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Abstract: We propose a novel type of spectral diffractive lenses that operate in the ±1-st diffraction
orders. Such spectral lenses generate a sharp image of the wavelengths of interest in the +1-st and
–1-st diffraction orders. The spectral lenses are convenient to use for obtaining remotely sensed
vegetation index images instead of full-fledged hyperspectral images. We discuss the design and
fabrication of spectral diffractive lenses for measuring vegetation indices, which include a Modified
Red Edge Simple Ratio Index and a Water Band Index. We report synthesizing diffractive lenses
with a microrelief thickness of 4 µm using the direct laser writing in a photoresist. The use of the
fabricated spectral lenses in a prototype scheme of an imaging sensor for index measurements is
discussed. Distributions of the aforesaid spectral indices are obtained by the linear scanning of
vegetation specimens. Using a linear scanning of vegetation samples, distributions of the above-said
water band index were experimentally measured.

Keywords: diffractive lenses; spectral lenses; vegetation indices; hyperspectrometer

1. Introduction

Hyperspectral remote sensing vegetation imagery has found uses in environmental
monitoring, agriculture, forestry, urban green infrastructures, and so on. In particular,
applications of hyperspectral imagery in agriculture include the assessment of the current
condition of fields, crops yield, and detection of crop diseases [1–4]. In recently published
works, it was proposed that imaging hyperspectrometers be directly mounted on the farm-
ing machinery, thus enabling some target vegetation parameters, such as the transient crop
moisture content, to be estimated in a possibly quick manner [5,6]. A characteristic feature
of the vegetation and its current condition is described by the spectral reflectance, which is
widely varying for different wavelengths. However, the most common approach to assess-
ing target vegetation parameters is based on the analysis of two to four wavelengths, which
utilizes the so-called spectral vegetation indices [7–17]. The vegetation indices represent
algebraic relationships of a combination of the reflectance of the object under analysis for
several narrow spectral bands, which are indicative of values of the target parameters of
the object under study (e.g., the moisture content in the vegetation cover). Thus, out of a
large number of spectral channels of the imaging hyperspectrometer (50–300 channels),
just 5 percent are really utilized. Considering that a full-range hyperspectrometer is rather
costly, it would be inexpedient to mount it on an irrigating machine [5], which uses a
single vegetation index. A possible way to address this problem is through simplifying the
hyperspectrometer design, with many recent publications discussing issues of the minia-
turization and reduction of cost of the hyperspectrometers and multispectrometers [18–29].
Notably, some papers offered very unconventional approaches. For instance, Ref. [29]
discussed the use of a special narrowband illumination source in place of a sophisticated
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setup for wavelength separation, which has made it possible to create a very cheap setup
for multispectral imaging, though applicable only in laboratory conditions. However, it
seems appropriate to design a device specifically intended for vegetation index measure-
ments. Works that rely on such an approach have already been published, with a diffractive
lens array utilized for wavelength separation in Ref. [30], resulting in a compact setup for
measuring the NDVI index but suffering from high aberrations in the off-axis region. In
this work, we propose the design of a spectral device for measuring a single vegetation
index based on spectral diffractive lenses (SDL). A method for designing the SDLs was
described in Refs. [31,32]. The SDLs enable several wavelengths of light to be focused in
the same plane but in different diffraction orders, e.g., with wavelengths λ1 and λ2 being,
respectively, imaged in the +1-st and –1-st diffraction orders. In fact, as a combination of
the microreliefs of a harmonic lens and a beam-splitting diffraction grating, the designed
scheme is the development of an idea proposed in Ref. [24].

Spectral diffractive lenses, which focus light of specified wavelengths corresponding
to one or several spectral indices at different points, can be utilized when designing simple
and compact sensors for the real-time monitoring of the vegetation cover and in specialized
agricultural machinery [5,6]. In this work, we discuss the SDLs for measuring the following
VIs: a modified red edge simple ratio index and water band index. The former enables
detecting the presence of vegetation while the latter measures its relative moisture. The
water band index is of special importance for real-time monitoring because sometimes it
can essentially vary in the course of minutes.

2. Synthesis of Spectral Diffractive Lenses

The method for designing spectral lenses has been described in detail [31] and so we
do not dwell on it at length in this work.

For the experimental study, we have chosen SDLs for measuring vegetation indices
mSR705 and WBI, i.e., a modified red edge simple ratio index at wavelengths of 455 nm
and 750 nm and a water band index at wavelengths of 900 nm and 970 nm. The SDLs
were synthesized by direct laser writing on a laser writing station CLWS-2014 in a 6-µm-
thick photoresist FP-3535 preliminarily applied on a silicon substrate by centrifuging. The
resulting microrelief was of ~4-µm thickness.

Lenses of diameter 4 mm and focal length f = 70 mm were used. Illustrations in
Figures 1a and 2a; depict optical microscope images of SDL microreliefs for separating the
wavelengths 455 nm and 750 nm, and 900 nm and 970 nm, respectively.

Figures 1b and 2b depict microrelief fragments with a clearly seen fine structure of the
SDLs, while Figures 1c and 2c depict profilograms measured relative to the lens symmetry
axis using a Tencor profiler.
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3. Experiments with a Tunable Laser

A tunable laser was used to accurately measure a point spread function of the SDLs
at the wavelengths under study. The experimental optical scheme used is presented in
Figure 3.
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Figure 3. An experimental optical scheme for measuring the point spread function of the SDL: 1—a tunable laser NT-242,
2—a micro-objective, 3—a 10-µm pinhole, 4—a collimating lens, 5—an SDL, 6—a recording camera Basler acA 1920-40um
(Basler, Ahrensburg, Germany).

The tunable laser NT-242 generates a laser beam of a specified wavelength. Lens 2
focuses the beam onto a 10-µm pinhole before Lens 4 produces a collimated beam with
a divergence angle of 0.0001◦. The collimated beam then falls on the SDL, which focuses
light onto a photosensitive matrix of the Basler acA 1920-40um camera (Basler, Ahrensburg,
Germany). Figure 4a,b, respectively, show intensity patterns for wavelengths of 455 nm
and 750 nm (vertical bars mark positions of the diffraction orders –1, 0, and +1). The zero
diffraction order is found exactly at the image center. Figure 4c,d show magnified images
of the point spread function for the wavelengths 455 nm and 750 nm, respectively.
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From Figure 4, the light is really seen to be focused at the diffraction orders +1 and –1,
with the PSF being ~10 µm for both wavelengths.

Figure 5a,b, respectively, depict intensity patterns for the wavelength of 900 nm and
970 nm, with the vertical bars marking positions of the orders –1, 0, and +1. The zero
diffraction order is located exactly at the image center. Figure 4c,d show magnified images
of the PSF for wavelengths of 900 nm and 970 nm.
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From Figures 4 and 5, the PSF width at half-height is seen to be less than 10 µm,
showing that the image is of high quality and there is a potential feasibility for developing
SDL-based sensors. Such sensors may find uses for measuring the hyperspectral VI of
interest with high spatial resolution.

4. Experiments with a Broadband Source

The next series of experiments aimed to simulate the operation of an SDL as a sensor
component for vegetation index measurements. In initial experiments, a 0.4–0.5-mm
pinhole in an opaque screen put in front of a high-power halogen lamp served as a small
light source (Figure 6). The light source and a lens were at a distance of ~1 m. Besides, to
simulate the operation of an imaging hyperspectrometer, in which objects are commonly
scanned through a slit diaphragm, we experimented with several 0.4–0.5-mm-long light
sources approximately arranged along a line.
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Thanks to a comparatively small distance to the object, the SDL-aided image was
generated at a working distance of 75 mm, where a photosensitive matrix of the Basler acA
1920-40umcamera (Basler, Ahrensburg, Germany) was located. The experimental results
are shown in Figure 7. In Figure 7a, the photosensitive matrix is seen to have registered
two diffraction orders, namely, –1 for a wavelength of 455 nm and +1 for 750 nm, with the
line-arranged group of sources imaged as two lines at diffraction orders –1 and +1 for the
above-said wavelengths.
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Figure 7. Matrix-displayed diffraction orders for wavelengths of 455 nm and 750 nm for (a) a single point source and (b) a
line-arranged group of point sources.

The diffraction order at 750 nm is seen to be brighter thanks to an essential difference
in the spectral intensities (Figure 8).

From Figure 8, the lamp spectral intensity for 750 nm is seen to be seven times that for
455 nm, which accounts for the intensity difference in the diffraction orders in Figure 7.

The SDL is seen to form sharp images of non-point sources in the +1st and –1st
diffraction orders, opening up a possibility for SDL-aided imaging both in a full-frame
regime and a scanning-through-slit regime. In other words, it becomes possible to image
fairly wide swaths using a 100-um slit, or wider. With this approach, the process of
obtaining VI imagery can be essentially accelerated.
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An experiment was also conducted with an SDL intended for measuring wavelengths
of 900 nm and 970 nm for calculating a hyperspectral water band index. With these
wavelengths being much closer to each other compared to the previous experiment, they
will be imaged too close on the photosensitive matrix when using a hyperspectrometer
with a conventional diffraction grating. With the proposed SDL, the two wavelengths are
separated at sufficiently distant different diffraction orders (Figure 9).
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Figure 9. SDL-aided diffraction orders imaged on the matrix for wavelengths of 900 nm and 970 nm from (a) a single source
and (b) a group of linearly arranged ~1-mm sources.

From Figure 9, the orders are seen to have the near-same brightness, which is due
to the near-same spectral intensity of the light source at the wavelengths used. Figure 10
illustrates the possibility of the instantaneous imaging of fairly wide swaths instead of
scanning through a narrow slit. To calculate the area covered when using slit-aided
scanning, we used an ISO test pattern 12233:2000 (Figure 10a) used for measuring the
electron camera resolution. Figure 10b shows a fragment of the test pattern image obtained
at 900 nm and 970 nm in the –1st and +1st diffraction orders, respectively.
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Figure 10. (a) An optical test pattern (the area covered is within a dashed-line rectangle and marked with an arrow) and (b)
a fragment of the test pattern image obtained through a 315-um slit diaphragm, with the covered area marked by dashed
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From Figure 10b, images of fairly good quality are seen to be formed in both diffraction
orders. Meanwhile, thanks to a considerably large coverage area, the object scanning
process can be essentially accelerated when compared with conventional hyperspectral
imaging where the slit width commonly needs to be matched with the photosensitive
camera pixel size.

In the SDLs synthesized, both optical power and diffraction efficiency are relatively
low [31], so it would be technically challenging to use them ‘as is’ in the field experiments.

So, the experiment on obtaining vegetation index images was conducted in the lab-
oratory. The experimental optical setup in Figure 11 placed in a light-proof case (which
is removed in the illustration) comprised an objective lens 1, a slit diaphragm 2, a spec-
tral diffractive lens SDL 3, and a Basler acA 1920-40 um camera 4 (Basler, Ahrensburg,
Germany).
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In the experiment, a LED-projector source illuminated a vegetable object placed on a
green polycarbonate substrate to complicate the experimental conditions. The object was
put on a linearly moving table to perform a scanning process. Using objective 1, the object
was imaged in the plane of slit diaphragm 2 whose width was varied from 80 um to 800 um,
before SDL 3 generated a spectral image on a photosensitive matrix of the Basler acA
1920-40um4 camera (Basler, Ahrensburg, Germany), with images for other wavelengths
later being formed similarly.

Objects for VI measurements included tree leaves, namely, those of elm and linden,
which are easily available in an urban area. The leaves were glued to the substrate, as
shown in Figure 12. The upper part was exposed to the high-power heat from a 1500 W
halogen lamp from a 1-m distance for 16 min, thus making the exposed parts essentially
drier. The duration and mode of the drying procedure were fitted experimentally. The aim
was to achieve a tint of the dried-up leaf parts visually indiscernible from that of the wet
leaf parts to be able to check the effectiveness of the use of the water band index because
otherwise, the leaf dryness would be easier to estimate using an RGB image. As a result of
the drying procedure, the upper parts of the leaves got essentially drier while the lower
parts were shielded with a mirror. The leaf humidity was checked using conductometry,
via measuring the electric resistance of the leaves. The wet leaf parts were found to have
a resistance of 200–280 kOhm, while the dried-up leaf parts had an essentially higher
resistance of 11–30 MOhm, indicating an essentially lower water content in the latter.
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Figure 12. Leaves of (a) elm and (b) linden were used in the experiment.

In the course of the experiments, the objects were illuminated with a high-power
150-W LED projector which provided illumination levels similar to those from the midday
sunshine in terms of power and energy distribution, while almost not heating the leaves
to avoid fast-drying of their other parts. For obtaining a hyperspectral image, the objects
under study were moved using a motorized moving table. Several dozens of experiments
that were conducted aimed to obtain water band index images that would be indicative of
the nonuniform moisture content in the leaves. Figure 13 depicts (a,b) SDL-aided images of
elm leaves, respectively, acquired at 900 nm and 970 nm, and (c) a water band index image
for the elm leaves from Figure 12a and a scale of index values.

A similar experiment was conducted for linden leaves. Unlike the experiments with
the elm leaves, the linden leaves were dried over almost their entire area, except for tips
(bottom) but the 12-min drying procedure was milder. In doing so, the purpose was to
look into the possibility of using a water band index with a higher-than-two number of
gradations. While in the experiments with the elm leaves there were only two possible
outcomes—dry fragment vs. wet fragment—in the experiment with the linden leaves
the moisture content was to vary over a fairly wide range due to nonuniform drying of
the leaf surface. Measurements of the electric resistance showed that it changed from
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270–320 kOhm to 1.0–2.0 MOhm, strongly depending on where the ohmmeter probe got in
touch with the leaf surface.
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In Figures 13c and 14c, most wet leaf parts are the brightest and the dried up leaf parts
are the darkest.
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Thus, the results obtained for the index image are as one would expect. The more
dried-up fragment at the top of the image contains both light and gray, and even black
fragments, corresponding to fully wet and fully dried-up leaf parts. Unfortunately, using
conductometry it is not possible to determine the moisture of small leaf fragments in
such detail. To look into the potentiality of the use of the water band index with a large
number of identifiable moisture levels, one needs either to employ pointwise measurement
techniques of leaf moisture or to conduct in future field experiments where it would be
possible to measure the moisture of individual plants.

5. Discussion

The SDLs proposed herein are a combination of diffractive lenses and beam-splitting
gratings. Both types of diffractive structures have been known and utilized for a long
time. However, their combined use in a single microrelief opens up opportunities for
brand new applications in imaging spectroscopy. Actually, SDL-based imaging systems
can be used for obtaining index images. Besides, a considerable distance between separate
orders enables the imaging to be performed using a technique essentially different from
the narrow slit-aided scanning. Normally, in a scanning imaging spectrometer, the slit
width is matched with the pixel size of a photosensitive matrix, so that the slit image on
the matrix equals the matrix pixel. Meanwhile, in the SDL-based design proposed herein,
the slit width depends on the inter-order distance, with the main condition imposed on
the slit width being that the diffraction orders do not superpose. In our experiments, the
diffraction orders were located at a distance of 0.35 mm for the Modified Red Edge Simple
Ratio Index and 0.5 mm for the Water Band Index, making it possible in the latter case, to
bring the slit width to 0.8 mm, considering that the distance of the SDL to the slit was 170
mm, i.e., 2.5-times the SDL focal length. We would like to note that in this work it was not
our purpose to determine precise values of leaf moisture; we just aimed to demonstrate
that using the water band index it is possible to qualitatively distinguish between wet and
dry leaves while there is no clear visual difference. An attempt to obtain a larger number
of water band index gradations in the experiment with linden leaves turned out to be
only partially successful due to the lack of a precise method of moisture measurements in
small leaf fragments. It will only be possible to investigate the accuracy of leaf moisture
classification at the following stages of the study after spectral lenses suitable for field
experiments will have been synthesized.

Parameters of diffractive spectral lenses designed and fabricated as part of this work
were fitted to make the fabrication process simpler, and before they can be used in field
experiments, the DSL parameters will need to be modified. For instance, the DSL diam-
eter will need to be increased while reducing its focal length, in this way increasing the
system aperture ratio and reducing its size. However, this will lead to a more complicated
fabrication procedure because this means an essentially smaller spectral lens period on the
periphery.

The proposed optical elements have been analyzed just for two wavelengths but the
number of wavelengths such a lens can focus on is unlimited. It is potentially possible to
synthesize sensors for measuring three-to-four wave indices. We also note that in terms
of practical uses, it is important to increase the number of moisture content gradations
detectable (potentially bringing them to 10–12). We envisage that this can be achieved
in later field experiments using DSL with a higher aperture ratio, which will enable the
moisture content of individual plants in the image to be measured using conventional
accurate measurement techniques.

6. Conclusions

Based on the study results, we can infer that SDLs are well suited for acquiring
vegetation index images. Besides, thanks to the essential spatial separation of different
spectral components, the use of SDL-based schemes makes it possible to form index
images in an interim regime between the full-frame imaging using narrow-band filters and
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scanning with a narrow slit diaphragm. In this work, we implemented an instantaneous
imaging regime for fairly wide swaths, followed by sewing a full-frame index image.

A water band index image used to detect the vegetation moisture content has been
experimentally obtained and shown to be in qualitative agreement with the moisture
content of green elm and linden leaves.
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