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Abstract: Calcium signaling plays important roles in physiological and pathological conditions, in-
cluding cutaneous melanoma, the most lethal type of skin cancer. Intracellular calcium concentration
([Ca2+]i), cell membrane calcium channels, calcium related proteins (S100 family, E-cadherin, and
calpain), and Wnt/Ca2+ pathways are related to melanogenesis and melanoma tumorigenesis and
progression. Calcium signaling influences the melanoma microenvironment, including immune
cells, extracellular matrix (ECM), the vascular network, and chemical and physical surroundings.
Other ionic channels, such as sodium and potassium channels, are engaged in calcium-mediated
pathways in melanoma. Calcium signaling serves as a promising pharmacological target in melanoma
treatment, and its dysregulation might serve as a marker for melanoma prediction. We documented
calcium-dependent endoplasmic reticulum (ER) stress and mitochondria dysfunction, by targeting
calcium channels and influencing [Ca2+]i and calcium homeostasis, and attenuated drug resistance in
melanoma management.

Keywords: calcium; melanoma; progression; melanoma microenvironment; mitochondria

1. Introduction

Cutaneous melanoma, one of the most malignant skin cancers, emerges from pig-
mented melanocytes. Although melanoma accounts for <2% of malignant skin tumors, it is
the most aggressive form of skin cancer [1]. Calcium is a messenger molecule that plays sev-
eral important roles in different physiological and pathological functions in cells, including
melanoma cells. Calcium channels are widely expressed on several biological membranes,
such as the mitochondrial, endoplasmic reticulum (ER), and plasma membranes. These
channels regulate calcium flux and concentration under normal physiological conditions.

The calcium entry channels can be divided into (but are not limited to) receptor-
operated calcium channels (ROCCs), voltage-dependent calcium channels (VDCCs), and
store-operated calcium entry (SOCE) on the plasma membrane [2]. Glutamate receptor-
mediated calcium channels, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), N-methyl-D-aspartate receptor (NMDAR), and metabotropic glutamate re-
ceptors (mGluRs), are ROCCs and have been widely studied in nerve cells [3]. However,
their roles have been described in other cell types, including melanoma. It has been docu-
mented that blocking the NMDA receptor inhibits melanoma proliferation [4]. Furthermore,
mGluR1 and mGluR5 expression is related to melanoma development [5,6]. VDCCs are
located on the plasma membrane and are activated by electrical potential changes across
the membrane. VDCCs can be classified into T-, L-, N-, R-, and P-/Q-subtypes, the ex-
pression of which varies among different cell types. Melanoma and melanocytes express
high voltage-activated Ca(v)1 (L-types) and Ca(v)2 channels (N, P/Q, or R-types), while
low voltage-activated Ca(v)3 channels (T-type) only exist in melanoma [7]. The deple-
tion of Ca2+ is detected by the ER membrane protein STIM, which activates SOCE on
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the plasma membrane (Orai channels) and transient receptor potential calcium channels,
including transient receptor potential melastatin (TRPM), transient receptor potential vanil-
loid (TRPV), and transient receptor potential canonical (TRPC), to allow Ca2+ influx [8,9].
Calcium efflux is supported by Ca2+-ATPase pump and sodium calcium exchanger (NCX);
the latter is not only in the plasma membrane but in the mitochondria and ER membrane.

The ER is one of the largest membrane-bound cellular calcium storage organelles.
The ER transmembrane ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor
(IP3R) channels mediate calcium release from the ER into the cytosol. Sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) facilitates calcium pumping from the cytosol into the ER
in an ATPase-dependent manner [10].

Mitochondria also play an important role in calcium homeostasis. Voltage-dependent
anion channels (VDACs) located in the outer mitochondrial membrane increase the Ca2+

uptake into the intermembrane space [11]. Mitochondrial calcium uniporter (MCU) com-
plex, which contains the major protein MCU and regulatory subunits MICU1/2, EMRE,
and MCUb, is the major mediator of mitochondrial Ca2+ uptake on the mitochondrial inner
membrane [12]. High matrix concentrations of Ca2+ with reactive oxygen species (ROS) in
the mitochondria trigger mitochondrial permeability transition pore (mPTP) opening and
release the Ca2+ into the cytoplasm [13]. (Figure 1).
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2. Calcium Signaling in Melanogenesis and Melanoma Tumorigenesis
2.1. Calcium Signaling in Melanogenesis

Calcium signaling plays a pivotal role in melanogenesis, which has effects on melanoma
tumorigenesis and therapeutic outcomes [15]. Pigmentation can be regulated by membrane
voltage changes mediated by modulating calcium channels with increased cytosolic Ca2+

influx. Cytosolic Ca2+ transports into melanosomes to increase tyrosinase activity, trigger
melanin transfer, or regulate organelle interaction by activating PKCβ [16]. For example,
repression of TRPM1 expression results in reduced intracellular Ca2+ and decreased uptake
of extracellular Ca2+, accompanied by attenuated activity of the melanogenic enzyme
tyrosinase and melanin pigment [17]. Sun et al. found that the stimulation of melanogen-
esis by synaptotagmin-4 is mediated by regulating Ca2+ influx through TRPM1 [18]. In
addition, the release of internal Ca2+ stores through the Orai/STIM pathway increases
tyrosinase activity and melanin content; this is triggered by solar ultraviolet radiation-
induced endothelin-1 release [19]. Two-pore channel (TPC) located on the lysosomes, late
endosomes, and melanosomes was reported to increase the risk of developing skin cancer
by decreasing the melanin production and regulating melanosome maturation modulated
by mTOR [16,20].

2.2. Calcium Signaling in Melanoma Tumorigenesis

Melanoma tumorigenesis is a process whereby a benign melanocyte transforms into
a primary melanoma in which the calcium influx across multiple cellular compartments
is a key controller of the process [21]. Aside from the role in melanogenesis, calcium-
related pathways are involved in the tumorigenesis of melanoma. IP3-mediated Ca2+

release from intracellular stores activates non-phosphorylated PKC isoforms which act
as tumor promoters and are linked to carcinogenesis; some isoforms especially, PKC α

and β, represent a malignant phenotype in melanoma [22,23]. PAR1 signaling accelerates
calcium mobilization. The downstream pathways of PAR1 signaling, such as the activation
of MAPKs, are involved in melanoma tumorigenesis [24]. Although there is no direct
evidence that PAR1-induced Ca2+ flux affects melanoma tumorigenesis, it is worthy of
further investigations. Extracellular Ca2+ regulators play important roles in melanoma
tumorigenesis. Robert et al. documented that the extracellular Ca2+-binding matricel-
lular glycoprotein SPARC promotes early transformation of melanocytes by mediating
E-cadherin suppression and Snail induction [25]. PRP4 blocks the Ca2+ influx through
desensitization of the extracellular calcium sensing receptor (CaSR), with the involvement
of TRP cation channel subfamily C member 1, which is the promoting factor of skin carcino-
genesis [26]. Altering Ca2+ homeostasis by targeting lipid rafts, the cholesterol-enriched
membrane microdomains in melanoma cells, abolishes activated PKB, rendering melanoma
susceptible to apoptosis and attenuating its tumorigenicity; this can act as a therapeutic
target in melanoma prevention [27]. From the glimpse of the role of calcium signaling in
melanoma tumorigenesis, we conclude that calcium flux controls melanoma tumorigenesis
mainly through calcium-related pathways, which requires further investigations about the
direct impact of Ca2+ on the carcinogenesis of melanoma. (Figure 2).

3. Calcium Signaling in Melanoma Progression

Melanoma progression happens when the primary melanoma progresses to a metastatic
melanoma with a migrating and invading capacity. Intracellular calcium concentration
([Ca2+]i) and its multiple channels function as regulators of melanoma progression that
serve as mechanistic targets for control of melanoma growth and management of metastasis.

3.1. [Ca2+]i Oscillation Influences Melanoma Progression

Evidence documents that increased intracellular calcium stores are associated with
highly metastatic melanoma cells [28]. Calcium released from ER facilitates melanoma cell
migration. Epac1 activated by cAMP induces calcium elevation from ER via the PLC/IP3
receptor pathway and facilitates cell migration with the involvement of actin assembly,
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which is inhibited by mSIRK, a Gβγ-activating peptide, activating calcium influx from
the extracellular space [29,30]. The expression of cGMP phosphodiesterase PDE5A is
downregulated by oncogenic BRAF in BRAFV600E mutated melanoma by the extracellular-
signal-regulated kinase (ERK) pathway, which induces an increase in [Ca2+]i, stimulating
melanoma cell invasion and short-term and long-term lung colonization [31]. Y-box bind-
ing protein 1 is an unfavorable prognostic marker secreted from melanoma depending
on [Ca2+]i and ATP levels, the expression of which increases in primary and metastatic
melanoma, compared to benign melanocytic nevi. Conversely, elevated Y-box binding
protein 1 secretion stimulates melanoma cell migration, invasion, and tumorigenicity [32].
Paradoxically, increased [Ca2+]i was reported to decrease melanoma progression. Olfactory
receptor 51E2 activated by its ligand β-ionone suppresses the migration of vertical-growth
phase melanoma cells by increasing [Ca2+]i [33].

3.2. Calcium Channels Are Involved in Melanoma Progression

Since [Ca2+]i plays an important mechanistic role in melanoma progression, the role
of calcium channels cannot be neglected. Basically, NMDAR calcium channel function is
weak in melanoma cells but strongly contributes to cell proliferation and invasion when
its encoding gene GRIN2A is mutated at certain sites, such as G762E, with less glutamate
supplementation [34]. Another glutamate receptor calcium channel mGluR5 was proved to
have a profound effect on melanoma progression in vivo by triggering the phosphorylation
of ERK [5]. The ERK pathway is also implicated in SOCE-mediated melanoma progression.
Inhibition of SOCE by knockdown of STIM1 or Orai or by SOCE inhibitors suppresses
melanoma cell proliferation and migration, while induction of SOCE activates ERK, which
is inhibited by calmodulin kinase II or Raf-1 inhibitors [35]. TPC2 influences melanoma
progression via SOCE. Downregulation of TPC2 expression in metastatic melanoma leads
to a decrease of Orai1 expression and an increase of YAP/TAZ activity, which is responsible
for melanoma’s aggressive property [36]. In BRAF mutant melanoma—the BRAFV600E

mutation in particular—the expression of Ca2+-ATPase isoform 4b (PMCA4b) on the
plasma membrane is low compared with benign nevi and is markedly elevated by ve-
murafenib (BRAF inhibitor) or selumetinib (MEK inhibitor) treatment, which indicates
crosstalk between PMCA4b and the MAPK pathway. Activation of p38 MAPK induces
the degradation of PMCA4b, while suppression of p38 MAPK by increasing the abun-
dance of PMCA4b promotes the [Ca2+]i clearance and inhibits the migration of melanoma
cells [37,38]. Moreover, SERCA on the ER membrane, controlled by the interaction be-
tween calcium-modulating cyclophilin ligand and basigin, was reported to have an effect
on invasion and metastasis by regulating [Ca2+]i and matrix metalloproteinase (MMP)-9
activity in A375 cells [39]. Unlike Ca2+-ATPase, T-type VDCCs drive migration and inva-
sion in BRAF mutant melanoma cells depending on Snail1 levels, suggesting therapeutic
strategies by blocking T-type VDCCs to inhibit progression of melanoma [40]. Other ion
channels are implicated in melanoma progression through calcium signaling. Nav1.6
sodium channel promotes melanoma cell (WM266 and WM115) invasion and proliferation
by mTOR-mediated Na+/Ca2+ exchange [41]. KCa3.1 potassium channel was reported
to promote melanoma cell migration by controlling the secretion of melanoma inhibitory
activity proteins depending on [Ca2+]i [42].

3.3. Ca2+ Signaling Influences Melanoma Progression through the Change of Morphological and
Phenotypical Changes

Ca2+ signaling also leads to cell morphological and phenotypical changes, including
the elongated cell axonal- and mesenchymal-like shape, formulation of invadopodia, and
altered cytoskeleton structure, making cancer cells become more deformable and more
invasive. Except for the role in melanogenesis, synaptotagmin-4 is thought to have a
relationship with the growth and metastasis of melanoma by influencing axonal elonga-
tion [43]. Orai- and STIM1-mediated Ca2+ oscillation signals were reported to facilitate
invadopodium assembly and thus promote melanoma invasion by regulating the recycling
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of membrane-bound MT1-MMP and extracellular matrix (ECM) remodeling [18,44]. The
effect of the β2-adrenergic–Ca2+–actin axis on cancer invasion was reported in melanoma
and other cancer types. β-adrenergic receptor (βAR) signaling triggers actin remodeling
and reorganization to enhance cell contractility and promote cell invasion. β-adrenergic
receptor-induced Ca2+ acts as a regulator of cytoskeletal actin by directly binding to actin
or binding to filamin, the crosslinker of actin [45]. Meghnani et al. reported the upregulated
expression of receptor for advanced glycation end products (RAGE) in melanoma patients
in late metastatic stages. Overexpression of RAGE induced melanoma cells to become more
metastatic by triggering cells into mesenchymal-like morphologies, which is associated
with the upregulation of its ligand S100B, a calcium-binding protein [46].

3.4. Calcium-Related Pathways Participate in Melanoma Progression

Other factors (melanoma stem cells), other proteins (S100 family, E-cadherin, and
calpain), and the Wnt/Ca2+ pathway influence melanoma progression through calcium
signaling. Ca2+ released through IP3R in melanoma cells is crucial for the function of cancer
stem cells. IP3R impairment leads to a diminution in the population of melanoma stem cells
and reduced melanoma growth [47]. A network analysis of the expression of Ca2+ signaling
and stem cell pluripotency-related genes (e.g., GSTP1, SMAD4, CTNNB1, MAPK3, GNAQ,
PPP1CC, GSK3B, and PRKACA) showed some candidates that may contribute to the
melanoma metastatic transformation and potential therapeutic biomarkers for metastatic
melanoma [48].

S100A4 is a metastasis-promoting protein in melanoma cells which acts by targeting
metabolic reprogramming, that is, the suppression of mitochondrial respiration and the
activation of aerobic glycolysis [49]. Upregulation of S100P, ezrin, and RAGE improves the
malignancy of melanoma [50]. E-cadherin has extracellular Ca2+-binding domains whose
functions are dependent on Ca2+ and is essential for melanogenesis and melanoma sup-
pression. E-cadherin silencing is related to melanoma metastatic dissemination and poor
prognosis [51,52]. The decreasing expression of E-cadherin by overexpression of T-box tran-
scription factors Tbx2 and Tbx3 is associated with enhanced melanoma invasiveness [53].
Promoter methylation by activating E-cadherin expression represents its therapeutic role
in the treatment of melanoma [51]. Evidence in vitro and in vivo showed that inhibition
of calpain, whose activity is promoted by calcium signaling, blunts melanoma growth,
allows melanoma cells to escape from anti-tumor immunity, and increases metastatic
dissemination by accelerating the migration process and reducing apoptosis [54].

Wnt5a was found to be expressed in highly aggressive melanoma and was able to
increase melanoma invasive potential by activating PKC and raising [Ca2+]i in a transfected
model [55]. Interestingly, Wnt5a signaling was engaged into melanoma cell movement,
rendering them more aggressive. Wnt5a leads to the remodeling of the cytoskeleton and
increases melanoma motility by activating calpain-1, leading to the cleavage of filamin
A [56]. The assembly of the “Wnt-receptor-actin-myosin-polarity” structure, which is
promoted by Wnt5a, promotes actomyosin contractility and substrate detachment for
membrane retraction, mediated by the recruitment of cortical ER and elevation of Ca2+ [57].
(Figure 2).
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4. Calcium Signaling in Melanoma Microenvironment

The tumor microenvironment, including surrounding immune cells and other cells,
signaling molecules, blood vessels, and ECM, is closely related to and constantly interac-
tive with melanoma cells, playing pivotal roles in melanoma generation, progress, and
prognosis. Calcium signaling influences the altered microenvironment to change the fate
of the melanoma by influencing the function of innate and adaptive immune cells, regu-
lating ECM and tumor vascularization, and adapting to different physical and chemical
surroundings.

4.1. Immune Cells

In T cell-based tumor immunosurveillance, cytotoxic T lymphocytes (CTLs) kill tu-
mor cells by recognizing their specific T cell receptor. It was proved that CTLs-mediated
cytotoxic function in melanoma and other cancers depends on a SOCE-mediated [Ca2+]I
rise by regulating the degranulation of CTLs, the production of TNFα and IFNγ, and the
expression of Fas ligand both in vivo and in vitro [59]. CD4+CD25+Foxp3+ regulatory T
cells cause effector T cell death and suppress activation of T cells to induce immunosuppres-
sion through TGFβ-induced inhibition of IP3 production with a decrease in intracellular
Ca2+ flux. Accordingly, Kim et al. increased IFNγ production and activated T cells in vitro
and reduced melanoma growth in vivo through highly selective optical control of Ca2+

signaling in CTLs [60]. EGR4, a member of the zinc finger transcription factor family, was
reported as a key regulator of T cell differentiation. Knocking out EGR4 in T cells triggers an
enhanced Ca2+ response and increased IFNγ production in vitro and leads to regulatory T
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cells loss, Th1 bias, and CTL generation in a mouse melanoma lung colonization model [61].
Histamine and its H4 receptor induce the chemotaxis and migratory properties of γδ T
cells through Gi protein-dependent [Ca2+]i increase in the microenvironment of melanoma
cells [62].

Moreover, Ca2+ flux was involved in the NK cell-mediated innate immune response
to melanoma cells. Although no difference in the formation of metastatic lung lesions
was observed, NK cells are hyporesponsive to MHC class I-deficient target cells, with NK
cells continuously activating by the Ly49H receptor [63]. Tumor-associated macrophages,
especially CD163+ M2 macrophages, are related to immune escape, supporting cancer de-
velopment [64]. Secreted flavoprotein renalase enhances the function of M2 macrophages
to promote melanoma growth through the PMCA4b calcium channel by activating the
MAPK and PI3K/AKT pathways [65]. Recently, mesencephalic astrocyte-derived neu-
rotrophic factor, a novel immunoregulator basically secreted from pancreatic beta cells, was
found to be secreted from melanoma and other cancer cell lines upon IFNγ-induced ER
calcium depletion, which was proved to activate M2 macrophages and promote melanoma
growth [66,67]. In addition, macrophages in the melanoma microenvironment are less
susceptible to calcium electroporation compared with melanoma cells, but calcium electro-
poration stimulates the immunogenic capacity of melanoma-conditioned macrophages [68].
Calcium electroporation is a promising method in anti-cancer treatment under clinical
trial which utilizes high-voltage electric pulses to introduce calcium flux into cells [69].
Recently, a near-infrared-stimulable optogenetic platform was established to remotely and
selectively control Ca2+ oscillations and Ca2+-related gene expression and to modulate im-
munoinflammatory responses by regulating the functions of T lymphocytes, macrophages,
and dendritic cells [70]. What is more, bone marrow-derived mast cells prefer to locate in
hypoxic zones of the melanoma microenvironment, inducing CCL-2 synthesis and calcium
rise by activating LVDCCs [71].

4.2. ECM and Vascular Network

In melanoma, ECM, molecules, proteins, and stromal cells interacting with Ca2+

signaling influence melanoma development. As we discussed above, Orai1- and STIM1-
mediated Ca2+ oscillations regulate melanoma ECM degradation by MT1-MMP [18,44].
Attenuated [Ca2+]i enhances the chemotaxis of melanoma cells to type IV collagen, a
member of the ECM proteins, depending on CD47 and integrins α2β1 and ανβ3 [72,73].
Thrombomodulin, an integral membrane glycoprotein on endothelial cells, acts as a Ca2+-
dependent molecule controlling melanoma cell adhesion [74]. Kallikrein-related peptidase 6
is detected in neighboring stromal cells and keratinocytes and displays a paracrine function
to accelerate melanoma migration and invasion which was proved to depend on protease-
activated receptor 1-induced intracellular Ca2+ flux [24]. Skin keratinocytes and fibroblasts
in melanoma ECM play important roles in melanoma development. Keratinocytes reduce
the expression of TRPC1, 3, and 6 to decrease [Ca2+]i and negatively regulate the N-cadherin
levels, a progressive factor in melanoma cells [75]. Keratinocytes can lead to cutaneous
malignant lesions, dependent on the loss of calcium channel P2X1–3 and P2Y2 receptors
and E-cadherin [76]. N-cadherin can promote melanoma cell migration and metastasis by
facilitating the adhesion of melanoma cells to dermal fibroblasts and vascular endothelial
cells [77].

The vascular network in the melanoma microenvironment, tightly interacting with
ECM, provides nutrients and advantageous conditions for proliferation and metastasis. As
we discussed above, the positive effects of Wnt5a on melanoma metastasis also include
Ca2+-dependent exosome release, containing the pro-angiogenic and immunosuppressive
factors (VEGF, IL-6, and MMP-2), which suppresses endothelial cell branching. Wnt5a
expression has a potential relationship with the angiogenesis marker ESAM [78]. Nicotinic
acid adenine dinucleotide phosphate, which is capable of triggering Ca2+ release from
endosomes and lysosomes by targeting TPCs, was reported to control VEGF-induced
angiogenesis in melanoma cells [79]. Moreover, vasculogenic mimicry is specific in less
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vascularized areas of the tumor microenvironment, providing nutrients and oxygen to facil-
itate tumor metastasis. Zhang et al. reported the role of the calcium/phospholipid-binding
protein myoferlin in the inhibition of vasculogenic mimicry formation in melanoma by
inducing mesenchymal-to-epithelial transition and decreasing MMP-2 expression [80]. The
reconstitution of vascular mimicry with the combination of VEGFA signaling in ECM
contributes to the formation of capillary-like structures in the melanoma microenviron-
ment which is regulated by intracellular and extracellular Ca2+ levels and ανβ3 and ανβ5
integrins [81]. Studies displayed some anti-vascular methods in anti-tumor treatment by
targeting Ca2+ signaling. Carboxyamido-triazole, an inhibitor of non-VDCCs, displayed in-
hibitory effects on melanoma invasion and angiogenesis, disrupting the signaling between
melanoma and its microenvironment by suppressing VEGF production and endothelial
cell response to VEGF [82]. Calcium electroporation not only directly induced melanoma
necrosis and indirectly affected macrophages in the melanoma microenvironment but
recently was found to suppress the formation of capillary-like structures in vitro and dam-
age melanoma blood vessels in vivo [83,84]. Particularly, vascular endothelial cadherin
is basically specific to endothelia but also presented in some melanomas [85]. Vascular
endothelial cadherin-mediated interaction between melanoma and adjacent endothelium
plays an important role in tumor metastasis properties. Inhibition of the PLC/IP3 path-
way disrupts the melanoma–endothelium junctions by diminishing endothelial [Ca2+]i
response [86,87].

4.3. Physical and Chemical Surroundings

The extracellular pH in melanoma is acidic because of the excess amount of anaero-
bic glucose metabolites [71]. Acidic extracellular pH enhances Ca2+ influx through VD-
CCs [88]. Noguchi et al. demonstrated therapeutic roles of mitochondrial inhibitors against
melanoma accompanied by increasing [Ca2+]i at acidic extracellular pH, but a neutral or
alkaline microenvironment enhanced melanoma growth and lung metastasis under the
treatment of mitochondrial inhibitors [89]. Consequently, the tumor microenvironment
was utilized to improve the treatment of melanoma. Cold atmospheric plasma induced
Ca2+ influx in melanoma cells and acidification in the tumor microenvironment, which was
thought to be the reason for its anti-cancer effects [90]. Except for low pH in the melanoma
microenvironment, hypoxic conditions in melanoma lead to increased adenosine levels and
high production of ROS [71]. Physical microenvironment changes, such as confinement,
are able to elevate [Ca2+]i and suppress PKA activity via a PDE1-dependent pathway in
melanoma cells which affects cell stiffness and locomotion [91]. Exposing melanoma cells
to low-intensity, frequency-modulated electromagnetic fields for more than 15 min exhibits
cytotoxic effects, with the involvement of VDCCs in an in vitro study [92]. Yu et al. reported
the “cold/hot” properties of traditional Chinese medicine, which changes the tempera-
ture in A375 cells by TRPV4-mediated intracellular calcium influx [93]. UV radiation is a
risk factor of melanoma. The roles of UV radiation in melanoma with calcium signaling
involvement occur mainly by influencing vitamin D signaling, mitochondria-related Ca2+

influx, and ORAI1 channel-mediated melanogenesis [94–96] (Figure 2).

5. Calcium Signaling and Other Ionic Channels in Melanoma
5.1. Sodium Channels

Other ionic channels, including sodium and potassium channels, are engaged in the
calcium transport systems. Normally, NCX transports three sodium ions into the cell and
one calcium ion outside (forward mode), which can be performed in the opposite way
(reverse mode) under special conditions [97]. Therefore, the function of sodium channels is
relevant to the Ca2+ current. Nav 1.6, a voltage-gated sodium channel, is overexpressed in
melanoma cells, compared with normal melanocytes. Inactivation of Nav 1.6 by its inhibitor
tetrodotoxin suppresses aggressive properties and promotes apoptosis in melanoma cells by
reducing mTOR activity and interrupting the translocation of mitochondrial Ca2+ flux [41].
Another study also evidenced the role of Nav 1.6 in regulating invasion by controlling the
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Ca2+-dependent podosome and invadopodium formation [98]. In melanoma cells with
different metastatic capacities, Ca2+ buffering capacities are different. NCX functions in a
reverse mode for Ca2+ entry, which leads to a sudden increase in [Ca2+]i in highly metastatic
melanoma cells, while the NCX in lowly metastatic melanoma cells is in a forward mode,
suggesting the vital role of NCX mode in melanoma metastasis characteristics [97,99].
Additionally, the expression of NCX1 varies between NRASQ61R and BRAFV600E mutated
human melanoma cells with different Ca2+ homeostasis and Ca2+-dependent aggressive-
ness. NRASQ61R mutated (SK-MEL-147) cells contain higher levels of NCX1 expression
and exhibit more sensitivity to vemurafenib treatment with NCX inhibition as compared to
BRAFV600E mutated (SK-MEL-19) cells [100].

5.2. Potassium Channels

Ca2+-activated K+ (KCa) channels can be divided into three subfamilies: small-conductance
K+ (SKCa) channels, intermediate-conductance K+ (IKCa) channels, and big-conductance K+

(BKCa) channels. Voltage-insensitive SKCa and IKCa channels are activated by low [Ca2+]i.
In contrast, BKCa channels are activated by voltage and high [Ca2+]i [101]. KCa channels,
especially the SKCa channels, are upregulated by hypoxia, which provides the underlying
mechanism of enhanced proliferation in melanoma cells under hypoxic conditions [102].
KCa3.1 potassium channels, a subfamily of SKCa/IKCa channels, were found to support
the secretion of melanoma inhibitory activity, promoting melanoma cell migration [42].
The disruption of cholesterol rafts proximal to BKCa channels increases the activity of
BKCa channels. In human melanoma IGR39 cells, Na+/K+-ATPase in the rafts that control
intracellular Na+ levels was reported to influence the efficient functioning of BKCa chan-
nels [103]. Filamin A is also necessary for the normal function of BKCa channels, which
normally traffic to the plasma membrane in A7 melanoma cells with filamin A but have
trouble trafficking in M2 cells without filamin A [104]. Except for KCa channels, Ca2+-
inactivated K+ channels were reported to control the proliferation of murine B16 melanoma
cells, mediated by endothelin-1 [105].

6. Calcium Signaling in Melanoma Treatment

Taken together, calcium signaling is tightly related to melanogenesis, melanoma tu-
morigenesis and progression, and the melanoma microenvironment in consideration of its
pivotal roles in melanoma growth. As we document above, multiple therapeutic strategies
targeting calcium-related pathways were described during melanoma development from
benign melanocyte to highly malignant melanoma, from melanoma itself to the surround-
ings. All in all, targeting calcium signaling in melanoma treatment is basically performed
by targeting calcium channels and influencing [Ca2+]i and calcium homeostasis to directly
kill melanoma cells or affect relative pathways. Here, we put emphasis on the strategies
for melanoma treatment targeting Ca2+-related mitochondrial dysfunction and ER stress
to illustrate those in consideration of the essential roles of ER and mitochondria in the
regulation of calcium signaling. Additionally, calcium-related treatment can combine with
other drugs in melanoma management by attenuating drug resistance in indirect manners.

6.1. Targeting Calcium, Mitochondria, and ER Stress in Melanoma

ER calcium imbalance can induce ER stress due to its capacity to accumulate un-
folded proteins and, in turn, enhance Ca2+ efflux from the ER and feed mitochondrial
Ca2+ uptake, triggering mitochondrial swelling, cell necrosis, and apoptosis. Specifically,
mitochondrial Ca2+ overload triggers the formation of ROS, a decline in mitochondrial
membrane potential, and opening of mPTPs with resultant release of the pro-apoptosis fac-
tor cytochrome c followed by activation of caspase-dependent and -independent apoptosis
pathways [106,107].

Calcium channel dynamics are implicated in melanoma treatment targeting mito-
chondria/ER stress. Although SOCE-mediated Ca2+ responses are critical for melanoma
proliferation and apoptosis [108], drugs with anti-melanoma effects, such as diallyl trisul-
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fide [109], to induce mitochondrial Ca2+ overload, ROS production, and caspase activation
are mediated not by SOCEs but VDCCs. Rouaud et al. reported ER stress in melanoma in-
duced by a NADPH analog, NS1, relying on TRPM2 and Ca2+-activated K+ channels [110].
A combination of ER transmembrane protein selenoprotein K and ER enzyme DHHC6 can
palmitoylate IP3R and stabilize Ca2+ flux. Impairing selenoprotein K promotes ER stress
for melanoma progression [111,112]. In addition, mitochondrial Ca2+ overload contributes
to the apoptosis-promoting effect of metformin and lectin, purified from Bothrops leucurus
snake venom, on melanoma through mPTP opening [113,114]. Ribosomal protein S3 acts
as a potential therapeutic target for melanoma treatment on account of its regulatory ef-
fects on mitochondrial Ca2+ and cascading apoptosis by mPTP and MICU1 [115]. Except
for calcium signaling-related apoptosis, Raimondi et al. revealed that δ- tocotrienol trig-
gered paraptosis, the nonapoptotic programmed cell death, caused by Ca2+ overload and
ROS-associated mitochondrial dysfunction in melanoma cells. Additionally, δ-tocotrienol
treatment also reduced mitochondrial membrane potential, oxygen consumption, and the
expression of mitochondrial complex I. The mitochondrial Ca2+ overload was thought to
be mediated by IP3R and VDAC [116].

Since calcium homeostasis is pivotal in ER stress and mitochondria-mediated cell
death, several studies applied Ca2+-induced cell death to cancer treatment, including
melanoma treatments such as luteolin, N-acetyl-S-(p-chlorophenylcarbamoyl) cysteine
(NACC), and sanguinarine [107,117,118], which mechanically revealed their potential path-
ways. In particular, aripiprazole is not only an antipsychotic drug but a compound capable
of depleting ER calcium in melanoma, thereby leading to activation of the unfolded protein
response via protein kinase R-like ER kinase (PERK) and inositol-requiring enzyme 1 [119].
Another study found that the anti-tumor effects of polyphenols was also mediated by
PERK-directed Ca2+ release [120]. Some molecules that are cytotoxic to melanoma cells,
for example, digitoxin and MEK inhibitors, alter mitochondrial membrane potential and
trigger mitochondrial calcium dysregulation, intracellular acidification, and ATP deple-
tion by disrupting ion gradients and reducing ERK phosphorylation, respectively [121].
Imiquimod, a toll-like receptor (TLR) agonist, was demonstrated to induce ER stress and
Ca2+ depletion followed by mitochondrial membrane potential loss and cytochrome c
release, independently of TLR7 and TLR8, to trigger the apoptosis of melanoma cells,
which was associated with Kinase 1/c-Jun-N-terminal kinase/p38 pathways. Apoptosis
protein antagonists and NF-κB inhibitors can improve the effectiveness of imiquimod in
melanoma treatment [122,123]. The underlying mechanism is the reduction of SOCE and
mitochondrial Ca2+ loading as well as fragmentation, clustering, and swelling in mitochon-
dria [124]. Recently, a study demonstrated that pulsed focused ultrasound induced DNA
damage in melanoma cells by superoxide and H2O2 formation caused by Ca2+ homeostasis
change [125]. Interestingly, photodynamic therapy can directly kill melanoma cells by
triggering Ca2+-related ROS formation; it was proved to have “bystander effects” on nearby
cells that are not exposed to light. Ca2+ released from the ER in a single exposed melanoma
cell is capable of promoting mitochondrial O2

−. formation in its bystander cells [126].

6.2. Drug Resistance and Combination Treatment

In some conditions, targeting calcium signaling is able to render melanomas more
susceptible to conventional therapy, preventing the development of drug resistance and
providing novel ideas for combination treatment. Molecular targeting T-type VDCCs is
a promising solution for melanoma chemoresistance, since the Ca(v)3.1 isoform is high
expressed in vemurafenib-resistant BRAFV600E mutated melanoma. Mibefradil, a T-type
VDCCs blocker, can restore the sensitivity of de-differentiated murine melanoma cells to
MAPK inhibitors [127,128] and can reduce the motility and invasion capacity of BRAFV600E

mutants [40]. Silencing of Ca(v)3.1 or Ca(v)3.2 reduced the invasiveness of melanoma
cells with BRAFV600E mutation [129]. Tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) is a promising anticancer drug, while some melanomas are resistant to
TRAIL treatment. Studies demonstrated that Ca2+ dynamics are a promising approach to
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overcome TRAIL resistance. Mitochondrial Ca2+ removal increases TRAIL efficacy against
melanoma through mitochondrial hyperfusion [130]. Interestingly, mitochondrial Ca2+

overload results in selective sensitization to TRAIL cytotoxicity by increasing mitochon-
drial fragmentation [131]. Cold plasma-stimulated medium exhibits its tumor-selective
cytotoxicity in the treatment of TRAIL-resistant melanoma cells, as evidenced by mitochon-
drial network abnormalities, disrupting Ca2+ homeostasis and caspase-independent cell
death [132]. Co-treatment with autophagy inhibitors and TRAIL displays promising thera-
peutic effects. NCX inhibitors altering Ca2+ flux sensitize NRASQ61R mutated melanoma
cells to vemurafenib [96]. K2[B3O3F4OH] exhibits its cytotoxic effects on melanoma cells
but not melanocytes only under low Ca2+ concentrations, suggesting the therapeutic effects
of the combination of K2[B3O3F4OH] and methods for Ca2+ depletion [133]. Therefore,
with the developing perception of calcium signaling in melanoma, it will provide more
options for melanoma treatments and expand the pharmacological arsenal in the future.

6.3. S100 Protein Family in Melanoma Prediction

In addition to its therapeutic roles, calcium signaling is presenting potential diagnostic
biomarkers for melanoma. We mainly document the role of the S100 protein family in the
diagnosis of melanoma and prediction of prognosis. The S100 protein family, consisting
of a Ca2+-binding EF-hand structure, is an important biomarker in serum that has been
well studied in melanoma. S100B levels reflect the stage and prognosis in melanoma,
due to its stage-dependent secretion [134]; in particular, it is considered as a biomarker
of tumor load and progression in stage IV melanoma patients [135]. During the first
week of anti-PD-1 therapy, S100B levels can also serve as a biomarker to predict the
overall survival and response to the treatment and help to guide treatment decisions [136].
Other clinical studies revealed its predictive function in melanoma patients with BRAF
inhibitor or CTLA-4 inhibitor treatment [137,138]. Nordlinger et al. proved that poor
patient prognoses are correlated with high S100A4 expression levels [139]. In addition, high
serum levels of heterodimer S100A8/S100A9 in early stages of melanoma patients with
ipilimumab treatment predict worse response [1]. S100A13 is upregulated in melanoma,
cooperating with VEGFA in supporting angiogenesis, leading the shift from radial to
vertical growth [140]. Moreover, other calcium-associated biomarkers are being studied as
well. For instance, a cross-sectional study showed that high levels of albumin-corrected
serum calcium may predict the progression of malignant melanoma [141]. The expression
of T-type VDCCs is increased in BRAFV600E mutated cells, especially in those resistant to
MAPK inhibitors, and this can serve as valuable prognostic markers in melanoma [129].
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