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Abstract: Despite the extensive research on nanocomposites, a fundamental theory on the interface
region is still difficult to achieve. In the present paper, we chose epoxy resin and nano-SiO2, nano-SiC,
nano-ZnO to prepare three kinds of nanocomposites. The dispersion characteristics at the terahertz
range and dielectric permittivity at 1 Hz of epoxy resin-based nanocomposites were investigated.
The reduction of the permittivity of nanocomposites at a slight filler concentration was absent at
the terahertz range. The measurement results at 1 Hz show that the interaction between nano-SiO2,
nano-SiC particles and epoxy resin was strong with the modification of the silane coupling agent.
However, the modification of nano-ZnO particles was invalid. The Lorentz harmonic oscillator model
was employed to fit the dispersion characteristics. The relevance between the damping constant
and the dielectric permittivity at low frequency was established, indicating that the increase in the
damping coefficient results from the restriction of the molecular chain motion by the interfacial region.
The present results in this paper reveal a bright prospect of terahertz time-domain spectroscopy in
establishing the theory of nanocomposite dielectric.

Keywords: epoxy resin; nanocomposites; terahertz time-domain spectroscopy; Lorentz oscillator
model; dispersion characteristics

1. Introduction

Since the concept of “nanodielectrics” was first introduced in 1994 by Lewis, it has
attracted much attention due to its superior properties and excellent prospect in the
electric industry [1–3]. Various enhanced properties of nanocomposites, such as elec-
tric strength, mechanical strength, space charge accumulation, and so on, were reported by
researchers [4–7]. Nowadays, it has been generally accepted that most of the superior prop-
erties can be attributed to the interface region [8,9]. Although several models were proposed
to interpret the superior properties [2,10–12], it is still difficult to accomplish a fundamental
understanding of the interaction between nanoparticles and poly matrices [8,13].

With the addition of a nano-filler, the molecular motion of polymer is suppressed
by the interface region, resulting in the relaxation processes at different frequency ranges
exhibiting different changes with the electric field [14]. However, the relationship between
the dielectric properties and the microstructure has not been established [9]. According to
the proposed models, the thickness of the interface region is estimated to be about tens to
hundreds of nanometers, depending on filler type, filler size, and the interaction between
the nano-filler and the polymer matrix [11]. Due to the characteristic frequency of this space
scale being located in the high-frequency region, the dispersion characteristics at the high-
frequency region may provide a glimpse of the change in microstructure. The terahertz
spectrum includes phonon vibration, small molecule rotation, hydrogen bond stretching
torsion, and chemical bond low-frequency vibration, which cannot be characterized by
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a broadband dielectric spectrum at low frequency [15]. Significant progress has been
achieved in investigating the molecular dynamics of polymers in the terahertz band [16–20].
The coherent detection mode of the terahertz time-domain spectroscopy (THz-TDS) makes
it convenient to obtain the dispersion characteristics of testing materials at the terahertz
range [21–25]. The investigation of the dispersion characteristics of nanocomposites is
beneficial to the exploiting of fundamental theory in nanocomposites [26–30].

Among the polymer matrices that constitute nanocomposites, epoxy resin is one
of the most popular materials for insulating systems [31,32]. It is widely used in dry-
type transformers, generator stators, bushing, cable termination, and so on [33,34]. The
epoxy resin-based nanocomposites, which were expected to be the next generation of
dielectric materials, have attracted much attention in recent years [35]. In this paper, we
employed epoxy resin as a polymer matrix and three kinds of nano-fillers to constitute
nanocomposites. The THz-TDS was employed to study the dispersion characteristics of
epoxy resin-based nanocomposites. The dielectric constant at low frequency (1 Hz in this
paper) was obtained too. The correlation of dispersion characteristics at the terahertz range
and dielectric constant at low frequency was discussed.

2. Materials and Methods
2.1. Fabrication of Epoxy Resin Nanocomposites

In the present study, we chose bisphenol-A epoxy resin (E51) and methyl tetrahydroph-
thalic anhydride hardener as matrix and curing agent, respectively. The curing agent was
used at 80 phr. DMP30 was chosen as the accelerant which was used at 1 phr. Three kinds of
epoxy/nanocomposites were prepared with the addition of nano-SiO2 particles, nano-SiC
particles and nano-ZnO particles with average diameter of 40 nm. These nanomaterials
in this paper are commercial nanomaterials (Hangzhou Wanjing New Material Co., LTD,
Hangzhou, China). The silane coupling agent (KH550) was used to ensure the dispersity of
nanoparticles in epoxy resin matrix.

The fabrication process of epoxy resin nanocomposites was shown in Figure 1. During
the fabrication process, we employed a shearing instrument IKA-T25 with a maximum
speed of r/min (Shanghai Yikong Electromechanical Co., LTD, Shanghai, China) and an
ultrasonic device KQ-100KDE (Kunshan Ultrasonic Instrument Co., LTD, Kunshan, China),
which operates at a frequency of 40 kHz and a power of 99 W. The KH-550 and cyclohexane
were mixed by ultrasonic dispersion. Then the nanoparticles were added to the mixture
(solution 1). Both high-speed shearing and ultrasonic dispersion were applied on solution
1 to avoid the agglomeration of nanoparticles. After the mixture of epoxy resin, high-speed
shearing was employed again. Then, the curing agent and the accelerant DMP30 were
added to the mixture. The obtained mixture was stirring at in vacuum for 1 h at 60 ◦C.
Then, to accomplish the curing process, the mixture was poured into the mold and placed
into the oven at 85 ◦C for 2 h, 105 ◦C for 2 h, and 120 ◦C for 10 h, respectively. When
the samples were cooled, the polishing, cleaning, and drying were carried out before the
measurements. The arrangement of nanocomposites samples was listed in Table 1. It is
generally accepted that the amount of nano-filler is lower than 10%. Therefore, we chose
five kinds of filler content to constitute nanocomposites in the present paper, as listed in
Table 1. The thickness of each sample was kept at about 1 mm.

Table 1. Arrangement of nanocomposite samples.

Sample Component Filler content

EP/SiO2 Epoxy resin + 40 nm SiO2 0%,1%,3%,5%,7%,10%
EP/SiC Epoxy resin + 40 nm SiC 0%,1%,3%,5%,7%,10%

EP/ZnO Epoxy resin + 40 nm ZnO 0%,1%,3%,5%,7%,10%
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Figure 1. Sample preparation process of nanocomposites.

2.2. Terahertz Time-Domain Spectroscopy System

A CIP-TDS terahertz time-domain spectroscopy system (DaHeng Technology Co.,
LTD, Beijing, China) of was employed to investigate the dispersion characteristics of
nanocomposites at terahertz range. The terahertz time-domain spectroscopy system was
shown in Figure 2. In the present paper, the experiments were carried out in transmission
mode. As shown in Figure 2, it is mainly composed of femtosecond laser, terahertz radiation
generation device, terahertz detection system, time delay control system and various lenses.
In the present CIP-TDS systems, the femtosecond laser was emitted by a model-locked
Ti:sapphire laser. The pulse width, wavelength and repetition rate of the laser were 80 fs,
800 nm and 80 MHz, respectively. The laser was split into two beams: one for pump
of terahertz emission and the other for the detection of terahertz radiation [36]. In this
study, the low temperature-grown GaAs photoconductive antennas and ZnTe crystal were
employed for the emitter and detector of terahertz radiation, respectively. The system
achieves a peak dynamic range of 60 dB and a bandwidth of 3.5 THz. In order to avoid the
strong absorption effect of water vapor on terahertz waves, dry nitrogen was continuously
introduced into the cavity to keep the relative humidity below 3% [37]. After obtaining the
time-domain spectrum of the sample, the frequency domain spectrum was obtained by
fast Fourier transform, and the dielectric constant and dielectric loss were calculated by
using the refractive index and extinction coefficient in the transmission function [22]. Each
sample was tested three times and the average value was taken as the final result.

Figure 2. The CIP-TDS system employed in present paper.

In addition, in order to have a comparison with the dielectric properties at low fre-
quency, we employed a Novocontrol broadband dielectric spectrometer to measure the
dielectric constant at 1 Hz.
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2.3. Methods

In the THz-TDS measurements, the reference signals and the sample signals in time-
domain were measured, respectively. Then the fast Fourier transform was performed to
obtain the Eref (υ) and Es(υ) in frequency domain [37]. The transmission function of sample
for terahertz wave can be expressed as follows:

H(υ) =
Es(υ)

Ere f (υ)
= ρ(υ)e−i∆φ(υ) (1)

As described in the literature, we can acquire the refractive index and extinction
coefficient of sample by the following equations [38,39]:

ns(υ) = 1 +
cϕ(υ)

υd
(2)

κs(υ) =

{
ln

[
4ns(υ)

(ns(υ) + 1)2

]
− ln ρ(υ)

}
c

υd
(3)

where c is the speed of light in vacuum and d is the thickness of the sample. According
to the generalized Maxwell relation between the complex permittivity and the complex
refractive index, the real and imaginary parts of the permittivity are obtained:

ε′(υ) = [ns(υ)]
2 − [κs(υ)]

2 (4)

ε′′(υ) = 2ns(υ)κs(υ) (5)

The dispersion characteristics of epoxy resin nanocomposites in the terahertz range
can be well described by the Lorentz oscillator model [40,41]:

ε∗(υ) = ε∞ +
Ω2(

υ2
0 − υ2

)
−iγυ

(6)

where ε∞ is the dielectric constant in the infinite frequency, Ω, υ0 and γ are respectively the
oscillator strength, the resonance frequency and the damping constant of the resonant mode.

3. Results

Figure 3a shows the measured signals of EP/SiO2 nanocomposites in the time do-
main. Compared with the reference signal, the signals changed markedly because of the
interaction between the terahertz radiation and the samples. Moreover, the waveforms
nanocomposites reach a maximum later than that of the epoxy resin. The corresponding
amplitude spectra in the frequency range are given in Figure 3b. With the filler content
increasing, the amplitude of the nanocomposites decreased slightly.

Figure 3. THz time-domain spectra and amplitude spectra of the reference and the EP/SiO2 nanocom-
posites: (a) Terahertz waves of reference and EP/SiO2 samples in time domain; (b) The corresponding
spectra in frequency domain.



Polymers 2022, 14, 827 5 of 12

According to the above formulas in Section 2.3, we can acquire the dielectric permit-
tivity of the EP/SiO2 nanocomposites. Figure 4 exhibits the frequency dependence of the
real and imaginary part dielectric function of the EP/SiO2 nanocomposites. As shown
in Figure 4a, the dielectric permittivity of all samples decreases monotonically with an
increasing frequency. In addition, at a certain frequency, the ε′ of EP/SiO2 nanocomposites
gets higher when increasing the filler content. The imaginary part of the dielectric function
is illustrated in Figure 4b. The results indicate that the ε” of EP/SiO2 nanocomposites has
no evident changes when filler content is lower than 3%. When the filler content is higher
than 5%, the ε” of nanocomposites becomes larger than the EP.

Figure 4. Frequency dependence of real and imaginary part of dielectric function of EP/SiO2

nanocomposites: (a) Real part; (b) Imaginary part.

The same measurements were carried out on the EP/SiC nanocomposite. Figure 5
exhibits the waveforms of the reference and the EP/SiC nanocomposites in the time domain
and the corresponding spectra in the frequency domain. Similarly, a distinct change can
be observed in Figure 5a. The time delay of the maximum in the signals of the EP/SiC
nanocomposites is bigger than that of the EP/SiO2 nanocomposites, which may result from
a higher dielectric constant. Accordingly, the amplitude spectra show a monotonically
decreasing relationship with respect to the filler content.

Figure 5. THz time-domain spectra and amplitude spectra of the reference and the EP/SiC nanocom-
posites: (a) Terahertz waves of reference and EP/SiC samples in time domain; (b) The corresponding
spectra in frequency domain.

Figure 6 illustrates the calculated dielectric permittivity of the EP/SiC nanocomposites.
Figure 6a shows the frequency dependence of the real part of dielectric function in the
0.2–2.8 THz range. No peak was observed on the curves of the dielectric function. It is
apparent that the ε′ of all the EP/SiC samples decreases monotonously with the increase
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in frequency. However, with the filler content increasing, the increase in the EP/SiC
nanocomposites is more significant than that of the EP/SiO2 nanocomposites. As shown in
Figure 6b, the ε” of the tEP/SiC nanocomposites increases with the increasing filler content,
which is different from the situation in the EP/SiO2 nanocomposites.

Figure 6. Frequency dependence of real and imaginary part of dielectric function of EP/SiC nanocom-
posites: (a) Real part; (b) Imaginary part.

Figure 7 shows the THz time-domain waveforms and amplitude spectra of the refer-
ence and the EP/ZnO nanocomposites. The curves in Figure 7a exhibit similar characteris-
tics compared to the results of the EP/SiO2 nanocomposites. Likewise, there is no peak
appearing in the corresponding amplitude spectra, as demonstrated in Figure 7b.

Figure 7. THz time-domain spectra and amplitude spectra of the reference and the EP/ZnO nanocom-
posites: (a) Terahertz waves of reference and EP/ZnO samples in time domain; (b) The corresponding
spectra in frequency domain.

Similar to the two types of nanocomposites above, we can obtain the frequency depen-
dence of the real and imaginary part of the dielectric function of the EP/ZnO nanocom-
posites, as shown in Figure 8. As demonstrated in Figure 8a, the addition of the nano-ZnO
fillers makes a similar difference to the dielectric permittivity of the EP compared to the
nano-SiO2 fillers. Nevertheless, the imaginary part of the dielectric permittivity of the
EP/ZnO nanocomposites, as shown in Figure 8b, differs from that of both the EP/SiO2
and the EP/SiC nanocomposites. The curves shown in Figure 8b overlap each other. It is
difficult to tell them apart. These results imply that the three types of nano-fillers employed
in this study have different effects on the dispersion characteristics of the epoxy resin.
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Figure 8. Frequency dependence of real and imaginary part of dielectric function of EP/ZnO
nanocomposites: (a) Real part; (b) Imaginary part.

4. Discussion

In this paper, we fitted the dielectric function of the EP nanocomposites by the Lorentz
oscillator model with one vibrational mode, as given in Equation (6). For simplicity,
we only exhibit the fitting curves of the EP-SiO2-1 and the EP-SiO2-7 in this paper. As
shown in Figure 9, the dielectric function of the EP/SiO2 nanocomposites can be well
reproduced by the Lorentz oscillator model. For test results of both the EP-SiO2-1 and
the EP-SiO2-7 samples, a confidence coefficient higher than 0.99 is acquired. The excellent
agreement between the experimental data and fitting curves indicates that the dispersion
characteristics of nanocomposites based on the epoxy resin in the 0.1–2.5 THz are dominated
by the resonant process. The dielectric functions of the EP/SiO2, EP/SiC, and EP/ZnO
nanocomposites were fitted with the same process. The obtained fitting parameters are
summarized in Table 2. For all fitting processes, the confidence coefficient is larger than 0.98.

Figure 9. Fits based on Lorentz resonant mode: (a) Dielectric permittivity of the EP-SiO2-1 sample
and the fitting curve with a confidence coefficient of 0.991; (b) Dielectric permittivity of the EP-SiO2-7
sample and the fitting curve with a confidence coefficient of 0.993.

In order to have a more intuitive understanding of the effect of nanoparticles on
dispersion characteristics, we draw the dielectric permittivity of nanocomposites with
respect to filler content at an infinite frequency (ε∞ in Table 2) and at 1 THz in Figure 10.
As shown in Figure 10a, the dielectric permittivity at an infinite frequency increases with
the introduction of nanofillers. At an infinite frequency, the effective medium theory is
suitable to estimate the dielectric response of the composites. Therefore, the increase ε∞
of nanocomposites can be attributed to the fact that the nanofillers have higher dielectric
permittivity than the epoxy resin matrix. The dielectric constant at a low frequency of SiO2,
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ZnO and SiC employed in this paper is 3.9, 4.5, and 9.8, respectively. Consequently, at the
same filler content, the EP/SiC sample owns the highest dielectric permittivity and the
EP/SiO2 owns the lowest.

Table 2. Lorentz fitting parameters for the dielectric functions of nanocomposites.

Composites ε∞ ω0/2π (THz) Ω/2π (THz) γ (THz)

EP 2.448 1.732 1.41 2.67
EP/SiO2-1 2.475 1.828 1.85 2.81
EP/SiO2-3 2.477 1.774 1.79 3.13
EP/SiO2-5 2.489 1.721 1.42 2.96
EP/SiO2-7 2.497 1.692 1.26 2.52

EP/SiO2-10 2.508 1.671 1.09 2.14
EP/SiC-1 2.517 1.829 2.17 3.45
EP/SiC-3 2.596 1.796 2.09 3.27
EP/SiC-5 2.736 1.744 1.55 2.51
EP/SiC-7 2.847 1.742 1.34 2.34

EP/SiC-10 2.949 1.689 1.21 2.23
EP/ZnO-1 2.462 1.772 1.24 2.46
EP/ZnO-3 2.503 1.771 1.16 2.45
EP/ZnO-5 2.549 1.783 1.04 2.26
EP/ZnO-7 2.568 1.787 0.63 1.21
EP/ZnO-10 2.586 1.792 0.35 1.18

Figure 10b shows the dielectric permittivity of nanocomposites at 1 THz. Likewise, the
ε′ increases with the increasing filler content. The experimental phenomenon that dielectric
permittivity at low frequencies decreases with the introduction of nanofillers were not
observed. We reported similar results in a previous study [26]. In addition, the vibration
and rotation of molecular groups are unable to keep up with the electromagnetic field,
resulting in the dielectric permittivity at infinite frequency being slightly lower than that at
1 THz.

Figure 10. The dielectric permittivity for three types of nanocomposites with respect to filler content:
(a) At infinite frequency; (b) At 1 THz.

The absence of the feature that dielectric permittivity of nanocomposites decreases
after introducing nanofillers leads us to wonder whether there is a nano-structure formed
between the nanofillers and the epoxy resin matrix in the composites studied in the present
paper. We measured the dielectric permittivity at 1 Hz for the three types of nanocomposites,
as shown in Figure 11. The results indicate that the dielectric permittivity of EP/SiO2 and
EP/SiC decreases firstly and then it increases with the increasing filler content. The ε′ of
the EP/SiC achieves the minimum value at a filler content of 1%, while ε′ of the EP/SiO2
achieves the minimum at 3%. However, the dielectric permittivity at 1 Hz of the EP/ZnO in
the present study increases monotonously with the increasing filler content. In general, the
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reduction of dielectric permittivity was attributed to the suppression of molecular motion
by the addition of nanofillers.

Figure 11. The dielectric permittivity at 1 Hz for three types of nanocomposites with respect to filler
content.

According to our previous work [26], the dielectric permittivity of the epoxy resin
at the 10−1 to 103 Hz frequency range is dominated by the α–process, which is affected
significantly by the interface region. The stronger the interaction between the nanofillers
and epoxy resin is, the more effective the suppression of molecular motion works. Therefore,
we can speculate that the interaction strength of the interface region in each nanocomposite
is different. The surface of the nano-SiO2 and the nano-SiC were modified successfully,
leading to the strong interaction between the polymer matrix and these nanoparticles.
However, the modification of the silane coupling agent used in this study is invalid for
nano-ZnO particles, resulting in the fact that the alignment layer did not appear in EP/ZnO
nanocomposites.

Due to that the γ representing the damping constant of the resonant mode, which
can characterize the strength of molecular motion, we draw the fitted damping constant
(as listed in Table 2) of the nanocomposites with respect to the filler content in Figure 12.
As shown in Figure 12, the damping coefficients of EP/SiO2 and EP/SiC increase firstly
and then decrease with the increase in filler content, which exhibits a converse trend with
the dielectric constant at 1 Hz. When the filler content is greater than 7%, the γ of the
nanocomposite is lower than that of the unfilled epoxy resin. This result indicates that the
agglomeration of nanoparticles occurred in the nanocomposites with high filler content.
Moreover, the γ of EP/SiO2 and EP/SiC reach their maximum at the filler content of 3% and
1%, respectively, which is identical with the filler content that they achieve their minimum
permittivity.

As for EP/ZnO, the damping coefficient decreases monotonously with increasing filler
content. This result implies that the introduction of nano-ZnO in the present study loosens
the molecular motion of the epoxy resin matrix. Consequently, no decline appeared in
the ε′ of the EP/ZnO composites, as shown in Figure 11. The progressive increase with
increasing filler content is mainly caused by the introduction of the ZnO particle, which
owns a higher dielectric permittivity than the epoxy resin matrix and the loose structure
resulting from the agglomeration of nanoparticles.

Moreover, the results in Figure 12 indicate that the silane coupling agent KH550
improves the good adhesion between nano-SiO2 particles, nano-SiC particles, and the
epoxy matrix, resulting in the motions of polymer main chains being restrained significantly.
However, the improvement is absent in the EP/ZnO nanocomposites. Due to the strong
relevance between the dielectric permittivity at 1 Hz and the damping constant, we can
deduce that the damping constant of dispersion characteristics at the terahertz range can
effectively describe the strength of molecular motion which contributes greatly to the
dielectric permittivity at low frequencies. The bigger the damping constant is, the stronger
the interaction between the nanofillers and the polymer matrix is. Hence, the study of
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dispersion characteristics at the terahertz range may provide valuable information for the
fundamental understanding of interface regions in nanocomposites.

Figure 12. The damping constant for three types of nanocomposites versus filler content.

5. Conclusions

In this paper, we prepared three kinds of nanocomposites with different filler con-
tents based on epoxy resin. The dispersion characteristics at the terahertz range of the
nanocomposites were investigated with THz-TDS. We can draw the following conclusions:

(1) The addition of nano-SiO2 and nano-SiC have an obvious influence on the dispersion
characteristics of the epoxy resin, while the addition of nano-ZnO does not make any
difference. The employment of the silane coupling agent KH550 did not establish a
strong interaction between the nano-ZnO particles and the epoxy resin matrix.

(2) The permittivity of the nanocomposites at 1 THz increases monotonously with the
increase in nanoparticle content. Whereas the permittivity of the nanocomposites
at 1 Hz shows different variation rules. The molecular motion of epoxy resin was
suppressed by the addition of nano-SiO2 and nano-SiC with slight filler content.

(3) The dielectric function of nanocomposites at the terahertz range can be well repro-
duced by the Lorentz oscillator model. The fitted damping coefficient of nanocompos-
ites with respect to filler content shows a converse trend to which the permittivity at
1 Hz varies with filler content.

(4) A strong relevance between the dielectric permittivity at low frequency and the
damping constant was discovered in the present paper. These results show that
THz-TDS is very promising in the study of the interface region and the fundamental
understanding of nanocomposites.
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