≤t≤T

(

CA(x1, z, t)
)

− min
0≤t≤T

(

CA(x1, z, t)
)

for z = 0.1H.

The results presented in Figure 6E indicate that for wider 2D
channels, the oscillation amplitudes AA progressively decrease
toward zero. This happens because the geometry of the 2D
channels departs from the one-dimensional limit and the
discrepancy between 1D and 2D models increases as the channel
thickness H increases. Due to the difference in the geometry of
the channel and enzyme-coated patches, the amplitudes AA of
the 2D oscillations CA(x1, z, t) calculated at the location x =
x1 and z = 0.1H (in the 2D-domain) are significantly lower
than the amplitudes of the 1D oscillations CA(x1, t) calculated
(in the 1D-domain) for the same reaction rates and presented
in Figure 4E. In the agreement with the predictions of the
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FIGURE 6 | Chemical oscillations in a 2D periodic system with Lx = 4mm. (A) Profile of the imposed flow with the averaged velocity ua = 2µm · s−1. (B)

Concentrations CA(x1, z, t) (red) and CB(x2, z, t) (blue) as functions of time at z = 0.1H. The spatial distributions of (C) minimal and (D) maximal concentration CA(x, z, t)

within one period of oscillation at ua = 2µm · s−1 and k1σ1 = 98 µmol ·m-2s-1. Yellow color indicates regions with high concentrations of reagent A. The black arrows

show the direction and relative magnitude of the imposed fluid flow. (E) Amplitude and (F) period of the chemical oscillations as functions of the channel width H at the

averaged fluid velocity of ua = 1 (dashed green line and triangles), 1.5 (solid brown line and squares), and (dotted azure lines and circles).
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one-dimensional model, the two-dimensional model also shows
a reduction in the oscillation amplitude that occurs as the
flow velocity increases. At the same time, the period of the
2D chemical oscillations CA(x1, z, t), shown in the Figure 6F

for the average velocities ua = 1 (green triangles) and
2µm s−1 (azure circles), is comparable with the period of
the 1D oscillations CA(x1, t) presented in Figure 4F for the
comparable fluid velocities u. The oscillation periods within
the two models are slightly different because the distance 1x
between the enzyme-coated patches in 1D and 2D models are
not the same. The period of the 2D-oscillations T, shown in
Figure 6F, increases with an increase in the channel widthH, but
decreases with the increasing flow velocities what is consistent
with the predictions of the 1Dmodel presented in Figure 4F. The
dynamics of the 2D chemical oscillations are also presented in the
Supplementary Video 1.

CONCLUSIONS

We developed a model to analyze the chemical oscillations
produced by enzyme-coated patches in a long, narrow fluidic
channel. In contrast to previous models for non-linear chemical
dynamics (Scott, 1994; Epstein and Pojman, 1998), we introduced
non-linearity into the system through the boundary conditions
on the reaction-diffusion equations. The imposed pressure-
driven flow along this fluidic channel affects the transport of
reagents throughout the fluid and hence, affects the oscillatory
behavior in the system. To analyze the effects of the imposed
flow, we first described the behavior of the system through a
one-dimensional model. The predictions of the 1D model were
compared with the results of simulations for two-dimensional
channels with a finite thickness. The agreement between the
two approaches validates the applicability of the one-dimensional
model in capturing the dynamic behavior within the long,
narrow channel.

Through our analytical model and simulations, we found that
the distance between the enzyme-coated patches dictates the
existence of chemical oscillations within the channel. We also
identified parameters that control the amplitude and frequency
of the chemical oscillations. In particular, we showed that in
millimeter-size channels, imposed flows with velocities on the
order of 1µm s−1 can substantially increase the frequency of the
oscillations and modify the range of parameters for which the
oscillations occur.

The imposed pressure-driven flow can also significantly
reduce the reaction rates needed to produce chemical oscillations
by the enzymatic reactions. The flow alters the chemical
flux j = D∇C + uC, which now includes both diffusive
and advective contributions to the chemical transport.
Additionally, for a range of parameters considered here,
the imposed flow reduces the amplitude of the chemical
oscillation. Moreover, sufficiently fast flows cause the reagents
in the solution to become well-mixed and thereby suppress
the oscillations.

These findings elucidate how an externally applied flow
affects the chemical oscillations produced by coupled chemical
reactions. These results allow us to establish design rules for
regulating the dynamics of coupled reaction-diffusion processes
and can facilitate the development of chemical reaction networks
that act as chemical clocks. Notably, the period of oscillations
in biochemical reaction networks (Novak and Tyson, 2008; Lim
et al., 2013) is typically on the order of hours. Significantly shorter
periods of chemical oscillations can be obtained by combining
the localized enzymatic reactions considered here and imposed
fluid flows, thereby providing faster chemical clocks for a range
of applications.

Finally, we note that instead of utilizing an externally
imposed flow, catalytic reactions that generate density
variations as reactants are converted to products in
fluid-filled chambers can give rise to solutal buoyancy
forces, which propel the motion of the fluid through the
chambers. As we showed in recent modeling studies, these
inherent, chemically-generated flows are also effective
at controlling the chemical oscillations in the system
(Shklyaev et al., 2020).
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