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Abstract

Essential gene prediction helps to find minimal genes indispensable for the survival of any

organism. Machine learning (ML) algorithms have been useful for the prediction of gene

essentiality. However, currently available ML pipelines perform poorly for organisms with

limited experimental data. The objective is the development of a new ML pipeline to help in

the annotation of essential genes of less explored disease-causing organisms for which

minimal experimental data is available. The proposed strategy combines unsupervised fea-

ture selection technique, dimension reduction using the Kamada-Kawai algorithm, and

semi-supervised ML algorithm employing Laplacian Support Vector Machine (LapSVM) for

prediction of essential and non-essential genes from genome-scale metabolic networks

using very limited labeled dataset. A novel scoring technique, Semi-Supervised Model

Selection Score, equivalent to area under the ROC curve (auROC), has been proposed for

the selection of the best model when supervised performance metrics calculation is difficult

due to lack of data. The unsupervised feature selection followed by dimension reduction

helped to observe a distinct circular pattern in the clustering of essential and non-essential

genes. LapSVM then created a curve that dissected this circle for the classification and pre-

diction of essential genes with high accuracy (auROC > 0.85) even with 1% labeled data for

model training. After successful validation of this ML pipeline on both Eukaryotes and Pro-

karyotes that show high accuracy even when the labeled dataset is very limited, this strategy

is used for the prediction of essential genes of organisms with inadequate experimentally

known data, such as Leishmania sp. Using a graph-based semi-supervised machine learn-

ing scheme, a novel integrative approach has been proposed for essential gene prediction

that shows universality in application to both Prokaryotes and Eukaryotes with limited

labeled data. The essential genes predicted using the pipeline provide an important lead for

the prediction of gene essentiality and identification of novel therapeutic targets for antibiotic

and vaccine development against disease-causing parasites.
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1. Introduction

Gene essentiality information of disease-causing organisms that throws light on the minimally

essential genes that are absolutely required for the survival of the organism under any environ-

mental condition has not only been indispensable for the prediction of novel therapeutic tar-

gets for antibiotic and vaccine development but has also contributed towards industrial

bioprocessing, food microbiology, and bioremediation. However, experimental techniques [1–

5] like genetic foot-printing, gene knockouts, RNA interference (RNAi), transposon mutagen-

esis have been employed to perform a genome-wide screen to check for gene essentiality are

expensive, labor-intensive, as well as time-consuming.

As an efficient alternative to these highly complex experimental strategies, researchers now

are employing computational techniques based on homology mapping, constraint-based

modeling strategies, and machine learning strategies [6–8]. The homology-based essential

gene prediction methods rely on the fact that essential genes are less likely to evolve, tend to

remain conserved, and are often shared by distantly related organisms. Essential genes have

been identified by comparative genomic analysis in different bacterial species such as Myco-

plasma [9], Liberibacter [10], Plasmodium falciparum [11], and Brucella spp. [12]. However,

the limitation of this method is that the conserved ortholog genes between different species

form only a small fraction of the entire genome [13]. Also, it has been observed that highly

conserved genes across different species are not always essential, as gene essentiality also

depends on different environmental conditions where the organism resides.

Constraint-based modeling strategies, such as Flux Balance Analysis (FBA), employ

genome-scale reconstructed metabolic networks to predict the metabolic fluxes at steady-state.

This methodology is widely used for predicting essential genes by performing in-silico knock-

out of a gene and estimating its corresponding lethality [14–16]. A limitation of this FBA

method is that only a limited number of environmental conditions can be considered for a cer-

tain biomass equation (or objective function) with respect to gene essentiality.

On the other hand, Machine Learning (ML) strategies comprise various data-driven

approaches that train a model from the inherent patterns of the training data and make a pre-

diction for the unlabeled data. These ML algorithms can be broadly grouped under supervised,

semi-supervised, and unsupervised strategies [17,18]. The supervised strategies such as Deci-

sion Tree, Naïve Bayes, Support Vector Machine (SVM), etc. require sufficient amounts of

labeled data for model training. In contrast, the unsupervised method relies on clustering algo-

rithms (e.g., K-Means Clustering), where no labeled data is required. The semi-supervised ML

algorithms that comprise Generative Models, Self-Training, Transductive SVM, and Laplacian

SVM combine the potential of both supervised and unsupervised ML strategies and can train

the model with a very limited amount of labeled data. At the same time, optimization of the

hyper-parameter is crucial for enhancing the predictive performance of these machine learn-

ing classifiers. Various meta-heuristic techniques, such as Particle Swarm Optimization (PSO)

[19], Genetic Algorithm (GA) [20], Ant Colony Optimization (ACO) [21], Grey Wolf Opti-

mizer (GWO) [22], Ant Lion Optimizer (ALO) [23], etc. have been used for hyper-parameter

tuning.

Based on the availability of labeled data of essential genes, researchers have employed super-

vised machine learning strategies [6–8] as well as deep learning-based strategies to predict

essential genes [24,25]. The key advantage of these strategies lies in the fact that these models

are capable of capturing the inherent patterns of a large array of biologically relevant ‘features’

that are distinctive and reflect the heterogeneous properties of essential genes. Supervised

machine learning classifiers such as logistic regression [26,27], support vector machine [28–

31], random forest [32], decision tree [26], ensemble [26] and probabilistic Bayesian-based
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methods [26,27,33] and instance-based learning methods such as K Nearest neighbor (K-NN)

and Weighted KNN (WKNN) [34] have been used for gene essentiality prediction. Deep

Learning strategies based on multilayer perceptron networks have also been used for essential

gene prediction [24,35]. In these studies, researchers have mostly opted for simpler optimiza-

tion methods for parameter tuning, such as the grid search technique, where the entire param-

eter space is explored in all possible combinations.

These machine learning-based classifiers predict gene essentiality of unannotated genes

based on the pattern of the features of previously annotated genes that have been verified

experimentally and labeled as essential and non-essential. In order to achieve this, researchers

have curated different combinations of features. Most of the machine learning approaches use

calculated features either from coding sequences [36–38] or network (e.g., protein interaction

network, metabolic network) topological features [6,39] or both. Features, such as amino acid

frequency and protein length computed from protein sequence, and codon adaptation index

(CAI), Effective Number of Codons (ENC), Phyletic Retention (PR), GC content computed

from nucleotide sequence are some of the known features of gene essentiality across bacteria

[28,29,40]. Protein interaction networks (PIN) have been used to calculate topological network

features to classify gene essentiality [28,39]. However, these strategies fail for many organisms

that do not hold the idea of the centrality-lethality hypothesis in a PIN [41]. On the other

hand, few studies have used flux-based features derived from metabolic networks to classify

genes [29,30] that have been calculated under a single environmental condition that does not

represent a universal set of features. Detailed reviews of the existing machine learning strate-

gies for gene essentiality prediction have been discussed in different works of literature [6–8].

A major drawback of these existing machine learning algorithms for essential gene predic-

tion is that they require a large amount of these labeled data that helps to train these models

for an accurate prediction of the essentiality of unannotated genes, and show very poor perfor-

mance when the labeled data set is imbalanced or limited. To circumvent these problems, in

our previous study, an integrative machine learning strategy has been developed using a com-

bination of feature selection algorithm, Support Vector Machine- Recursive Feature Elimina-

tion (SVM-RFE) [42] and classifier, Sequential Minimal Optimization (SMO) [43] for gene

essentiality prediction in the metabolism of Escherichia coli, which performed well on imbal-

anced data set with diverse features computed from flux coupled connected sub-network

along with other sequence-based features [40]. Here, the advantages of using the Flux Cou-

pling Analysis (FCA) based feature for the prediction of gene essentiality with high accuracy

and confidence have been reported. FCA analysis help to capture the physiological dependence

of one gene-reaction combination on another, which is coupled to it, under all input

exchanges of a reaction, representing all possible environmental conditions, thereby helping

the classifier to accurately identify the minimally essential genes that are absolutely crucial for

sustaining the metabolic demands of the cell to ensure its survival [40]. However, this tech-

nique was unable to predict gene essentiality when a very small amount of experimentally veri-

fied labeled data are available.

To mitigate the problems inherent in the existing strategies, we propose an integrative

semi-supervised machine learning strategy based on Laplacian SVM [44] for the classification

of genes using gene sequence, protein sequence, network topological, and flux-based features

with very limited labeled data on gene essentiality of metabolic networks for both Prokaryotic

and Eukaryotic organisms. Another objective of this work is the development of a new

machine learning pipeline to help in the annotation of essential genes of less explored organ-

isms, like Leishmania donovani and Leishmania major, the causative organisms for the

neglected tropical disease Leishmaniasis, for which very limited experimental data is available.

By using the available tools and techniques, the prediction of gene essentiality and targeted
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therapy for the disease becomes extremely difficult [45]. In the present work, it is hypothesized

that using these diverse features, like topological network features of both the genome-scale

metabolic reaction network as well as the flux-coupled sub-networks, together with the

sequence-based features simultaneously, that can capture both the properties of genotype and

phenotype and by employing the proposed algorithm, it is possible to predict the essentiality

of uncharacterized genes with high accuracy even in the cases where labeled data is limited.

This is in contrast to other machine learning pipelines for essential gene prediction that relies

on only sequence-based features and has been applied to only Prokaryotes [26,46]. In this

work, the novel features derived from the genome-scale metabolic reaction network, as well as

the flux-coupled sub-networks, contribute towards the better prediction of gene essentiality by

capturing the contribution of a gene in sustaining the metabolic demands of the cell under var-

ied environmental challenges that are indispensable for its survival. A new scoring technique

has also been proposed, called the Semi-Supervised Model Selection Score (SSMSS) that corre-

lates well with Mathews Correlation Coefficient (MCC) [47] and can be used for the selection

of the best model when the calculation of supervised performance metrics like MCC or

auROC is difficult due to lack of experimental data. After the successful validation of this pro-

posed pipeline on twelve organisms, with well-annotated genes essentiality information, using

as low as 1% labeled data on two types of training datasets (i.e., with 80% training and 20%

blind datasets, as well as using the whole dataset for training), the essential genes in Leishmania
have been predicted as well as categorized the reaction-gene pairs in five different groups

based Gene-Protein-Reaction (GPR) association in metabolism. These groups depict the asso-

ciation of the reactions with different combinations of essential and non-essential genes,

which throws light on the probable reaction-gene combination that can be used for targeted

therapy. This study promises to lay the foundation to the prediction of gene essentiality infor-

mation for less explored organisms that will help experimental biologists to identify novel ther-

apeutic targets even when only limited information is available.

2. Methods

The Machine learning strategy developed to predict gene essentiality, as elucidated in Fig 1,

combines feature selection technique based on a space-filling concept, dimension reduction

(DR) using the Kamada-Kawai (KK) algorithm, and classification of genes based on a semi-

supervised machine learning algorithm employing Laplacian Support Vector Machine

(LapSVM). This pipeline combines heterogeneous biological features, such as sequence-based,

as well as network-based features. It classifies genes based on a training dataset of very limited

information of essential genes from experimental data. Twelve organisms comprising of both

Prokaryotes and Eukaryotes (Table 1) with well-annotated genes essentiality information from

the OGEE database [48] have been considered for the validation of this proposed strategy, and

the subsequent prediction of essential genes in Leishmania major and Leishmania donovani
have been performed. The gene essentiality information has only been considered from the

OGEE database as this collates data using text mining as well as manually verified with experi-

mental data, unlike other gene essentiality databases that rely on only text mining.

2.1 Training data and Testing data set preparation and integration of

heterogeneous features

The training datasets for the pipeline of the 12 target organisms were prepared by calculating

mainly two types of features: topological features and sequenced based features. These features

were extracted primarily from the genome-scale reconstructed metabolic networks, the fasta

files containing the coding nucleotide sequences of the genes, and protein sequences of these
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target organisms (Table 1) [62]. From the genome-scale reconstructed metabolic network, the

information of metabolites, reactions, and genes was collated.

The sequence-based features and the topological features of the metabolic reaction network,

and flux-coupled sub-network based were calculated and accumulated for each reaction-gene

combination. These reaction-gene combinations integrate diverse features of the metabolic

adaptation of the organism and give detailed insights into the role of a particular gene in the

metabolic reaction network. This helps in the prediction of the essentiality of the gene in the

target organism with high accuracy. A total of 289 features were computed for each reaction-

gene pair. Brief descriptions of these features are given below, and their abbreviations are

enlisted in S1 Table.

To establish the model consistency and reproducibility of the proposed pipeline, two different

types of data sets for each of the twelve organisms have been used. The first type of data set con-

sists of 80% data points of total data set with limited labeled data that is used for training while

the remaining 20% is used for blind testing to check the model validation. Using this 80% data

points of the whole dataset, different types of training data set are further created with limited

labeled data points in the range, i.e., i % Labeled (L) and (100—i%) Unlabeled (UL) data, where

i = 1, 2, 3, 4, 5, 10, 30, 50, 70 and 90. In each category, labeled samples were chosen randomly

from the master table. It is to be mentioned here that this selection of labeled data was condition-

ally randomized to ensure that both the essential and non-essential genes categories appear with

equal probability. In this way, 100 data sets in each labeled category have been created.

The second type of data set consists of the whole dataset with limited labeled data, which is

used for model training and prediction purposes for each of the twelve organisms. It is to be

Fig 1. The proposed machine learning strategy. The integrated pipeline for prediction of essential genes based on limited labeled

training dataset consisting of reaction-gene pairs with sequence, informatics, and topological network features.

https://doi.org/10.1371/journal.pone.0242943.g001

Table 1. Organisms considered for model training and validation.

Organism Name Abbreviation Input files

FASTA files of coding nucleotide and protein sequence (RefSeq

assembly accession)

Genome-Scale Reconstructed

Metabolic Network

Organisms used for Model Development and Validation of the Proposed Pipeline

Acinetobacter sp. ADP1 ACIAD GCF_000046845.1_ASM4684v1 iAbaylyiv4 [49]

Bacillus subtilis subsp. subtilis str. 168 BACSU GCF_000009045.1_ASM904v1 iYO844 [50]

Escherichia coli K-12 MG1655 ECOLI GCF_000005845.2_ASM584v2 iJO1366 [51]

Helicobacter pylori HELPY GCF_000008525.1_ASM852v1 iIT341 [52]

Mycobacterium tuberculosis H37Rv MYCTU GCF_000195955.2_ASM19595v2 iNJ661 [53]

Pseudomonas aeruginosa PAO1 PSEAE GCF_000006765.1_ASM676v1 iPae1146 [54]

Pseudomonas aeruginosa UCBPP-PA14 PSEAB GCF_000014625.1_ASM1462v1 iPau1129 [54]

Salmonella enterica subsp. enterica serovar
Typhimurium LT2

SALTY GCF_000006945.2_ASM694v2 STM_v1_0 [55]

Staphylococcus aureus subsp. aureus NCTC

8325

STAAB GCF_000013425.1_ASM1342v1 BMID000000141098 [56]

Saccharomyces cerevisiae YEAST GCF_000146045.2_R64 iMM904 [57]

Caenorhabditis elegans CELEG GCF_000002985.6_WBcel235 iCEL1273 [58]

Mus musculus MUSMU GCF_000001635.26_GRCm38.p6 iMM1415 [59]

Organisms used for Case Study

Leishmania donovani LDONO TriTrypDB-36 iMS604 [60]

Leishmania major LMAFR TriTrypDB-36 iAC560 [61]

https://doi.org/10.1371/journal.pone.0242943.t001
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mentioned here that, in less-studied organisms where gene essentiality information is very

less, a blind test cannot be applied. For those cases, the whole data set with limited labeled data

will be used for model training and prediction purposes.

Topological analysis of reaction and flux-coupled sub-network. The metabolic network

of each target organism was transformed into an undirected reaction network (RN), in which

each node denotes an enzyme (reaction), and each edge represents the connection between

two reactions that have common metabolites. The commonly used topological network fea-

tures, such as centrality measures, that highlight the biological significance of an enzyme in a

network were computed [63]. Generally, a central and highly connected enzyme in biological

networks is often essential as it represents an important hub within the network [64]. If this

hub node is blocked, then the whole pathway might be disrupted.

Similarly, Flux coupling analysis (FCA) is an optimization procedure based on flux, which

represents whether the reaction subsets are coupled or not in certain given specific environ-

mental exchange constraints [65,66]. Flux-coupled subgraph was used to extract biologically

relevant topological features dependent on physiological flux relationships.

Eight centrality measures have been computed for both the reaction as well as the flux cou-

pled networks, viz., Degree Centrality, Eigenvalue Centrality, Eccentricity, Hub score, Author-

ity Scores, Page Rank, Betweenness Centrality, and Number of triangles. A detailed

description of all these centrality measures has been discussed in different literature [67–69].

These topological features have been calculated using the “igraph” package in R [70].

Features derived from the coding nucleotide sequence. Three types of features (viz.
nucleotide content, codon usage bias, and information-theoretic features) of the metabolic

genes have been extracted from the nucleotide sequence of the organisms that contribute

towards gene essentiality. A brief description of the features has been discussed below.

Nucleotide content. Previous studies have elucidated that in bacterial genomes, GC con-

tent is correlated with the environmental condition in which the bacterium survives [71].

Hence, the related GC content of the genome of a target organism can be an essential feature

for gene essentiality prediction. Another study showed that there is a significant difference in

the distribution of the frequency of occurrence of A, T, G, and C nucleotides at the 3rd synon-

ymous position of codons between the essential and non-essential genes [40]. These features

were computed using an in-house code.

Codon usage bias. Protein abundance in an organism can be predicted by using Codon

usage [72–74]. Highly expressing abundant proteins in metabolism might have functional

importance and can be essential. Codon usage bias features, like Effective Number of Codons

(ENC) [75] and Codon Adaptation Index (CAI) [73], were calculated using EMBOSS package

version 6.6.0–1 [76].

Mutual Information (MI) and Conditional Mutual Information (CMI). A previous

study has used information-theoretic features such as mutual information (MI) and condi-

tional mutual information (CMI), for essential gene prediction [37]. MI and CMI profile of

coding nucleotide sequence can be used as genomic signatures which represent the phyloge-

netic relationship between genomic sequences [77]. A total of 80 features (16 MI and 64 CMI)

have been computed by using in house Perl script.

Features derived from protein sequence. In order to investigate the dependence of gene

essentiality on protein sequences, various derived and informatic features such as the frequen-

cies of the amino acids, protein length, paralogy score, average Kidera factor, etc. have been

considered in this study.

Frequencies of the twenty amino acids and protein length. Each protein sequence

related to the reaction-gene combination was used to calculate the occurrences of the 20

amino acids that reflect the physicochemical properties of these proteins related to each of the
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reaction-gene combinations under consideration. These twenty features were calculated using

EMBOSS package version 6.6.0–1 [76] and named according to their corresponding 20 amino

acids.

Paralogy based features (paralogy score). The sequence similarity of a gene in its intra-

genome is called a paralogous gene of an organism. Paralogous genes have the same or similar

types of biological functions. An organism may not be affected by the deletion of one of the

paralogous genes because another paralogous gene may compensate for a similar type of func-

tion. So there are fewer chances for paralogous genes to be essential [78].

The paralogy score of a gene was calculated by performing a BLAST [version 2.2.26] search

against the whole set of protein sequences of a target organism with different E-value threshold

ranging from 10−3 to 10−30 with at least 40% identity. Features based on paralogy score were

labeled as P3 (E-value cut off 10−3), P5 (E-value cut off 10−5), P7 (E-value cut off 10−7), P10 (E-

value cut off 10−10), P20 (E-value cut off 10−20), P30 (E-value cut off 10−30). These features

have been calculated using in house Perl script.

Fourier sine and cosine coefficient. The Fourier sine and cosine coefficient of protein

sequences [79] have been used to see if there are any inherent patterns which will help to clas-

sify between essential and non-essential genes. The Fourier coefficient (FC) is the converted

numerical values of protein sequences, which describes the physical properties of correspond-

ing amino acids. These physical properties represent the ten property factors using factor anal-

ysis introduced by Kidera et al. [80]. Mathematical representations of these coefficients are

given below:

FCsinWNk KFn ¼ a½n�k ¼
XN� 1

l¼0

f ½n�l sin
2pkl
N

� �

ðEq 1Þ

FCcosWNk KFn ¼ b½n�k ¼
XN� 1

l¼0

f ½n�l cos
2pkl
N

� �

ðEq 2Þ

Where the length of the protein sequence is N, f ½n�l is nth property factor of amino acid l, and

wavenumber is k (Eqs 1 and 2).

Fourier sine and cosine coefficient in a specific range of Wave Number (WN) and Kidera

Factor (KF) was calculated. The range of WN and KF are 0�k�7 and 1�n�10. It is also

reported that global folding information of the protein is encoded in a specific range of wave-

number 0�k�7 [79]. A total of 150 features were computed. These features have been calcu-

lated using in house Perl script.

Average Kidera factor. The ten Kidera Factors (viz. KF1: Helix/bend preference, KF2:

Side-chain size, KF3: Extended structure preference, KF4: Hydrophobicity, KF5: Double-bend

preference, KF6: Partial specific volume, KF7: Flat extended preference, KF8: Occurrence in

the alpha region, KF9: pK-C, KF10: Surrounding hydrophobicity) were derived by multivariate

analysis on 20 amino acids using 188 physical properties and dimension reduction techniques

[80]. The protein sequence of the corresponding reaction-gene combination was used to calcu-

late ten features (AKFi where, i = 1 to 10) by averaging the ten Kidera factors. These features

have been calculated using in house Perl script.

2.2 Feature selection based on the space-filling concept

The contribution of these 289 features towards gene essentiality is unknown; hence, there may

be a possibility to select redundant features by the feature selection algorithm. These redun-

dant features may affect the training performance of the machine learning model. Hence, it is
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important as well as challenging to choose the non-redundant, unique feature subset for train-

ing the model. Feature selection helps to capture the most relevant biological features and

helps the classifier to learn a better way to predict essential and non-essential genes with high

accuracy. Here the unsupervised feature selection method based on the space-filling concept

has been used [81]. This unsupervised method selects the features based on a coverage measure

that estimates the spatial distribution of the data points in a hypercube and ensures uniform

distribution of points in a regular grid in the data space. The method captures the variability of

features with new and relevant information about the data. This method has been tested on

various datasets and different scenarios with noise injection and data shuffling. The benefits of

using this algorithm are two folds. Firstly, being an unsupervised algorithm, prior information

of the output variable is not required.

Additionally, here no classifier is required for feature selection. Hence time complexity is

less in comparison to other feature selection algorithms, like SVM-RFE. Also, it has been

observed that this method gives better information of relevant features than other unsuper-

vised correlation-based feature selection techniques that, although it can remove the redun-

dant features, cannot eliminate the features with low variability that are non-relevant and non-

informative for classification [82,83].

2.3 Dimension reduction using forced directed graph layout

After feature selection, the data set was transformed into a lower dimension (2-D) using a

dimension reduction technique for visualization. Projected 2-D features set to reserve all the

information the same as higher-dimensional data. This is an important step in the pipeline as

the classifier works better in 2-D than with the higher dimension data. For dimension reduc-

tion, a force-directed graph layout algorithm Kamada-Kawai has been used that considers

each data point as a node in a graph having attractive and repulsive forces between them that

can be modeled as springs connecting the nodes [84]. The algorithm then tries to cluster the

data points by minimizing the total energy of the system based on attracting and repelling

forces between them. Here the input of the Kamada-Kawai algorithm is a graph constructed

by using the K-Nearest Neighbour (K-NN) algorithm. For known organisms, it has been

observed that essential genes are clustered together in one side of an arc in a circle layout, and

non-essential genes are clustered in the rest of the circle. A circular layout of each organism

has been observed from the Kamada Kawai algorithm with a specific parameter (K Nearest

Neighbor) value of the K-NN algorithm. Here it is assumed that if a similar circular layout is

observed for less explored organisms related to gene essentiality, the unlabeled genes will be

clustered together category wise and reside on the arc of the circle. This analysis had been per-

formed using the “dimRed” package in R [85].

Both the feature selection and the dimensionality reduction methods are used for not only

reducing the number of features in a dataset but also to select the important features, which

are contributing significantly. Feature selection is used for selecting the relevant features with-

out changing the original values, whereas, the dimensionality reduction step transforms the

higher dimensional features into a lower dimension. From the dimension reduction technique

it is very difficult to identify the key features which are contributing for classifications, hence

the feature selection step is necessary.

To test the efficiency of this dimension reduction technique combined with unsupervised

feature selection and LapSVM classifier, the performance metrics of Kamada-Kawai has been

compared against other dimension reduction techniques, such as Principal Component Analy-

sis (PCA) [86], Metric Dimensional Scaling (MDS) [87], Fruchterman Reingold [88] and Fas-

tICA [89] using the gold standard dataset of twelve organisms. To test the statistical
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significance of the results, the one-tailed Mann Whitney U Test has been performed with 1%

level of significance (P<0.01).

2.4 Semi-supervised classifier: Laplacian SVM

Essential gene classification using the machine learning technique can be a difficult task when

a minimal amount of gene essentiality information for the target organism is available. In this

setting, semi-supervised learning is an appropriate approach that builds a trained model from

labeled and unlabeled samples [90]. Most of these semi-supervised algorithms follow two com-

mon assumptions, i.e., cluster assumption and manifold assumption. Cluster assumption states

that data points in the same cluster have a chance of having the same class label. Manifold

assumption means that close data points along the manifold area follow similar data structures

or similar class labels. However, cluster assumption follows the global feature, and manifold

assumption follows the local features in the model.

Laplacian support vector machine (LapSVM) is a graph-based semi-supervised learning

method, which is based on a manifold regularization framework [44]. The graph is constructed

from labeled and unlabeled data as the node. The similarity between data points in a graph can

be assigned by edge weight, which is calculated from the K-NN algorithm. In this way, the

information of labeled data points can be passed to another node, and then, the unlabeled

nodes can be labeled. The input data set being circular (non-linear), Radial Basis Function

(RBF) kernel with the classifier LapSVM have been used. This analysis had been performed

using the “RSSL” package in R [91].

2.5 The score for best model selection

There are various performance metrics, e.g., True Positive Rate (TPR), False Positive Rate

(FPR), precision, recall, F-measure, Matthews correlation coefficient (MCC), Area under the

receiver operating characteristic curve (auROC), etc. to evaluate the trained model in super-

vised machine learning technique. These measures are statistically significant if sufficient

labeled data are available. However, due to limited labeled data, these metrics will not work for

best model selection in a semi-supervised type algorithm. To circumvent the above problem, a

new measure has been proposed, called the Semi-Supervised Model Selection Score (SSMSS),

for selecting the best model. This SSMSS score is dependent on four different measurements

(Eq 3). For this, the training data set, having limited labeled reference, has been labeled as

ground truth (GT) reference. Another reference set called the pseudo reference (PR) has been

considered by calculating the distance from unlabeled data points to the labeled dataset. The

dataset containing the predicted labels by the Laplacian SVM classifier has been labeled as the

Laplacian Reference (LR). Thereafter, Silhouette Index (SI) [92] was computed to check the

clustering grouping quality. The CorrectPredictionGT_LR measure was calculated based on the

matches between the predictions of the Laplacian SVM classifier with the Ground Truth data.

Here, the calculation of the MCC with the help of Pseudo-reference and Laplacian Reference

was represented as MCCPR_LR. Silhouette Index calculation based on Pseudo Reference and

Laplacian Reference was denoted by SIPR and SILR respectively. Based on these parameters, the

values of the proposed Semi-Supervised Model Selection Score (SSMSS) may vary from 0 to 1.

If any of the above four measurements is low, then the SSMSS value will be drastically

decreased. The best model will be selected from 64 models which has the highest SSMSS value

for each data set in different parameters combinations, i.e., kernel parameter [Radial Basis

Function (RBF) kernel parameter sigma (σ)] and LapSVM parameters [lambda (λ): L2 regulari-

zation parameter and gamma (γ): the weight of the unlabeled data]. It may be mentioned here

that the score will not consider those models which have negative Silhouette Index and MCC
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value. The parameters (σ,λ,γ) have been varied with four different values, i.e., 0.01,0.1,1,10.

Therefore, by tuning these model parameters using grid search, 64 models for each data set

have been generated. The following equation has been proposed for the calculation of the

SSMSS.

SSMSSk¼1 to 64 ¼ minfCorrectPredictionk
GT LR;MCCk

PR LR; SI
k
PR; SI

k
LRg ðEq 3Þ

8MCCk
PR LR � 0; SIkPR � 0; SIk

LR
� 0:

SSMSSbest ¼ maxfSSMSSk¼1; SSMSSk¼2; . . . . . . . . . ; SSMSSk¼64g;

where k is the kth model with a particular parametric combination and SSMSSbest is the best

score of the best model among these 64 models.

2.6 Time complexity of the proposed strategy

The proposed pipeline has three components (i.e., Unsupervised Feature Selection, Kamada

Kawai Dimension Reduction Technique, and LapSVM semi-supervised classifiers), which

work sequentially. To calculate the total time complexity T(n,d) of the proposed strategy, the

cumulative effect of all three components have been considered, where n denotes the number

of data points (reaction-gene pair) that depends on the size of the metabolic network of the

organism, and d is the total number of features.

The time required for each of the three components can be represented as follows

[44,81,84]:

Time required for Unsupervised Feature Selection algorithm¼
dðdþ1Þn2

2
Time required for

Kamada Kawai algorithm = n3

Time Required for LapSVM = n3

Therefore, the total time required T(n,d) can be represented as:

;Tðn; dÞ ¼
dðd þ 1Þn2

2
þ n3 þ n3

or; Tðn; dÞ � 4n3 þ n2ðd2 þ dÞ

or; Tðn; dÞ � ð4þ d þ d2Þn3

or; Tðn; dÞ � Cd2n3

or; Tðn; dÞ ¼ Οðd2n3Þ

Where, C is a constant, in particular, C�6 8d; n 2 ℕ.

Therefore, the total time complexity of the proposed strategy is O(d2n3).

2.7 Gene essentiality prediction, experimental validation, and pathway

enrichment

The essential gene prediction results for the twelve model organisms have been compared with

experimental data obtained from the OGEE database, and the corresponding supervised per-

formance metrics such as TPR, FPR, MCC, auROC, etc. were calculated. Further, the predicted

essentiality information of the reaction-gene pairs of all twelve organisms has been categorized

into five different groups based on their involvement in different reactions. These five groups

are following: CEN (Combination of Essential and Non-essential), involving both essential

and non-essential genes controlling a reaction; ME (Multiple Essential), multiple essential

genes involved in a reaction; MN (Multiple Non-essential), multiple non-essential genes
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governed a reaction; SE (Single Essential), single essential genes involved in a reaction; SN

(Single Non-essential), single non-essential genes involved in a reaction. Thereafter, the distri-

butions of the five categories of reaction-gene pairs from the predicted results have been com-

pared with the distribution observed in experimental data for all the organisms using the Chi-

Square Test (1% level of significance).

For Leishmania donovani and Leishmania major, the best model was selected based on the

SSMSS score for the prediction of the essential reaction-gene combinations. These predicted

reaction gene combinations were then classified into the five categories, like the other twelve

species. The list of unique genes that were extracted from this predicted essential reaction-

gene pairs was analyzed for their associated Gene Ontology (GO) terms [93,94] from the Uni-

prot database [95]. The percentages of genes associated with each GO term were calculated for

both the organisms. Additionally, using the DAVID pathways enrichment tool [96], the essen-

tial genes were further analyzed to identify the significantly enriched KEGG pathways [97]

that were associated with these essential genes.

Source codes of the entire machine learning strategy and pipeline are given in S1 Text,

which consists, Training data set preparation and integration of heterogeneous features, Fea-

ture selection based on the space-filling concept, Dimension reduction using forced directed

graph layout, and Semi-supervised classifier: LapSVM.

3. Results

3.1. Model validation with experimental data

The integrative proposed strategy (Fig 1) was applied and validated on twelve organisms

(Table 1) with well-annotated genes essentiality information from experimental data obtained

from the OGEE database [48].

3.2. Features frequently selected by the feature selection algorithm

The important features chosen by the feature selection algorithm have been represented in the

heat map (See methods section for a detailed description of features and S1 Fig), where X-axis

represents the name of the 82 features that have been selected at least once by the features

selection algorithm and Y-axis corresponds to names of the organism. Red cell color indicates

features selected by the feature selection algorithm in the corresponding organism. White-col-

ored cell shows the feature that is not selected or is redundant. Among 289 features, three fea-

tures, viz., Reaction Network betweenness centrality (RN_betweenness), Reaction Network

Page Rank centrality (RN_page_rank), and Flux Coupled Analysis Network Page Rank cen-

trality (FCA_page_rank) are selected by the features selection algorithm for every organism.

These frequently selected features are topological network features. Apart from these features,

Information-theoretic features (Fourier sine or cosine coefficient, Mutual Information, Condi-

tional Mutual Information) from nucleotide and peptide sequences are also selected. If a node

is important in the reaction network and flux-coupled network, then there is a chance that the

enzyme or protein which controls that particular reaction and its corresponding coding

sequence is also essential.

3.3. Dimension reduction

After applying feature selection, the Kamada-Kawai dimension reduction technique [84] is

used for visualization purposes. Here, a circular layout of each organism is observed. While the

essential gene-reaction combinations are clustered together in one side of the arc in a 2-D cir-

cular layout, the non-essential reaction-gene combinations are clustered in the rest of the
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circle. Now on applying Laplacian SVM, the classifier was able to easily classify gene essential-

ity based on their transformed 2-D feature and the limited label information. Now in different

parameter combinations of Laplacian SVM, different trained models are obtained. To select

the best model among trained models, the proposed SSMSS score has been used.

3.4. Robustness of the proposed score (SSMSS)

To check the robustness of the SSMSS score, the proposed strategy has been applied on both

types of training data set (i.e., data set with 80–20% combination of samples and with the

whole data set) for these twelve organisms. Using this 80% data points of the whole dataset, dif-

ferent types of training data set is further created with limited labeled data points in the range,

i.e., i % Labeled (L) and (100—i%) Unlabeled (UL) data, where i = 1, 2, 3, 4, 5, 10, 30, 50, 70

and 90. In each category, labeled samples were chosen randomly from the master table. It is to

be mentioned here that this selection of labeled data was conditionally randomized to ensure

that both the essential and non-essential genes categories appear with equal probability. In this

way, 100 data sets in each labeled category have been created. For the testing purpose, both the

whole training data set and the 20% blind data set have been used for prediction. The parame-

ters (σ,λ,γ) were tuned with four different values i.e. 0.01,0.1,1,10. Therefore, by tuning these

model parameters using grid search generated 64 models for each data set have been created.

After that, the prediction results were compared with the known gene essentiality information,

which is publicly available from the experiment. Six supervised performance metrics have

been calculated for the predicted class label with the known class label. After that, the associa-

tion between the proposed score and auROC was assessed. To verify the linear relationship

between auROC and the proposed score (SSMSS), the Pearson correlation coefficient has been

calculated, and scatter plots were generated in different limited labeled data sets in each target

organism (S2 Fig).

From the scatter plot (S2 Fig), it has been observed that in all the cases, Pearson correlation

>0.75. Hence, it may be inferred that due to the linear relationship existing between auROC

and the proposed score (SSMSS), the applicability of this scoring technique is asserted and can

be used for the calculation of the performance measurement matrix and best model selection

for the semi-supervised based classifier.

3.5. Predictive performance of the best models in the different labeled

category on training and blind test data set

In a real-life scenario, only limited gene essentiality information is available for the less

explored organisms. However, model building from this limited label data and determining

how the highest score will select the best model is difficult. Hence, to test the model perfor-

mance on known organisms by creating limited labeled datasets (i.e., by varying the limited

labeled data from 1% to 90% from the 80% training dataset), six supervised performance met-

rics have been calculated for each category under different parameter combinations of σ,λ,γ
(See Section 2.5: The score for best model selection) for a detailed description of these parame-

ters). Here, within each labeled category, the average behavior of the predictive performance

(six supervised performance metrics) and the Score (SSMSS) of the best 100 trained models

are plotted in Fig 2. This has been shown for two different conditions, training data set (80% of

the whole data) and blind testing data set (20% of the whole data). As observed from the low

standard deviations for each metrics (under each category), it is worth to mention that the

accuracy for the training and testing are very similar in most of the cases.

From these plots, it has been observed that the model selection based on the SSMSS score in

each category corresponds to a high auROC value of greater than 0.8 in all cases across all
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Fig 2. Comparison of the predictive performance of the best models in the different labeled category. The average performance of the best 100

models at training and blind testing for six supervised metrics (i.e., TPR, FPR, F-measure, MCC, auROC, accuracy) and SSMSS for each labeled type.

The X-axis represents the category of labeled data, the Y-axis represents the value of performance metrics.

https://doi.org/10.1371/journal.pone.0242943.g002
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organisms. Also, it is observed that if the label increases, then model performance will also

show higher accuracy. However, it is seen that the auROC score remains consistently high,

using 1% labeled data or more, which establishes the fact that the proposed method can predict

using a minimum of 1% labeled data. It has also been observed that this method is giving a

consistent better predictive performance on both Prokaryotic and Eukaryotic organisms for

both the data sets (80% training and 20% blind testing) and follow similar patterns for six

supervised performance metrics in differently labeled categories. As the predictive perfor-

mance of 20%, the blind data set is similar to training performance, so further, it can be con-

cluded that model overfitting and underfitting is not arising in this case.

To compare the predictive performance of the proposed method, 1% labeled data set has

been considered for each of the twelve organisms. For training, different supervised classifiers

have been used, such as Random Forest [98], Naive Bayes [99], Logistic regression [100], J48

(C.45) Decision Tree [101] as well as our own previously reported Supervised essential gene

prediction pipeline [40] on the whole dataset for testing (S3 Fig). In all of the cases, it is found

that the proposed method performed better than all other methods using only 1% labeled data

of the whole training dataset.

3.6. Effect of feature selection and dimension reduction in model

performance

To compare the effect of feature selection and dimension reduction steps along with the

LapSVM classifier, seven different types of classification scenarios, based on different dimen-

sion reduction technique such as PCA, MDS, FR, ICA, and KK, were simulated on training

data set (80% data points) and blind testing (20% data points) data sets of twelve organisms.

The corresponding performance was calculated on the blind test data set (Fig 3). Each training

data set has only 1% labeled data, and the rest of them Unlabeled.

The seven scenarios were created with LapSVM classifier and combinations of features

selection and dimension reduction techniques:

Scenario 1 (S1): Without feature selection and Without dimension reduction technique

[WOFS +WODR]

Scenario 2 (S2): Without feature selection and With dimension reduction technique (Principal

Component Analysis) [WOFS + DR (PCA)]

Scenario 3 (S3): Without feature selection and With dimension reduction technique (Metric

Dimensional Scaling) [WOFS + DR (MDS)]

Scenario 4 (S4): Without feature selection and With dimension reduction technique (Fruchter-

man Reingold) [WOFS + DR (FR)]

Scenario 5 (S5): Without feature selection and With dimension reduction technique (Indepen-

dent Component Analysis) [WOFS + DR (ICA)]

Scenario 6 (S6): Without feature selection and With dimension reduction technique (Kamada

Kawai) [WOFS + DR (KK)]

Scenario 7 (S7): With feature selection (Unsupervised Feature Selection) and With dimension

reduction technique (Kamada Kawai) [WFS (UFS) + DR (KK)]

From this analysis, it has been observed that for scenarios 1 to 5, the auROC value is very

low, which signifies that dimension reduction techniques, e.g., PCA, MDS, FR, ICA, cannot

significantly improve the gene essentiality prediction (Fig 3). On the other hand, for scenarios
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Fig 3. Effect of feature selection and dimension reduction on model performance. Comparison of the effect of different dimension reduction

techniques PCA, MDS, FR, ICA, and KK (S2—S6) with S1 (Without Feature Selection and Without Dimension Reduction) and S7 (With Feature

Selection and With Dimension Reduction-KK) when combined with LapSVM classifier. Plot represents the auROC value of 100 best models with 1%

labeled data across all organisms.

https://doi.org/10.1371/journal.pone.0242943.g003
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6 and 7, it is observed that on applying the Kamada-Kawai method of dimension reduction

along with unsupervised feature selection, the model performance (auROC) improves drasti-

cally in each target organism. On comparing the efficacy of Kamada-Kawai (KK) with the

other dimension reduction methods using the one-tailed Mann-Whitney U Test, a significant

improvement in auROC values (P<0.01) for all the twelve organisms was observed (S2 Table).

Scenario 6 highlights the importance of this dimension reduction step, where it is found that

even without feature selection, the dimension reduction step [S6: WOFS + DR (KK)] has a

huge impact on the results (P<0.01) [S3 Table]. However, the feature selection step helped us

in identifying the minimal set of features that contribute towards gene essentiality prediction

with greater accuracy in all organisms (lower P-values obtained in Scenario 7 with [S7: WFS

+ DR (KK)]) (S3 Table). Hence, it is observed that the Kamada-Kawai dimension reduction

technique, when combined with LapSVM, gives significantly better performance for all twelve

organisms even when only 1% labeled data is used (Fig 3).

3.7. Predictive performance using whole training data set

In model organisms where gene essentiality information is sufficiently available at the

genome-scale, blind testing can be applied. However, in less explored organisms where gene

essentiality information is very less, a blind test cannot be applied as the reference size is very

small. For these cases, the whole data set with limited labeled data can be used for model train-

ing and prediction purposes.

To establish the predictive performance of the proposed strategy on the whole training data

set, 1% labeled data were selected randomly, and the remaining 99% data points were consid-

ered unlabeled for the twelve organisms, where the information of gene essentiality in

genome-scale was available from the experiments. Now, this whole data set was trained by the

proposed strategy. The best model was selected based on the highest score (SSMSS). The same

data set is used for prediction from the best-trained model. The outcome of the proposed strat-

egy can be visualized as three circles (Fig 4). The first circle represents the circular projection

of the whole data set in 2-D after applying the Kamada Kawai dimension reduction technique

with gene essentiality information from the experiment. The second circle shows the training

data set with 1% labeled & 99% Unlabeled data and learning curve of the Laplacian model. The

third circle shows the predicted gene essentiality label from the best-trained model. From Fig

4, it is observed that the proposed model also performed well (as similar circular patterns from

experiment and predicted) on the whole training data set.

The predictive performance on both the data sets (80% and the Whole data set) has been

compared by six supervised performance metrics (i.e., TPR, FPR, F-measure, MCC, auROC,

and accuracy) based on actual and predicted labels from the proposed strategy. Here it has

been observed that the average predictive performance of the 100 trained model with 80% data

set is similar to the performance on the whole data set (S4 Fig).

3.8. Categorization of reaction-gene pairs

Categorization of the predicted essentiality information of reaction gene pairs into the five cat-

egories, viz. CEN, ME, MN, SE, and SN show that the distribution of reaction of the predicted

results matches exactly with the distribution observed with the experimental data for each of

the twelve organisms (Fig 5). Also, the Chi-square test was performed with a Null Hypothesis

(H0) that the two distributions of reaction (experimental vs. predicted) are similar for all twelve

organisms. Here, it has been observed that the P-values of the Chi-square test (P-values are

indicated in S4 Table) are greater than 0.01 in all the 12 organisms. As P-values are large, it can

be concluded that the experimental distributions of reaction are not significantly different
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from the predicted distributions. This pattern has been fairly consistent over all the organisms,

where it is found that the highest fraction of reactions is regulated by single non-essential (red)

or multiple non-essential genes (blue). On the other hand, fractions of reaction governed by a

single essential gene are low due to a small number of minimally essential genes in all organ-

isms. From this plot (Fig 5), it is also observed that the fractions of reactions governed by mul-

tiple essential genes are extremely low in each of the twelve organisms. These comprise the

small set of reactions that are absolutely crucial for the survival of the organisms.

3.9. Case Study: Leishmania donovani and Leishmania major
The proposed strategy has been implemented for less explored organisms like Leishmania
donovani (11 genes have genes essentiality information [102]) and Leishmania major (10 genes

have genes essentiality information [102]) using the semi-supervised machine learning strat-

egy. Here it is observed that the network centrality features and information-theoretic features,

such as the Fourier cosine coefficient derived from the Kidera factor, have been selected by the

feature selection algorithm in both the cases of L. donovani and L.major. Additionally, certain

unique features were also selected for each of the two organisms (S1 Fig). When the Kamada-

Kawai dimension reduction technique was applied on Leishmania data sets, a similar circular

pattern was observed, like the other twelve organisms that helped the classifier in predicting

gene essentiality (Fig 6A).

For the essential gene prediction, in the case of Leishmania donovani, 80 reaction-gene

pairs were predicted as essential among 1129 reaction-gene pairs. For Leishmania major, 335

reaction-gene pairs were predicted as essential among 1188 reaction-gene pairs. The categori-

zation of these reaction-gene pairs displayed a pattern similar to the distributions of reaction

observed in the twelve model organisms (Fig 6B). Predicted gene essentiality information

from the proposed pipeline is listed in (S5 and S6 Tables). The list of essential genes extracted

from these reaction gene pairs consists of 44 essential genes of L.donovani and 194 of L.major.
These essential genes were associated with 53 and 219 Gene Ontology (Molecular Function)

terms for L. donovani and L.major, respectively (S7 and S8 Tables). The Gene Ontology term

that occurred most frequently with these essential genes were related to ATP binding in both

the organisms. The pathway enrichment of these essential genes shows 11 significantly

enriched KEGG pathways for L. donovani and 20 L. major. Although 8 KEGG pathways were

found to be common among the two species, certain unique pathways specific to each species

were also enriched for each of the two organisms (S9 and S10 Tables). Further experimental

validation on these predicted results would confirm the role of these genes in these less-studied

organisms.

4. Discussion

Essential gene prediction helps to unveil the complexities and survival strategies of many dis-

ease-causing organisms. The prediction of gene essentiality is a challenging task in machine

learning due to the unavailability of sufficient experimentally labeled data and a proper metric

for selection of the best model. Considering this limited gene essentiality information, the pro-

posed pipeline has been able to predict gene essentiality at genome-scale using as small as a set

of 1% labeled genes having gene essentiality information using both 80%-20% (training-blind

Fig 4. Visualization of the outcome of the proposed strategy. Essential, non-essential, and Unlabeled reaction gene pairs are colored

accordingly Red, Green, and Gray. The learning curve for the best-trained model by LapSVM is colored with blue. The left circle represents

the original data set with labeled data points. The middle circle shows the training data set with the learning curve, and the Right circle

represents the prediction labeled with the learning curve.

https://doi.org/10.1371/journal.pone.0242943.g004
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testing) dataset as well as the whole dataset for training and testing (Figs 2 and 4). This pro-

posed pipeline consists of three key steps. First, the unsupervised feature selection algorithm

Fig 5. Comparison of the distributions of reaction. The reactions have been classified into five categories and the predicted

distributions of reaction-gene pairs have been compared with the experimental data across all twelve organisms.

https://doi.org/10.1371/journal.pone.0242943.g005
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has been used to select the relevant feature set from 289 feature set consisting of different het-

erogeneous biological features such as sequence-based features, and topological features

derived from metabolic reaction network, and flux-coupled sub-network which help to distin-

guish between essential and non-essential reaction gene combinations. Here, it is observed

that for every organism, the features selection algorithm selected three phenotypic features

that have shown high correlation with gene essentiality, viz., Reaction Network betweenness

centrality (RN_betweenness), Reaction Network Page Rank centrality (RN_page_rank), and

Flux Coupled Analysis Network Page Rank centrality (FCA_page_rank). Apart from these,

novel features considered in this study, such as Information-theoretic features (Fourier sine

coefficient and Fourier cosine coefficient derived from Kidera factor), were also correlated

with gene essentiality prediction in most of the organisms. A distinguishing pattern between

essential and non-essential genes for the selected features was captured by the feature selection

algorithm, which helped the classifier to predict gene essentiality more accurately. Secondly,

data set after feature selection was projected into a 2-D circular layout using the dimension

reduction step Kamada-Kawai. This step is essential to project the high dimensional data into

Fig 6. Gene essentiality prediction in L. donovani and L. major. (a) Kamada—Kawai dimension reduction on Leishmania
datasets showed a circular pattern as observed for other organisms and the learning curve by LapSVM; (b) Distribution of reaction-

gene pairs of Leishmania species into five categories.

https://doi.org/10.1371/journal.pone.0242943.g006
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a 2-D plane, which helps the classifier LapSVM to perform significantly better for all the

organisms (P<0.01) (S2 Table). The results show that this dimension reduction step is capable

of improving the prediction accuracy even without feature selection (Fig 3, S3 Table). How-

ever, we have also retained the feature selection step in our pipeline to identify the important

features that are contributing to gene essentiality classification. After applying Kamada-Kawai,

a distinct structured pattern was observed, showing the essential reaction-gene combinations

clustered together and the non-essential reaction-gene combination in another cluster, each

residing on the arc of a 2-D circular layout for each of the twelve known organisms (Fig 4).

This clustered pattern of reaction-gene pairs helped the semi-supervised classifier (Laplacian

SVM) build a non-linear curve that dissects this circle into essential and non-essential classes

with significantly higher accuracy. The novelty of the proposed strategy lies in the integration

of the Kamada-Kawai algorithm with the semi-supervised LapSVM classifier that contributes

to the high accuracy obtained using the pipeline. This is evident from S2 Table, where a signifi-

cantly higher model performance of the Kamada-Kawai step was observed over the other

widely used dimension reduction techniques. Further, it has been observed that the LapSVM

classifier, when combined with the Kamada-Kawai step, contributes to the higher predictive

performance of this pipeline as compared to the other supervised machine learning techniques

when only 1% labeled data is available (S3 Fig).

Thereafter, the SSMSS score was used to select the best model. Here it was observed that the

selected model based on this scoring technique had a corresponding high auROC value when

compared with the experimentally known labels (S2 Fig). This indicated the reliability of the

proposed SSMSS score, which, although show high variation for less number of labeled data, is

useful as an alternative score when the calculation of supervised metrics is difficult for best

model selection.

After the successful validation of this strategy on twelve organisms, the methodology was

used to annotate gene essentiality in less-studied organisms like Leishmania donovani and

Leishmania major, for which less or no organism-specific machine learning studies are avail-

able. Here, it was observed that 80 reaction-gene pairs were predicted to be essential in Leish-
mania donovani. These reactions involved 44 genes that were mostly associated with ATP

binding [GO:0005524], oxidoreductase activity [GO:0016491], and AMP deaminase activity

[GO:0003876] GO terms. Similarly, in the case of Leishmania major, 335 reaction-gene pairs

were predicted as essential that involve 194 genes. Here it is observed that in addition to the

ATP binding and metal-ion binding activities [GO:0005524], some genes that were predicted

to be essential were also associated with amino acid transmembrane transporter activity

[GO:0015171], magnesium ion binding [GO:0000287], and protein serine/threonine kinase

activity [GO:0004674] GO terms that were not observed in the L. donovani. On the other

hand, in the case of L. donovani, the genes involved in flavin adenine dinucleotide binding

[GO:0050660] and AMP deaminase activity [GO:0003876] were predicted as essential, which

is not observed in L. major.
The KEGG pathway enrichment study performed on the essential gene sets of the two

organisms–L. donovani and L. major throw light on the pathways that are crucial for the sur-

vival of these micro-organisms and can be considered as probable therapeutic targets. Here, it

is observed that apart from the pathways involved in Purine metabolism, Pyrimidine metabo-

lism, Pyruvate metabolism, etc., that were common to both the organisms, a set of unique

pathways were also enriched in each of L.major and L.donovani. While in the case of L.major,
the pathways involved in Glycolysis/Gluconeogenesis, Glycine, serine and threonine metabo-

lism, Citrate cycle (TCA cycle), Pyruvate metabolism, and Inositol phosphate metabolism

were significantly enriched (P< 0.001), the essential genes of L. donovani show a higher

enrichment for Sphingolipid metabolism and Steroid biosynthesis pathways. Further, the
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predicted essential reaction-gene combinations were categorized into five different groups

(i.e., CEN, ME, MN, SE, and SN) that help to identify the individual reactions that are regu-

lated by single or multiple essential genes. It may be mentioned here that a common pattern in

these categories of distributions was observed across all the twelve organisms that corroborate

well with the experimental observations (Fig 5). The Chi-Square Test performed to verify the

difference in the experimental and predicted distributions showed no significant difference

(S4 Table). A similar pattern was also predicted for L. donovani and L.major that further ascer-

tains the validity of the predictions (Fig 6b). These results indicate the strength of the model in

identifying true essential genes using a small amount labeled data, a selection of biologically

relevant features to represent gene essentiality, and optimal parameters for curve formation to

classify essential genes. The limitation of the proposed strategy is that, it requires the genome-

scale reconstructed metabolic network, and at least 1% genes of this network should be anno-

tated experimentally with gene essentiality information.

Using a graph-based semi-supervised machine learning scheme and combining different

well-established methods in ML problems, a novel integrative approach has been proposed for

essential gene prediction that shows universality in application to both prokaryotes and

eukaryotes with limited labeled data. The run time of the pipeline is dependent on the size of

the metabolic network (n), and the number of features (d) considered and can be represented

as T(n,d) = O(n3d2). In the case of L.major and L donovani, the total runtime was 41 minutes

and 48 minutes, respectively, when simulated on a workstation of Intel(R) Xeon(R) CPU E5-

2620 v4 @ 2.10GHz with 32GB RAM. This strategy will provide experimental biologists a well

standardized and validated methodology to predict gene essentiality of less-studied organisms

as well as will cater to the theoretical scientists with a novel approach for binary classification

problems when limited labeled data is available. The essential genes predicted using the pipe-

line provide important leads for the identification of novel therapeutic targets for antibiotic

and vaccine development against disease-causing parasites, such as Leishmania sp.

Supporting information

S1 Fig. Heatmap plot of selected features by the feature selection algorithm. Red cells indi-

cate features selected by the feature selection algorithm in the corresponding organism. White

cells show the feature that is not selected or is redundant.

(TIF)

S2 Fig. Robustness evaluation of the proposed score (SSMSS). Scatter plots is demonstrating

an association between auROC and SSMSS in each labeled category data sets in different

model parameters conditions for twelve organisms. The X-axis represents the score (SSMSS),

and Y-axis represents the corresponding auROC. To represent each category, ten different col-

ors are used.

(TIF)

S3 Fig. Comparison of the predictive performance of the proposed strategy with other

supervised methods. Comparison of the performance of proposed strategy (PS) with super-

vised classifiers [i.e., Decision Tree (DT), Logistic regression (LR), Naive Bayes (NB), Random

Forest (RF) and our own previously reported Supervised essential gene prediction pipeline]

based on 1% labeled data on twelve organisms. The X-axis represents the different types of per-

formance metrics for machine learning strategies, the Y-axis represents the value of perfor-

mance metrics. Six different color codes were used to represent six different performance

metrics.

(TIF)
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S4 Fig. Comparison of the predictive performance on both types of data sets (80% and

whole data set). Average predictive performance of the best 100 models on 80% training data

set and performance of whole training data set containing the Limited Labeled (L = 1%) and

remaining Unlabeled (UL) data for six supervised metrics (i.e., TPR, FPR, F-measure, MCC,

auROC, accuracy) and SSMSS for each labeled type. The X-axis represents the different perfor-

mance metrics, the Y-axis represents the value of performance metrics.

(TIF)

S1 Table. List of curated 289 features. List of curated 289 features for essential gene predic-

tion.

(DOCX)

S2 Table. Comparison of auROC of Kamada-Kawai (KK) dimension reduction technique

with PCA, MDS, FR and ICA. The values reported in the table represent the P-values

obtained using the one-tailed Mann-Whitney U Test.

(DOCX)

S3 Table. Comparison of the effect of feature selection and Kamada-Kawai (KK) dimen-

sion reduction technique on the model performance (auROC). The values reported in the

table represent the P-values obtained using the one-tailed Mann-Whitney U Test.

(DOCX)

S4 Table. Comparison of percentage distribution of reaction into five categories from

experiment vs predicted results. The values reported in the table represent the P-values

obtained using the Chi-square test.

(DOCX)

S5 Table. Gene essentiality information of reaction gene combinations in Leishmania
donovani predicted using the proposed pipeline.

(DOCX)

S6 Table Gene essentiality information of reaction gene combinations in Leishmania

major predicted using the proposed pipeline.

(DOCX)

S7 Table. Gene Ontology (Molecular Function) terms of the predicted essential genes in

Leishmania donovani.
(DOCX)

S8 Table. Gene Ontology (Molecular Function) terms of the predicted essential genes in

Leishmania major.
(DOCX)

S9 Table. KEGG pathway enrichment of the predicted essential genes in Leishmania dono-
vani.
(DOCX)

S10 Table. KEGG pathway enrichment of the predicted essential genes in Leishmania
major.
(DOCX)

S1 Text. Source code of proposed machine learning strategy. This supplementary text con-

tains source code for the proposed machine learning strategy, including codes for (a) Training

data set preparation and integration of heterogeneous features; (b) Feature selection based on
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the space-filling concept; (c) Dimension reduction using forced directed graph layout; (d)

Semi-supervised classifier LapSVM.

(DOCX)
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