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ABSTRACT

Identifying cancer driver genes and pathways
among all somatic mutations detected in a cohort
of tumors is a key challenge in cancer genomics.
Traditionally, this is done by prioritizing genes
according to the recurrence of alterations that they
bear. However, this approach has some known limi-
tations, such as the difficulty to correctly estimate
the background mutation rate, and the fact that
it cannot identify lowly recurrently mutated
driver genes. Here we present a novel approach,
Oncodrive-fm, to detect candidate cancer drivers
which does not rely on recurrence. First, we
hypothesized that any bias toward the accumulation
of variants with high functional impact observed in a
gene or group of genes may be an indication of
positive selection and can thus be used to detect
candidate driver genes or gene modules. Next, we
developed a method to measure this bias (FM bias)
and applied it to three datasets of tumor somatic
variants. As a proof of concept of our hypothesis
we show that most of the highly recurrent and
well-known cancer genes exhibit a clear FM bias.
Moreover, this novel approach avoids some known
limitations of recurrence-based approaches, and
can successfully identify lowly recurrent candidate
cancer drivers.

INTRODUCTION

It is now common knowledge that cancers arise due to
alterations in genes that confer growth advantage to the
cell (1). More than 400 such ‘cancer genes’, identified to
date are currently annotated in the Cancer Gene Census
(2). The availability of the human genomic sequence has
led to the idea that systematic resequencing of cancer
genomes could reveal the full list of mutations in individ-
ual cancers and hence identify many of the remaining
cancer gene (3–7).

A challenge to all systematic screens of alterations is
therefore to distinguish driver—those that are positively
selected during tumor development—from passenger
alterations, which are byproducts of tumorigenesis.
However, experimental validation of somatic mutations
cannot cope with the increased capacity to identify
somatic mutations. Thus, computational methods that
can successfully identify cancer drivers are urgently
needed.
Most methods aimed at distinguishing, for example, sig-

nificantly mutated genes, which are candidates to cancer
drivers, actually rely on the detection of recurrently
mutated genes. They rank genes according to the prob-
ability to observe by chance the number of somatic single-
nucleotide variants (SNVs) found across a number of
tumor samples (8–13). Some known limitations of these
methods include the difficulty in correctly assessing the
background mutation rate, as all parameters that affect
it are not well-understood, and the fact that they usually
fail to identify lowly recurrently mutated driver genes.
Moreover, frequency-based measurements probably tend
to favor early driver genes over those that are mutated late
during tumor development (14). It is therefore clear that
novel approaches for the identification of cancer drivers
that do not rely on recurrence and can thus overcome
these challenges are necessary.
On the other hand, several methods developed in recent

years attempt to assess the functional impact (FI) of
non-synonymous SNVs (nsSNVs) on protein function
relying mostly on evolutionary information. Their results
have often been employed to detect likely cancer driver
nsSNVs (15–19) although with one or two exceptions,
they were not developed primarily for this task. These
methods lack the ability to point at likely driver genes
or gene modules, because they focus on ranking individual
nsSNVs rather than on their recurrence across several
tumor samples.
Here we present a novel approach to detect candidate

cancer drivers which does not rely on recurrence. First, we
hypothesized that any bias toward the accumulation of
somatic variants with high FI observed in a gene or
group of genes may be an indication of positive selection
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and can thus be used to detect candidate driver genes or
gene modules. Then, we developed a method to measure
this bias (FM bias) and applied it to three datasets of
tumor-somatic variants. We show that most highly recur-
rent and well-known cancer genes exhibit a clear FM bias.
We regard this as a proof of concept of our hypothesis.
In addition, this novel approach avoids the known limita-
tions of recurrence-based approaches described above,
and can, for example, successfully identify lowly recurrent
candidate cancer drivers.
We have called this method Oncodrive-fm, since it aims

to detect likely driver genes and pathways in cancer
through the analysis of functional mutations—a different
method called Oncodrive was recently reported by us (20).
It is important to note that despite the similarity in
their names which is due merely to coherence, these two
sister methods differ in the type of data they analyze and,
most importantly, in their approaches to identify likely
driver genes. Whereas the original Oncodrive identifies
genes that suffer recurrent amplifications, deletions,
upregulation or downregulation, Oncodrive-fm prioritizes
genes or pathways that show a bias toward the accumu-
lation of functional somatic variants. As a matter of fact—
to our best knowledge—Oncodrive-fm is the first method
aimed at detecting driver genes or pathways that through
the employment of a statistical test assesses the signifi-
cance of this bias across a cohort of tumor samples.
In this article we describe the Oncodrive-fm approach

and present the outcome of its application to three
datasets of tumor-somatic variants compared with a
well-known recurrence-based approach. Based on the
results, we recommend the use of Oncodrive-fm to com-
plement recurrence-based approaches and for exploratory
cancer genomics studies, where it may identify likely
driver genes and pathways that may be explored further
through wider studies.

MATERIALS AND METHODS

Obtaining and processing somatic variants data

We obtained the files with the genomic locations of all
SNVs detected in glioblastoma multiforme (gbm) (6) and
ovarian serous carcinoma (osc) (7) samples by TCGA
from the data provided with the MEMo algorithm (21).
These datasets contain somatic variants detected in 1200
genes of 135 samples of gbm and in the exome of 316
samples of osc. We then converted the genomic coordin-
ates of the SNVs to the hg19 assembly of the Human
Reference Genome (using the UCSC genome browser
liftOver) (22) and employed the Ensembl Variant Effect
Predictor v.62 (VEP) (23) to identify synonymous SNVs
(sSNVs), non-synonymous SNVs (nsSNVs), stop-loss
SNVs (stSNVs) and frameshift-causing short indels
(fsindels). The VEP also identified the genes affected by
the SNVs, and provided SIFT (15,16) and PolyPhen2 (17)
scores of nsSNVs. Then, we used the MutationAssessor
(MA) webAPI (18) to obtain their MA scores. (We used
these instead of those reported within the original MEMo
files to make sure they had been obtained with the most
recent version of the MA software and data.) At the end of

this pipeline, we produced for each tumor type a five-
column file containing the Ensembl ID of each gene
with at least one variant detected across tumor samples,
the ID of the sample where the variant had been detected
and the FI scores provided by the three methods, or
derived from them in the case of sSNVs, stSNVs and
fsindels (see below the Results section).

We downloaded the coordinates and donor ids of SNVs
found in 109 samples of chronic lymphocytic leukemia
(cll) (24) exomes sequenced by the Spanish Ministry of
Science and in 77 gbm sequenced by the Johns Hopkins
University (gbm JHU) (25) from the ICGC Data
Coordination Center Biomart database (26). The coordin-
ates of the mutations in gbm JHU samples were converted
to the hg19 assembly as explained above. On the other
hand, SNVs in cll samples were already annotated in
hg19 coordinates. The remaining processing steps
mirrored those described for gbm and osc data.

Recurrence assessment of gbm and osc SNVs

We chose MutSig (10) to detect recurrently mutated genes
in the gbm and osc dataset. As with the gbm and osc
mutation datasets, we directly obtained the results of the
MutSig execution from the data provided with the MEMo
algorithm. We did this instead of running it ourselves, to
overcome difficulties in obtaining all the necessary input
data. The MutSig list of recurrently mutated genes in gbm
contains the results for the 1200 genes sequenced in
TCGA phases 1 and 2 on a larger set (339) of samples.
(Mutations in IDH1 although included in the maf file with
MEMo were not analyzed by MutSig; Figure 2A and
Supplementary Figure S1) and on the exome of the same
316 osc samples (21).

Oncodrive-fm implementation

We have prepared a PERL implementation of the
Oncodrive-fm approach which may be downloaded from
http://bg.upf.edu/oncodrive. It contains example input
files of the gbm and cll datasets. Each input file contains
the list of variants detected in every gene and sample of
each tumor and the SIFT, PPH2 and MA scores of each of
them, as described in the Results section. These data files
may be used to reproduce the results described in this
manuscript. Users who have obtained lists of genomic
variants in several samples of one or more tumor types
may also create their own input files using those provided
as template. In this implementation users define whether
they want to use the external or internal null distributions
to compute the FM bias of genes and pathways. One good
approach could be to use both and compare the resulting
lists of genes or pathways, as exemplified in Figure 2B for
cll genes. Oncodrive-fm is not limited by the number of
samples that need to be sequenced—unlike recurence-
based analysis—in order to detect likely driver genes or
pathways. Note, however, that FM bias can only be
computed for genes that have mutations in at least two
samples.
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RESULTS

Main goal and rationale

The goal of Oncodrive-fm is to detect genes or gene
modules that across several tumor samples exhibit a
trend toward the accumulation of variants with high FI
(FM-biased genes or modules). It results from the
assembly of two main components: (i) a measure of FI
of the somatic variants of all genes across several tumor
samples; and (ii) an assessment of the significance of the
bias toward the accumulation of variants with high FI
(FM bias) in each gene or gene module.

Component 1 (Figure 1A) starts by computing a metric
of the FI of each SNV found in a gene across a list of
tumor samples. In principle, any measure of the impact of
SNVs on the function of the proteins that bear them could

be used. Several bioinformatics methods are commonly
used to score the effect of somatic mutations found by
large oncogenomics studies (15,17–19).
Component 2 (Figure 1B) consists in averaging the FI

scores of the variants observed in a gene across all tumor
samples and assessing which genes exhibit an FI average
that differ significantly from the background. The ration-
ale behind this analysis is that driver genes will show a
shift toward highly deleterious somatic mutations, because
the alteration of their function is positively selected by
tumor development. Therefore, as a result they will
exhibit high FI averages and will have a higher likelihood
to be FM biased. On the contrary, genes that are altered as
a byproduct of tumorigenesis will receive mutations across
all the FI score spectrum, thus resulting in rather low FI
averages.
Note that our approach is not based on the recurrence

of mutations in genes; genes with few mutated samples
may show high FI averages if they are all highly deleteri-
ous. The opposite is also true: genes that accumulate mu-
tations that do not affect their functions significantly will
have as a rule, low FI averages. This phenomenon is
illustrated in Figure 1B. Although the fourth gene in the
figure harbors mutations in only three samples, these are
deleterious enough (red-shifted in the central heatmap) to
raise the average FI of this gene above that of the fifth
gene, which contains mild mutations in nine samples.
The same general rationale applies to the detection of

significantly FM-biased pathways, or any other gene
modules (Figure 1C).

Implementation of the method

We have tested an implementation of Oncodrive-fm using
three well-known methods that assess the FI of nsSNVs
and whose scores may be obtained in a high-throughput
manner to evaluate hundreds of nsSNVs in a few minutes.
These methods are SIFT (15,16), PolyPhen2 (PPH2) (17)
and MutationAssessor (MA) (18). We use this implemen-
tation to explain Oncodrive-fm throughout this article.
Nevertheless, we have prepared the Oncodrive-fm scripts
in such a manner, that the user can define any number of
FI score methods to compute the FM bias (see Discussion
section).
The three aforementioned methods only assess the FI of

non-synonymous somatic mutations. However, other
protein-affecting mutations, such as stop SNVs (stSNVs)
and small indels that cause frameshift (fsindels) can also
alter driver genes in the path to tumorigenesis.
(Traditional recurrence-based analyses also include them
in equality to non-synonymous variants.) Since, we do not
posses a clear way of assessing their impact on protein
function, we have scored them using a very simple rule
of thumb. The highest SIFT and PPH2 scores for
nsSNVs (0 and 1, respectively) are assigned to stSNVs
and fsindels under the assumption that variants that
truncate a protein or produce one with an aberrant
sequence are at least as functional as the most deleterious
nsSNV. Following an analogous reasoning, stSNVs and
fsindels receive the MA score that separates the ’medium’
and ’high’ FI categories (3.5) defined by the MA team

Figure 1. Schematic representation of the Oncodrive-fm approach.
Oncodrive-fm computes the bias toward the accumulation of variants
with high FI to identify drivers. (A) The first step consists in calculating
a FI score of variants identified in a cohort of patients. (B) Next,
Oncodrive-fm assesses if there is a bias toward the accumulation of
variants with high FI (FM bias) for each gene, giving as a result a
P-value per gene that indicates how biased it is with respect to a null
distribution. Note that Oncodrive-fm does not assess how likely it is
that a gene has a particular number of mutations, but instead given the
number of mutations it has, how biased they are to high FI. RFM,
Recurrent and FM biased; lRFM, Lowly Recurrent and FM biased;
RnFM, Recurrent but not-FM biased. (C) Oncodrive-fm can also be
used to assess the FM bias of gene modules (e.g. Pathways).
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(18). The actual impact of a stSNV or a fsindel should
be modulated by their position within the aminoacid
sequence. Nevertheless, we believe that our approach
does not introduce any appreciable perturbations to the
FM bias.
Furthermore, because we want to detect genes whose

alteration is subject to positive selection, sSNVs should
also be considered within the FM bias analysis. Genes
that receive a higher proportion of synonymous mutations
will see their average FI decrease, and thus their FM bias
reduced. To illustrate this issue further, consider again the
fifth gene in Figure 1B. It’s two most blue-shifted
mutations could be sSNVs. If they were not
taken into account, the gene might appear falsely FM
biased.
We have attributed the lowest SIFT and PPH2 scores

(1 and 0, respectively) to sSNVs following the rationale
that since sSNVs do not affect protein sequence they are at
most as deleterious as the least deleterious nsSNVs.
Finally, sSNVs receive the minimum MA score (�2)
observed in approximately half a million nsSNVs
mapped by the 1000 genomes project (30).
Since each somatic mutation is assessed by each of these

three methods, the output of Component 1 of Oncodrive-
fm is three continuous matrices of FI scores. Each element
of the FI score matrix M obtained from MA scores, for
instance may be represented as

mi,j MAð Þ ¼MA score if gene i bears a nsSNV in sample j;

3:5 if gene i bears a stSNV in sample j;

3:5 if gene i bears a fsindel in sample j;

�2 if gene i bears a sSNV in sample j;

undef if gene i is not mutated in sample j:

Component 2 starts by averaging the FI of all somatic
mutations observed in a gene across all samples.
The following task consists in assessing how different
the average FI of a gene is with respect to a background.
We have represented this background with a null distribu-
tion of average FIs produced by sampling with replace-
ment either from the list of somatic mutations observed
in the tumor (internal null distribution) or from
nsSNVs that appear across human populations in genes
within the same broad biological process as the one
under analysis (external null distribution). The internal
null distribution—which is the preferential choice to
compute the FM bias—identifies genes whose average
FI is significantly higher than the FI of mutations that
appear normally in the tumor. The external null distribu-
tion, on the other hand aids to detect genes whose
average FI is significantly greater than the FI of nsSNVs
that appear in the germline in genes with the same broad
biological function. It should only be used in
cases where the internal null distribution is probably
biased (f.i., because only few selected genes were
sequenced).
Let us take again for illustrative purposes the fourth

gene represented in Figure 1B. It appears mutated in
three samples. Therefore, to assess the statistical signifi-
cance of its average FI with respect to the internal null

distribution we ask how likely it is to find arrays of three
mutations in this tumor with an average FI equal to or
greater than its observed average FI. To answer, we
randomly sample with replacement one million groups
of three mutations from the list of variants found in all
sequenced samples and compute the corresponding one
million random average FIs. The fraction of these that
result equal to or greater than the observed average FI
of the gene is taken as its empirical P-value. An analogous
process is followed with the external null distribution. In
this example, we would sample 100 000 random groups
from the list of nsSNVs observed in genes within the
same slimGO as the fourth gene in Figure 1B across
more than 1000 individuals (27). Finally, the P-values
are corrected for multiple testing using either FDR
(internal null distribution) or Bonferroni’s approach
(external null distribution).

Because germline SNVs have been subjected to purify-
ing selection their FI scores tend to be lower than those of
somatic mutations. This implies that the external null dis-
tribution will have a lower mean than the internal null
distribution. Therefore, when the average FI of a gene is
compared with the external null distributions the empir-
ical P-value will always be higher than when compared
with the internal null distribution. This effect is illustrated
in Supplementary Figure S1 through the examples of
two clearly FM-biased genes and one non-FM-biased
gene in cll.

Beyond these differences between external and internal
P-values, we believe that the most important output of
Oncodrive-fm is the ranking of the FM bias of genes.
Top ranking genes will exhibit the largest deviations in
their average FI from the background, thus making the
best driver candidates. The actual cutoff—it is important
to bear in mind that the usual 0.05 after FDR or
Bonferroni’s also entails numerous arbitrary decisions—
to select the candidate driver genes are to be set by the
oncogenomics researcher in full knowledge of the tumor
type they are analyzing and their data.

Since our implementation of Component 2 of
Oncodrive-fm inputs three FI scores matrices
(see above), for each gene we compute three empirical
P-values of its FM bias. The final step of Component 2,
therefore, consists in integrating these three P-values into
a unified measurement of significance. We do this through
Fisher’s combined probability test (28).

Note that the step of SNVs random sampling aimed at
computing the FM bias of genes does not correct for gene
length. Such a correction is not necessary because
Oncodrive-fm evaluates the accumulation of FI rather
than the number of mutations. In other words,
Oncodrive-fm does not assess how likely it is that a gene
has a particular number of mutations, but instead given
the number of mutations it has how biased they are to
high FI. Longer genes, which are more prone to bear
somatic mutations by chance, should possess low
average FI scores, because their mutations—if not
implicated in tumorigenesis—will hit any segment of the
FI score range. This is an important methodological dif-
ference between Oncodrive-fm and recurrence-based
methods such as MutSig.
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We have also implemented Component 2 for the detec-
tion of significantly FM-biased pathways using the defin-
ition of canonical pathways from MsigDB (29). In this
case, instead of randomly sampling one million groups,
we compute Zscores for the average FI of pathways
with respect to the null distribution of random average
FIs obtained as described above for genes. This is
possible because pathways bear more mutations than in-
dividual genes—we compute the FM bias of pathways
with at least 10 mutations, thus assuring through the
Central Limit Theorem that the sampled null distributions
of random average FIs are very close to normality.
(Supplementary Figure S2 illustrates the normality of
sampled null distributions for gbm pathways with differ-
ent numbers of mutations.) As before, three Zscores
are obtained for each pathway, one for the average
FI of each FI scoring method. The combination is then
done at the level of Zscores using Stouffer’s method (30).
Finally, the FM bias P-value is obtained from the
combined Zscore.

Application of Oncodrive-fm to three datasets of
cancer somatic mutations

We have applied the Oncodrive-fm approach to three
datasets of genes with SNVs and fsindels in samples of
different tumor types: glioblastoma multiforme (6)
(gbm), ovarian serous carcinoma (7) (osc) and chronic
lymphocytic leukemia (24) (cll). We computed the FM
bias of all genes with at least 2-mutated samples (3 in
the osc dataset) and pathways with at least 10-mutated
samples.

The gbm dataset with only a limited number of genes
sequenced was evaluated using the external null distribu-
tion, whereas the second and the latter, produced by
whole-exome sequencing were assessed using the internal
null distribution. We computed the FM bias P-value of
each gene across 135 gbm samples as explained above
using the external null distribution—hence external FM
P-value—and compared them with the results of the
recurrence analysis using MutSig (10). It is highly remark-
able that almost all genes found to be recurrently mutated
also show high ranking FM bias (q-value< 0.001, i.e.
TP53, PTEN, NF1, PIK3R1, ERBB2, EGFR, RB1,
PIK3CA), indicating that not only are they frequently
mutated but the mutations selected in the tumor cells
are biased toward those having high FI on the protein.
We mark these genes as Recurrent and FM biased (RFM;
green at the left of Figure 2A heatmap). We regard this
observation as a proof of concept of our method. Three
recurrently mutated genes (PSMD13, CHECK2 and
GSTM5) on the other hand exhibit low or no FM bias,
which implies that the SNVs they bear possess low FI
scores. This contradiction raises the possibility that at
least some of them may not be true drivers, whereas
others could be false negatives of Oncodrive-fm. Hence,
we classify them as Recurrent but not-FM biased or
RnFM (dark red).

Finally, Oncodrive-fm detects other 32 genes with high
FM bias which are overlooked by the recurrence analysis,
hence termed lowly RFM, lRFM. Nine examples are

shown in Figure 2A (pink), and the whole list appears in
Supplementary Figure S3. We think these deserve closer
examination as some of them have indeed been found to
be involved in tumorigenesis, as ALDH1A3, FGFR1,
FGFR3 or MAPK9 (details in the Discussion section).
As remarked above, Oncodrive-fm may thus be

appreciated as a tool to rank genes following their likeli-
hood of being drivers, hence aiding to guide new,
better-focused studies to search for true drivers. It is
important to bear this in mind, especially in the cases
where the external null distribution is used to compute
the FM-bias. Top-ranking FM-biased genes are likely to
be involved in tumorigenesis, but it must always be the
specialized oncogenomics researcher who draws the line of
actual significance based on their accumulated knowledge.
Next, we used Oncodrive-fm to detect F- biased genes in

a dataset of somatic mutations in 77 gbm samples
produced by the Johns Hopkins University (gbm JHU)
to assess the reproducibility of its results in this independ-
ent smaller dataset (25). In summary (see Supplementary
Figure S4), we found eight genes that are FM biased in
both gbm datasets. Other nine significantly FM-biased
genes in the gbm TCGA dataset are overlooked by
Oncodrive-fm in the gbm JHU dataset; eight of them,
because they appear mutated in only one sample and
were thus not analyzed. Finally, six FM-biased genes in
gbm JHU were not sequenced in gbm TCGA. There is,
therefore, a high degree of agreement in the results of
Oncodrive-fm in these datasets. Nevertheless, the com-
parison suggests that probably new lowly recurrent FM-
biased genes will be revealed as more tumor samples are
sequenced. The differences found in the results of both
datasets also reveal that the heterogeneity of the tumor
type may lead to the appearance of different arrays of
lowly recurrent driver genes in independently selected
groups of patients.
Furthermore, in an effort to understand the contribu-

tion to the FM P-value of the three FI scoring methods
employed, we ran Oncodrive-fm with the FI scores of each
method separately (SIFT, PPH2 and MA) on the gbm
dataset (Supplementary Figure S3, fourth, fifth and sixth
one-column heatmaps). We noticed that the MA score
provides the greater contribution to the detection of
FM-biased genes; it detects 33 of the 43 FM-biased gbm
genes. Nevertheless, Oncodrive-fm fails to detect PIK3CA
and PIK3C2G as FM biased when using only the MA FI
score. These two known driver genes are detected only by
the SIFT FI score. Based on these results, we recom-
mend—whenever possible—to employ a combination of
complementary FI scores to assess the FM bias of genes.
We also investigated the actual contribution of sSNVs,

stSNVs and fsindels to the FM bias of gbm genes by
computing their average FI including only nsSNVs
(Supplementary Figure S3, third one-column heatmap).
We found that while most highly recurrent genes
continue to appear as FM bias, some particular known
drivers are no longer FM biased, either because their
average FI decreases as a consequence of the removal of
stSNVs and fsindels, or because they are left with no (or
only one) sample mutated, thus being filtered out from the
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Oncodrive-fm analysis. This is the case for RB1,
CDKN2A and PIK3C2A.
In the analysis of the cll dataset, Oncodrive-fm is able to

detect the gene SF3B1 as the highest ranking FM-biased
gene (Figure 2B) in coincidence with a recent report on its
importance in the development of this disease (24). In
total, the FM bias analysis of cll samples produces 15
candidate driver genes (q-value< 0.001) if the FM
P-value is computed using the external null distribution.
This list is reduced to only 5 when the internal null distri-
bution is employed to compute the FM P-value

(q-value< 0.05), which is possible in the case of cll,
where whole-exome sequencing was performed. Once
again, the top ranking among these, such as XPO1 and
CHD2 are worth exploring further.

Most recurrently mutated genes in osc according to
MutSig are detected by Oncodrive-fm as significantly
FM biased (q-value< 0.01). This is the case, for example
of TP53, BRCA1 and BRCA2 (Supplementary Figure S5).
Only two genes, ZNF614 and B4GALNT4 are missed by
Oncodrive-fm because they have less than 3 samples with
mutations in the dataset. On the other hand, 43 genes fall

Figure 2. Examples of high and low ranking FM-biased genes and gene modules identified by Oncodrive-fm in the gbm and cll datasets. (Main
heatmaps in (A) and (B) show samples in columns and genes in rows and the color illustrates the MA scores of somatic mutations.) (A) Gbm genes
analyzed by Oncodrive FM can be found RFM (green bar at the extreme left of the panel), lRFM (pink) or RnFM (dark red). (B) Top 15 and
bottom 11 ranking genes (in terms of FM corrected external P-value) of the cll dataset. FM ext. qv, corrected P-values of the FM bias analysis using
the external null distribution. MutSig qv, corrected P-values of the mutation recurrence analysis (implemented by MutSig). FM int. pv, P-values of
the FM bias analysis using the internal null distribution. FM int. qv, corrected P-values of the FM bias analysis using the internal null distribution.
CGC/Refs, Annotations from the Cancer Gene Census or general literature (numbers correspond to references in the text) linking genes to tumor
development. All heatmaps were built using Gitools (47) and include only genes with at least two mutated samples. NA, not included in the MutSig
analysis; NS, not significant.
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in the lRFM category. Once again, several among these,
such as CDK12 and MLL are known drivers, whereas
others, such as PYGM, GART and GNAS could repre-
sent novel driver genes.

Oncodrive-fm also reveals several pathways with high
FM bias in gbm, cll and osc patients (Figure 3), such as
the MAPK and mTOR pathways in gbm and the mRNA
splicing pathway in cll. The malfunctioning caused to the
latter pathway by the alteration of gene SF3B1 has been
experimentally demonstrated (24); nevertheless, the
U2AF2 gene is affected by variants in samples where
SF3B1 is not mutated. The same behavior is apparent in
the cases of EGFR and NF1 in the MAPK pathway
(Figure 3A), and PTEN and PIK3R1 in the mTOR
pathway (Figure 3B) in gbm samples, in agreement with
the notion that driver genes tend to be mutated within
pathways in a mutually exclusive manner (21).

DISCUSSION

It is an established notion that genes implicated in tumori-
genesis are supposed to bear functional mutations, and the
score of FI of somatic variants observed in this group of
genes has been used before to link them to cancer devel-
opment (18). Nevertheless, the idea that cancer drivers are
biased toward the accumulation of functional variants
across cancer samples had never been previously exploited
to develop a method to systematically prioritize candidate
cancer. Oncodrive-fm constitutes a first step in that
direction.

Lowly recurrent FM-biased genes contain known drivers

The analysis of gbm samples using the external null dis-
tribution produced a list of 43 genes with significant FM
bias (q-value< 0.001). Ten of them are detected also as
recurrently mutated by MutSig (q-value< 0.05)—hence
qualified as Recurrently mutated and with significant
FM bias, RFM. Actually, despite being based on different
principles, Oncodrive-fm and MutSig show a strikingly
high level of coincidence in their lists of likely driver
genes (Figure 2A and Supplementary Figure S2). This cor-
roborates that likely driver genes do not simply tend to
accumulate somatic variants, but these variants are biased
to those having high FI.
A quick glance at the lRFM genes reveals that at least

some of them have been recognized as important for the
tumorigenesis in different cell types. The ALDH1A3 gene,
which encodes one of the isoforms that contribute to the
aldehyde dehydrogenase activity in the cell is one of the
lRFM genes in gbm (Figure 2A and Supplementary
Figure S3). In the past years, several studies have dis-
covered alterations in this enzyme as well as other
isoforms in cancer stem cells and in several human and
murine tumors (30,31).
The FGFR1 gene, also a lRFM in gbm is a member of

the fibroblast growth factor receptor family, which
belongs to the superfamily of tyrosine kinase receptors.
Members of the fibroblast growth factor receptor family
are involved in the regulation of a wide range of processes
in normal cells, including proliferation, apoptosis and cell
migration. They are altered in a number of human cancers
from hematopoietic malignancies to solid tumors.

Figure 3. Examples of significantly FM-biased pathways in gbm and cll. (A) and (B) Genes with somatic mutations in gbm tumors in the MAPK
(KEGG) and mTOR (BIOCARTA) pathways, respectively. (C) Genes with variants in cll tumors in the mRNA SPLICING (REACTOME)
pathway. FM ext. qv, corrected P-values of the FM bias analysis using the external null distribution. FM int. qv, corrected P-values of the FM
bias analysis using the internal null distribution. All heatmaps include only samples with variants.
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Germline mutations in the FGFR1 gene and other fibro-
blast growth factor receptors are known to play a part in
various human skeletal dysplasias, whereas somatic muta-
tions, amplifications and deletions in several of them are
involved in the genesis of several tumors. These alterations
generally confer them oncogenic properties, although
under some conditions the proteins of this family may
also act similarly to tumor suppressors (32–34).
The product of another lRFM gbm gene, the MAPK9

(also known as JNK2) is one of the serine-threonine
kinases that act as transducers in the non-canonical Wnt
signaling pathway. These proteins phosphorylate a wide
range of substrates, including transcription factors such as
p53. Their involvement in tumorigenesis has been docu-
mented in several cell types (35,36)
The cyclin-dependent kinase inhibitor A encoded by the

CDKN2A gene is a key regulator of the cell cycle, where it
participates in maintaining the correct levels of active
p53 by negatively regulating MDM2. It also inhibits
CDK4 thus promoting the G1/S progression, and its in-
volvement in cancer development as a tumor suppressor in
different malignancies is well established. It is significantly
homozygously deleted across TCGA gbm samples and
germline mutations that affect it have been linked to
increased susceptibility to develop gliomas. Oncodrive-
fm found the CDKN2A gene to be highly FM biased
whereas it was not detected as recurrently mutated by
MutSig (Figure 2A) (6,37,38).
From the results of the analysis of the ICGC cll dataset

we highlight four genes that were not identified among
those recurrently mutated in the original study.
The ASLX1 gene is annotated in the CGC because it
has been found mutated in myelodysplastic syndrome
(2). On the other hand, the CHD2 gene encodes a
chromodomain helicase DNA-binding protein, which is
involved in chromatin remodeling and histone-deacety-
lation. This specific member of the family appears to be
a key player in hematopoiesis (39).
The gene XPO1 codes for the exportin-1 protein, a

member of the beta-karyopherin family involved in
ribosome biogenesis. Exportin-1 specifically deals with
the translocation of newly assembled ribosome subunits
out of the nucleus. A recent study (40) has found it to
be regulated by c-Myc and p53, which through it tightly
control the intracellular transport of ribosome building
blocks at different stages of completion. Although this
study cites a previous report that found importin-7—
another member of the beta-karyopherin family—over-
expressed in colorectar cancer (41) it clarifies that very
little is still known about the probable involvement of
the ribosome biogenesis machinery in cancer development.
Nevertheless, apart from the ICGC study (24) whose data
we used to validate the Oncodrive-fm approach, at least
two independent sequencing studies of cll genes have
found somatic SNVs in XPO1 (42,43). None of these
three, however, have found XPO1 to be recurrently
mutated, suggesting that its role in promoting tumorigen-
esis would be limited to few patients. It would act, in other
words as a lowly recurrent driver gene. Another gene that
participates in mRNA export pathways, NXF1 (44) is also
significantly FM biased in CLL. Interestingly, because this

gene bears two stSNVs along with a nsSNV, it would not
have been detected if the former had been excluded from
the FM bias analysis.

Different pathways are FM biased in the three
tumor types

Significantly FM-biased pathways differ in gbm, osc and
cll. This conclusion becomes apparent from Sup-
plementary Figure S6. Although cell-cycle and DNA
repair-associated pathways dominate the FM bias land-
scape of gbm and osc, cll exhibits a different pattern
where transcription and mRNA processing pathways are
frequently significant targets of functional variants. These
opposite behaviors are probably the reflection of different
routes to tumorigenesis. Our finding that cll mRNA pro-
cessing pathways tend to accumulate functional variants
has recurrently appeared in the past couple of years as a
feature apparently common to several leukemias and
lymphomas (45,46).

Using Oncodrive-fm

A PERL implementation of the Oncodrive-fm approach is
available for download at http://bg.upf.edu/oncodrive.
We have prepared this as a general implementation to
assess the FM bias. The user can compute the FM bias
of genes and pathways in their own dataset of somatic
mutations in a cohort of samples employing any FI
score. (If they choose to run Oncodrive-fm with a single-
FI score the system skips the combination step.)
Exemplary files for the gbm and cll datasets used in this
article are provided along with the scripts. Running the
pipeline is very straightforward; all necessary parameters
are defined in a configuration file, of which the corres-
ponding examples for gbm and cll are also available.

When analyzing the output of Oncodrive-fm—or any
other method that attempts to uncover significantly
mutated genes across a cohort of tumors—the researcher
must take into account for instance the tissue type that
corresponds to the tumor under analysis, to correct for
gene expression. They should also acknowledge that mu-
tations are not the only cancer-causing alterations: copy
number variations and changes in the methylation status
are also part of this landscape. Also, when preparing the
file to compute the FM bias of genes and pathways it may
be important to exclude from the analysis tumor samples
that present an excessive mutational burden which could
arise from factors such as treatment with chemo-
therapeutic agents or heterogeneity in grade, stage or
patients’ age.

In summary, in this work we have shown that the
FM bias is useful to uncover driver genes, including
lowly recurrent driver genes, and gene modules.
Moreover, it possesses an attractive advantage over
recurrence-based approaches: FM-biased genes may be
detected even if only few cancer samples have been
sequenced. This might allow oncogenomics researchers
to design exploratory whole-exome or whole-genome
sequencing assays including a relatively small number of
samples and identify interesting candidates for deep
re-sequencing. Because recurrence is also an essential
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piece of information when it comes to detect significantly
mutated genes, if somatic variants from a
large cohort of patients are available we recommend
computing the FM bias in conjunction with the analysis
of recurrence to reliably identify likely driver genes and
pathways.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–6.
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10. Getz,G., Höfling,H., Mesirov,J.P., Golub,T.R., Meyerson,M.,
Tibshirani,R. and Lander,E.S. (2007) Comment on ‘‘The
consensus coding sequences of human breast and colorectal
cancers’’. Science, 317, 1500.

11. Lin,J., Gan,C.M., Zhang,X., Jones,S., Sjöblom,T., Wood,L.D.,
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