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Abstract: Rice is a worldwide staple food and heavy metal contamination is often reported in rice
production. Heavy metal can originate from natural sources or be present through anthropogenic
contamination. Therefore, this review summarizes the current status of heavy metal contamination
in paddy soil and plants, highlighting the mechanism of uptake, bioaccumulation, and health risk
assessment. A scoping search employing Google Scholar, Science Direct, Research Gate, Scopus,
and Wiley Online was carried out to build up the review using the following keywords: heavy metals,
absorption, translocation, accumulation, uptake, biotransformation, rice, and human risk with no
restrictions being placed on the year of study. Cadmium (Cd), arsenic (As), and lead (Pb) have been
identified as the most prevalent metals in rice cultivation. Mining and irrigation activities are primary
sources, but chemical fertilizer and pesticide usage also contribute to heavy metal contamination
of paddy soil worldwide. Further to their adverse effect on the paddy ecosystem by reducing
the soil fertility and grain yield, heavy metal contamination represents a risk to human health.
An in-depth discussion is further offered on health risk assessments by quantitative measurement
to identify potential risk towards heavy metal exposure via rice consumption, which consisted of
in vitro digestion models through a vital ingestion portion of rice.

Keywords: heavy metals; rice; paddy soil; health risk assessment

1. Introduction

Because there is an increasing trend of population growth and demand of rice con-
sumption, the use of an escalating number of pesticides by producers, in order to protect
their crop, may influence the level of heavy metals in soils [1,2]. Heavy metal pollution on
a paddy field has recently been of great concern as an environmental pollutant due to of its
bioaccumulation in the environment and non-biodegradable properties [3]. Heavy metals
have been commonly discussed as a potential pollutant in rice and it is classified as one of
the major important toxic substances, due to its high potential risk to the ecosystem and
human health [3].
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The International Agency for Research on Cancer (IARC) (2012) [4] has classified ar-
senic (As), cadmium (Cd), chromium (Cr), and nickel (Ni) as group 1 carcinogen, since long-
term exposure leads to increased risk of various type of cancer, including disruptions in
tumor suppressor gene expression, damage repair processes, and enzymatic activities that
are concerned in metabolism through oxidative damage [5]. By nature, heavy metals can
be divided into two forms, which are organic and inorganic [6]. For example, inorganic
As is more harmful than organic form due to the pentavalent inorganic compound of
As that solubilizes in water to the weak acid form and produce arsenate [7] that affects
people by inducing ground water contamination [8]. Heavy metals in the form of or-
ganic pollutant may gradually degrade into less harmful components through chemical
or biological processes [9,10]. Environmental contamination of the biosphere with heavy
metals have caused intensive agricultural and other anthropogenic activities and posed
critical problems for safe use of agricultural land [11]. Agricultural soils are potentially
contaminated with essential and nonessential heavy metals through existing agriculture
practice with arbitrarily use of agrochemicals, such as pesticide and fertilizers, along with
mechanical cultivation that change the speciation and the mobility of heavy metals [12,13].

In subsistence farms of Asia, there is a clear verification of the association between Cd
poisoning and human renal dysfunction [14] and, certainly, rice has been recognized as one
of the prime sources of Cd and Pb to human intake especially in Japan [15–18]. Plant organs
have different abilities to adsorb, translocate, and accumulate heavy metals, and the
speed and magnitude of these processes vary between plant species and cultivars [19–24].
Other than that, the adsorption and accumulation of heavy metals in soil is driven by soil
properties, such as pH, and the concentration of organic matter [25]. The direct transfer of
heavy metals to human body from plant parts of interest is rice grain, which is an edible
part for consumption that may cause a threat to human health [25].

Because heavy metals are proclaimed to amass in living organisms, especially toxic
metals, such as As, Cd, and Pb, health risk assessments are conducted on the basis of
heavy metal concentration found in paddy plants and soils to evaluate the potential
health risk [26]. The heavy metal taken up from plants may transfer into the food chain
and adversely affect human health, depending on their carcinogenicity [26]. People are
potentially exposed to toxic metals and metalloids from rice, especially those who take it
as staple food for daily energy requirement. The tolerable daily intake (TDI) for Cd, Hg,
and As, which are highly toxic to human exposure, are recommended to be 1.0 µg/kg body
weight (bw)/day, 0.57 µg/kg (bw)/day, and 2 to 7 µg/kg (bw)/day, respectively [27].

Understanding the soil-metals uptake mechanisms in food crop is essential for devis-
ing the effective remediation process. In order to achieve this goal, this review initially
describes the mechanism of heavy metal uptake in paddy plants and soils and their con-
tributing factors with respect to bioaccumulation. Impressively, this review tries to provide
an overview on the human risk assessment in relation to non-carcinogenic and carcinogenic
risk. In this regard, it also covers information regarding in vitro digestion models that can
be conducted to determine the bioaccessible form of heavy metals.

2. Heavy Metal Contamination in Paddy Plants and Soils

Table 1 shows the summary of heavy metal concentration in paddy plants and soil in
selected areas of different countries. A study conducted by Singh et al. [28] at Ramgarh
Lake, India, found that the Zn, Cr, Cu, and Pb contents are higher in the cropped soils
rice plants as compared to different parts of rice plants, except for Cd and As, which is
due to their adsorptive nature in soil [29]. Meanwhile, the metals in rice plants are found
to be mostly accumulated in the roots, rather than in other parts, such as stalk and grain
sub-samples. Generally, As is found to be of the highest metal uptake by the roots in
experimental sites, whereas, in the grains, the As concentration were less than in the roots
and straw of paddy crops. Liu et al. [30] suggested that roots function as barrier for metal
translocation by protecting stem and grain parts from metal contamination. Looi et al. [31]
also have reported that concentration of As was found to be the highest (4.62 mg/kg) in
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roots due to the presence of iron plague on root surface that is highly associated with As
accumulation, as shown in Table 1.

Meanwhile, at East Coast of India, specifically in East Coast Road (ECR), Tamil Nadu,
Satpathy et al. [32] reported that Zn was of the highest and cadmium (Cd) was of the
lowest concentrations of heavy metals in paddy soils. For different parts of paddy plants,
the finding is almost similar to Singh et al. [28], where most of the metals accumulated
more in the roots than in other parts, which are shoots and grains. The element Zn which
is known as a micronutrient, is of the highest metal uptake in roots, followed by Pb, Cr, Cu,
and Cd. Most metals in paddy plants, such as Fe, Mn, Zn, and Cu, were found extensively
and they are micronutrients that were required in various enzyme activities and play
significant roles in photosynthesis and growth of the plants [33,34]. The concentration of
Cd in shoots was greater than roots and grain, since Cd was easily taken up by plants and
transported to different parts, although there is no beneficial effects and it is nonessential
for plants and animals [35]. Besides, this metal also reduced the photosynthesis and uptake
of nutrient when the plants are exposed [36].

In China, paddy soils that were collected from three areas of Hunan Province during
harvest season in 2013 were severely polluted with Cd with a total mean of 1.4 mg/kg [37],
which are significantly higher as compared to the Chinese environmental quality stan-
dard (0.3 mg/kg) and the corresponding background values of Hunan (0.098 mg/kg).
The variation in Cd concentration was associated with the geology area and resulting from
human mining activities [37]. Similarly, other elements, such as As and Pb, showed a
slightly higher concentration in comparison with standard and background values due to
agriculture activities, including the application of various pesticides and fertilizers [38,39].
Moreover, studies that were conducted on the paddy soil from Nanxun and Suxian coun-
ties revealed that Zn and Pb concentration had the largest mean value, both exceeding
100 mg/kg [40,41].

The excessive usage of pesticide and herbicide could result in the accumulation of Zn,
Pb, As, and Cu in the topsoil of agricultural fields [42]. Hence, the long-term application of
fertilizer and pesticides may influence the level of heavy metal in soils [43,44]. The element
of As in rice grain from Gangneung, South Korea, and Zhejiang Province, China has
accumulated by 0.13 mg/kg and 0.08 mg/kg, respectively [45,46]. It was reported that
As can be easily and largely accumulate by all cereal types due to its high bioavailability
under reduced soil conditions [47]. Moreover, rice crop has great efficiency in assimilating
As into grain as compared to other staple cereal crops [48]. Zeng et al. [37] reported that
the concentration of As in brown rice may not only be affected from soil concentration,
it but could also by other factors, such as physical-chemical properties of the growing
soil, including the equilibrium pH that affect heavy metal sorption and desorption on soil
components. According to Du et al. [49], most of the soils in Hunan are acidic and they
may enhance the mobility of heavy metals from soil to rice.

In Malaysia, Khairiah et al. [50] and Looi et al. [31] studied the heavy metal accu-
mulation of paddy cultivation in Kedah, whereas the study in Sabah was conducted by
Yap et al. [51], Aziz et al. [52], and Payus et al. [53] in three different areas. Based on Table 1,
the concentration of Cd in rice grain and other parts of paddy plants, such as leaf, stem,
and roots by Khairiah et al. [50] was lower when compared to Yap et al. [51]. The authors
reported that the application of pesticides and fertilizers in Langkawi did not influence
the increase of Cd content in paddy plant. The level of Cr in paddy root, as reported
by Payus et al. [53], was greater than shoot part. which includes main stem and plant
above 10 cm from root postulated due to occurrence of redox reaction in plants that caused
the movement of chromium from root to the shoot part. Moreover, chromium (III) can
also react with carboxylic functional groups (-COOH) in plants. This kind of reaction can
distract the translocation of the metal elements from root to shoot and, thus, result in low
Cr concentration in shoot parts [54]. Most of the metals (Pb, Cd, Cr, and Cu) concentrate in
roots of paddy, except for Zn, which is highly accumulated in the stems of paddy and soils.
The accumulation of Zn in plants is due to the absorption of the metal by roots from the
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plants that are enclosed with soil [55]. The plants require the Zn element as an important
nutrient in order to synthesize proteins, hormone growth, and reproductive processes of
plants. Nonetheless, the excessive level of Zn in plants, which is more than 200 mg/kg,
will cause toxicity, resulting in stunted root growth and undersized leaves in plants [55].

Table 1. Summary of heavy metals concentration in paddy plants and soil in selected areas of different countries.

Area of Study Sample(s)
Mean Concentration of Heavy Metals (mg/kg)

References
Cd As Pb Cr Cu Zn

Nanxun County,
China

Rice grain 0.01 - - - 2.49 14.28
Zhao et al. [40]

Soil 0.21 - 33.2 - 31.06 106.82

Ramgarh Lake,
Gorakhpur, UP,

India

Roots 6.16 22.77 7.09 2.93 2.09 2.24

Singh et al. [28]
Rice grain 0.01 0.08 0.54 0.09 - -

Rice straw 0.64 0.87 1.88 - - -

Soil 0.05 7 23 62.5 24 73

Kompipinan,
Papar district,

Sabah, Malaysia

Roots 0.38 - 7.7 5.46 4.94 16.08

Payus et al. [53]

Stem 0.11 - 0.04 3.26 0.38 29.6

Leaf 0.11 - 0.26 4.34 0.71 12.4

Grain 0.13 - 2.06 4.12 0.74 12.75

Soil 0.32 - 8.03 4.16 6.62 13.89

Gangneung,
South of Korea

Rice 0.01 0.13 0.01 - - -

Choi et al. [45]

Rice seed 0.001 0.22 0.1 - - -

Rice straw 0.04 0.81 0.03 - - -

Rice root 0.05 2.07 5.29 - - -

Fertilizer 0.01 1.22 5.61 - - -

Soil 0.1 0.54 5.93 - - -

Kubang Pasu,
Kedah, Malaysia

Soil 0.2 0.6 3.72 2.3 - -

Looi et al. [31]
Root 0.29 4.62 1.35 0.57 - -

Stem 0.06 0.02 0.07 0 - -

Grain 0.01 0.06 0.21 0.04 - -

Hunan Province,
China

Soil 1.4 16.8 51.4 27.2 - - Zeng et al. [37]

Brown rice 0.31 0.34 0.02 0.106 - -

Mean concentration of heavy metals (mg/kg)
References

Area of study Sample(s) Cd As Pb Cr Cu Zn

Suxian County,
South China Soil 2.94 64.51 179.63 - 46.62 - Song et al. [41]

Ranau Valley,
Sabah, Malaysia

Soil 0.45 3.54 - 3360.56 154.83 229.98
Aziz et al. [52]

Rice grain 0.54 0.05 - 1.61 2.61 37.48

Kota Marudu,
Sabah, Malaysia

Rice 0.18 - ND 1.34 0.31 0.69

Yap et al. [51]

Husk 0.18 - ND 0.73 0.19 0.52

Leaf 0.2 - ND 1.02 1.24 1.21

Stem 0.24 - ND 0.71 1.53 0.68

Root 0.19 - 1.57 1.86 9.25 2.31

Soil 0.78 - ND 2.08 ND 21.09
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Table 1. Cont.

Area of Study Sample(s)
Mean Concentration of Heavy Metals (mg/kg)

References
Cd As Pb Cr Cu Zn

Zhejiang
Province, China Rice 0.04 0.08 0.06 - - - Huang et al. [46]

East Coast Road
(ECR), India

Soil 0.02–0.60 - 5.30–
19.80 1.30–7.80 0.03–5.40 3.80–33.8

Satpathy et al.
[32]

Shoot 0.20–0.30 - 0.30–1.20 0.40–0.90 0.04–0.30 2.30–6.00

Root 0.11–0.20 - 3.60–5.30 0.60–1.70 0.20–0.50 4.70–
16.90

Grain 0.02–0.05 - 0.01–1.00 0.10–0.60 0.10–0.30 3.20–7.20

Langkawi,
Kedah, Malaysia

Rice 0.02–0.04 - 0.06–0.08 - 0.04–0.08 0.18–0.22

Khairiah et al.
[50]

Leaf 0.01–0.02 - 0.06–0.09 - 0.20–0.52 3.71–7.17

Stem 0.01–0.02 - 0.04–0.08 - 0.07–0.24 0.78–1.08

Root 0.02 - 0.10–1.06 - 0.08–0.34 0.77–1.16

Soils 0.01–0.03 - 0.28–0.51 - 0.14–0.20 0.23–0.47

Note: -, Not included in analysis; ND, Not Detected.

3. Mechanism of Heavy Metals Uptake in Plants

Many researchers have investigated contaminant uptake and its mechanism by plants.
It might be useful to regulate the contributing factors to enhance the mechanism of plant
uptake. With reference to Usman et al. [56], the plants normally play its role both as “accu-
mulators” and “excluders”. Accumulators sustain even with concentrating contaminants
in their aerial parts. The plants biotransform or biodegrade the contaminants into inactive
forms in their tissues. The excluders, in principle, limit the uptake of contaminant into
their biomass.

Plants have developed very specific and highly efficient mechanisms to attain crucial
micronutrients from the environment, albeit when existing at low ppm and ppb levels.
The plant roots, which are assisted by plant-producing chelating agents and plant-inducing
pH changes and redox reactions, can dissolve and absorb micronutrients from down
levels in the soil, even from partly not soluble sediments. Plants have also changed very
explicit mechanisms to translocate and store micronutrients in their parts. The same
mechanisms are also embraced in the uptake, translocation, and storage of heavy metals,
where the nature of the chemical property’s mimics those of essential elements. Therefore,
mechanisms of micronutrient uptake are of great attention to phytoremediation [57].

The array of known transport mechanisms set in the plant cell plasma membrane
included in ion uptake and translocation involve (i) co- and anti-transporters (proteins
that utilize the electrochemical gradients that are produced by ATPases to initiate the
active uptake of ions), (ii) proton pumps (ATPases that occupy energy and produce elec-
trochemical gradients), and (iii) channels (proteins that ease the transport of ions into the
cell). A range of ions is likely will be taken up by each transport mechanism. The ionic
species interaction during several heavy metal contaminants uptake is the primary problem
in the mechanism of uptake. Following roots uptake, the translocation of contaminants
into shoots is required, since the harvest of biomass from root is generally not achievable.
There were lack of information concerning which forms of metal ions are translocated from
the roots to the shoots [58].

Heavy metals uptake mechanisms by plants are expected to be strictly controlled.
Plants, in general, do not accumulate trace elements over their metabolic needs. Such set-
tings are trivial in the range of 10 to 15 ppm of most trace elements suitable for most
needs [59]. The exemptions are plants that are classified as “hyperaccumulator”, which can
absorb toxic metal ions at a concentration in the thousands of ppm. In addition, other mat-
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ter is the form of which toxic metal ions are accumulated in the plants, specifically in
hyperaccumulator, and how these plants are resistant to metal toxicity. In principle, mani-
fold mechanisms are involved; including the storage in the plant’s vacuole seems to be a
major one [60].

Evapotranspiration is a term used to explain the process of water evaporating from
plant leaves into plant roots. The water serves as a pump to disseminate nutrients ab-
sorbed to the plant roots and shoots. The original soil was leaved undisturbed in order to
remove contamination from roots to shoots. The plants that execute a shoot-to-a metal-
concentration ratio that is greater than one are called “hyperaccumulators”, and these
plants are normally used in phytoextraction strategies. Otherwise, the plants with shoot-
to-root ratio less than one are categorized as non-accumulating plants. Theoretically,
toxic environment should be flourished with hyperaccumulators, where it requires less
maintenance and generates high biomass [61].

Heavy metals, like Cd, Zn, Co, Mn, Ni, and Pb, can be accumulated by metal ac-
cumulating plant species concentrated up to 100 or 1000 times higher than the excluder
(non-accumulator) plants. Typically, microorganisms living in the rhizosphere, like bacteria
and fungi, may promote mobilizing metal ions and increase the bioavailable fraction [62,63].

Figure 1 showed the proposed mechanism of As uptake in paddy plants by Zhao et al. [64].
The As speciation in rice grain is dominated by dimethylarsinic acid (DMAV) and inorganic
As (iAs), which are majorly composed of arsenite, As (III). The total iAs is generally reported
by the sum of two species through the conversion between As (III) and arsenate, As (V),
which may occur during some extraction procedures [65]. In the biotransformation process,
these iAs are converted to methylated arsenicals by enzymes, which are the biomarker
of chronic arsenic exposure and the end metabolites [65]. Verbruggen et al. [66] reported
that the phosphate transporters in As translocation manage the influx of arsenate, whereas
the arsenite is taken up via aquaporin nodulin 26–like intrinsic proteins. In the xylem
sap of plants, inorganic As (V) and As (III) are the major arsenicals found [67]. A very
small proportion of As is translocated to shoot tissue (leaf), where similar reduction and
sequestration mechanisms exist and, via the phloem, some of the total As content ceases in
the vacuoles and other parts of edible tissue, such as rice grain [67]. Different rice varieties
and rice genotypes have shown significant differences in accumulating As at its higher
concentration [68]. This might be partly due to the surface characteristics of rhizosphere,
which also play an important role in iron plague formation of reddish-brown coating on
the root surface [68].

Besides As, the irrigation water in paddy field often also causes loads of Cd in soil.
It accumulates in grains following four major transport processes, namely (1) the uptake of
Cd by root, (2) root-to-shoot translocation by xylem flow, (3) redirection of nodes, and (4)
remobilization from leaves [69]. When the element Cd binds to cysteine-rich protein,
such as metallothionein, their concentrations are increased to 3,000-fold [65]. Phytochelatins
(PCS) has been classified as class III metallothioneins and Cd is known as the strongest
inducer for their biosynthesis [70]. The Cd element is able to form complexes with PCS
and is transported to vacuoles [71]. PCS-metal complexes possibly form a more complex
aggregation in vacuole by isolating toxic metals from various metal sensitive enzymes in
plant cell cytoplasm [71].
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Figure 1. Uptake mechanism of arsenic in paddy plants. Adapted from Zhao et al. [55]. Copyright
permission granted by Copyright Clearance Center.

3.1. Factors Affecting the Uptake Mechanisms

There are several factors that can affect the uptake mechanism of heavy metals,
as shown in Figure 2. By having knowledge about these factors, the uptake performance
by plant can be greatly improved.

3.1.1. The Plant Species

Plant species or varieties play important roles in the phytoremediation process,
which includes phytofiltration, phytoextraction, phytostabilization, phytovolatilation, phy-
todegradation, and rhizodegradation [72,73]. The uptake of a compound is affected by
plant species characteristics [73]. The success of the phytoremediation depends upon the
identification of suitable plant species that hyperaccumulate heavy metals and produce
large amounts of biomass while using established crop production and management prac-
tices [74]. Various plants have different responses toward various heavy metals exposure.
Some plants are sensitive, whereas others have a high tolerance to several heavy metals.
As a result of plant-metal interaction, some plants accumulate heavy metals from soil
and, thus, their growth and development declines. Nevertheless, some plants have a high
tolerance and they maintain their growth and development below heavy metals stress [73].

3.1.2. The Properties of Medium

Remediation enhancement via pH adjustment, the addition of chelators, and fertilizers
employed in agronomical practices may affect metals uptake [75]. As such, to reduce the
amount of lead absorbed by plants, the pH of the soils is adjusted to a level of 6.5 to 7.0.
This is due to lead absorption being affected by the pH, organic matter, and phosphorus
content of the soil [76].
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Figure 2. Factors which are affecting the uptake mechanisms of heavy metals.

3.1.3. The Root Zone

The root zone is of special interest of the plant tissues in phytoremediation. Th root is
able to absorb, store, or metabolize contaminants inside the plant tissue. Another phytore-
mediation mechanism is the degradation of contaminants in the soil by plant enzymes and
rhizospheric microorganisms that exudes from the plant’s roots via phytodegradation and
rhizodegradation, respectively [73]. As a result of morphological adaptation to drought
stress, the root diameter of a plant is increased, and root elongation is reduced as a response
to less permeability of the dried soil [77].

3.1.4. Vegetative Uptake

Environmental conditions will affect the vegetative uptake [78], where the temperature
affects the growth substances and, subsequently, root length. There are differences in terms
of the structure between the root under field conditions and greenhouse conditions [79].
Contaminant-specific hyperaccumulator will determine the success of phytoremediation,
specifically the phytoextraction [80]. The key to proving the applicability of phytoremedi-
ation is to understand the mass balance analyses and the metabolic fate of pollutants in
plants [81]. The bioavailability of the metal in the water phase will determine the metal
uptake by plants. This is supported by the retention time and interaction of the metal
with other elements and substances in the water. Moreover, the metal-soil bound, pH,
redox potential, and organic matter content are other factors that affect the tendency of
the metal to exist in ionic and plant-available form. The ability of plants to lower the pH
and oxygenate the sediment will affect the soil condition and metal content [82]. Chelating
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agents and micronutrients as biodegradable physicochemical factors are also added to
increase the bioavailability of the heavy metals [83].

3.1.5. The Chelating Agent

Increasing the bioavailability of heavy metals through the addition of biodegradable
physicochemical factors, such as chelating agents and micronutrients, can influence the
uptake of heavy metals by the energy crops. Other than that, microbial community in and
around the plant will also stimulate the heavy metal uptake capacity. Consequently, the re-
mediation periods will become shorter and less expensive. The use of synthetic chelating
agent in heavy metal contaminated soil could promote the leaching of the contaminants
into the soil. Therefore, the proper usage of the agent has to be taken in consideration [84].
For example, the use of a chelating agent may be required in alkaline soils since the
bioavailability of heavy metals in soils decreases above pH 5.5–6. The metal translocation
in plant tissue as well as the overall phytoextraction performance has been improved when
exposing the plants to EDTA for longer period (two weeks) [85]. The bioavailability of
metals is affected by citrate and oxalate that are exuded by plant roots. The enhancement
of phytoextraction of soil-polluting heavy metals is aided by chelate-assisted phytoremedi-
ation chelating agents, such as NTA and EDTA. The presence of a ligand affects the bio
uptake of heavy metals through the formation of metal-ligand complexes and it changes
the potential to leach metals below the root zone [86].

3.2. Bioaccumulation Factor (BAF)

The soil-to-rice transfer factor or bioaccumulation factor (BAF) is an index for evaluat-
ing the potential of a metal transfer from soil to plant [87]. BAF is calculated for each rice
sample by the ratio of the element concentration in the grain to that in the corresponding
soil to quantify the bioaccumulation effect of rice towards the heavy metal uptake from the
soils [12,88,89] (Equation (1)). The BAF is measured as:

BAF = Cr/Cs (1)

where Cr and Cs represent the heavy metal concentrations in rice grain and soils, respec-
tively, based on the basis of dry weight (w/w) in mg/kg. If the BAF is ≤ 1, then the
value denotes that the plant is able to absorb the heavy metals, but do not accumulate,
whereas BAF > 1 means that the heavy metals accumulate in plants [28,32]. According to
Ma et al. [90] and Cluis [91], BAF is further classified as hyperaccumulators and excluder to
the samples that accumulate metals > 1 mg kg−1, and < 1, respectively. The toxic effect of
heavy metals from excluder plant is restricted to the roots, which is then detoxified, and the
aerial parts of plants remain more or less unaffected. Meanwhile, the hyperaccumulator
plants are able to accumulate without phytotoxicity symptoms in their aboveground parts,
even if exposed to high concentration of heavy metals [92,93].

Table 2 summarizes BAF values in paddy plants from different areas by several studies.
The toxic metals, such as mercury (Hg) and cadmium (Cd), were found to be higher than
other studied metals in BAF values by Singh et al. [28] and Satpathy et al. [32], respectively.
However, the BAF values for both toxic metals were less than one, which indicates that
the plants only absorb the heavy metals and are not metal accumulators. Hence, the local
inhabitants of respective areas have low exposure to heavy metal, since the soil-to-plant
transfer is one of the key components of human exposure to metals via food chain [94].
From Table 2, the BAF values for Mn (1.88) from Neeratanaphan et al. [95] and all metals
(Zn, Cd, Cr, Pb, and Cu) from Payus et al. [53] were more than 1, which indicated that Oryza
sativa is a hyper accumulator plant with high potential to absorb metals from the soil [96].
The accumulation, uptake, and phytotoxicity may also vary, depending on cultivars used.
Previously, Xie and Huang [97] discovered that there were significant differences for the
uptake and accumulation of As in different parts of plants among the 11 rice cultivars
planted in As-polluted paddy fields. However, there were no significant differences found
by Xie at al. [98] for BAF of Pb, Cd, Cr, As, and Cu among the conventional rice, two-line
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hybrid rice, and three-line hybrid rice, which indicate that different rice varieties from
the same soil background have no relation to the bioaccumulation ability of heavy metals
for rice.

Table 2. Summary of the bioaccumulation factor (BAF) values in paddy plants from different areas.

Area of Study
Bioaccumulation Factor (BAF) Values

References
As Cd Pb Cr Cu Zn Mn Hg

Dabaoshan mine,
South China - 0.20 0.005 - 0.013 - - - Zhuang et al.

[94]

Jiangsu Province, China 0.025 0.178 0.005 0.006 0.196 0.258 - 0.047 Hang et al. [12]

Ramgarh Lake,
India (Control site) 0.014 0.016 0.03 0.002 0.002 0.007 0.038 0.272

Singh et al. [28]
Ramgarh Lake,

India (Experimental site) 0.016 0.017 0.028 0.001 0.002 0.008 0.032 0.308

East Coast Road (ECR),
India - 0.05–0.20 0.001–0.60 0.04–0.07 0.04–0.10 0.20–0.50 0.10–0.20 - Satpathy et al.

[32]

Kompipinan Papar
district, Sabah - 4.12 1.28 4.00 1.03 5.16 - - Payus et al. [53]

Ranau Valley, Sabah 0.24–0.89 - - 0.00–0.01 0.00–0.03 0.07–0.10 0.01–0.02 - Aziz et al. [52]

Isfahan Province, Iran - 0.50–1.80 0.15–0.20 - - 0.20–0.50 - - Rahimi et al.
[99]

Kalasin Province,
Thailand - - 0.23 0.10 - - 1.88 - Neeratanaphan

et al. [95]

Note: -, Not included in analysis.

3.3. Translocation Factor (TF)

The translocation factor (TF) is known as an indicator of heavy metal accumula-
tion in plants or mobility of heavy metals in the soil and it also quantifies the differ-
ences in the bioavailability of metal to plant [100]. According to Barman et al. [101] and
Gupta et al. [102], the TF or mobilization ratio was calculated to evaluate relative transloca-
tion of metals from soil to other parts, such as root, shoot, or grain, of the plant species,
as follows (Equation (2)):

TF = Cs/Cr (2)

where Cs represents heavy metal concentration in plants’ shoot and Cr represents heavy
metal concentration in plants’ soil or root [28]. The value of TF greater than 1 showed that
the paddy plant is able to hyperaccumulate from roots to shoots, according to Rezvani
and Zaefarian [103]. By evaluating TF, the bioavailability of heavy metals in investigated
soils could be revealed. The higher the TF values are, the more mobile or available the
metals are [104–106].

Table 3 summarizes TF values in paddy parts from different areas by various studies.
The soil-to-root translocation in rice plant by Singh et al. [28] and Rahimi et al. [99] found
that the Cd value is more than 1, which indicates that rice root accumulated high quantities
of Cd2+ when grown in polluted areas [107]. Because Cd2+ was substantiated to be more
bioavailable than other heavy metals, hence, it resulted in higher biological absorption
coefficient for Cd [28,108]. There are certain species of plants that are capable of removing
heavy metals from the soil and ground water through absorption and accumulation by
roots, or precipitation within root zone [109]. Other than that, the application of genetic
engineering on plants, such as transgenic rice, may significantly enhance plant abilities
to uptake, translocate, and transform heavy metals, including limiting their toxicity [110].
The genetic modification in rice by enhancing drought tolerance can also potentially affect
non-target organisms or nutrient mobilization, as discovered by Jeong et al. [111], due to
overexpressing the OsNAC10 gene in roots that cause pleiotropic effects on other genes
that play a role in nutrient mobilization. Thus, this modification might enhance the uptake
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of the metals, resulting in elevated metal concentration in the aboveground plant parts,
which can affect essential nutrients and causes oxidative stress.

Table 3. Summary of the translocation factor (TF) values in paddy plants from different areas.

Area of Study Paddy Parts
Translocation Factor (TF) Values

References
As Cd Pb Cr Cu Zn Mn Hg

Ramgarh Lake,
India (Control

site)

Soil to root 4.19 11.34 0.39 0.04 0.07 0.02 0.16 0.96

Singh et al.
[28]

Root to shoot 0.04 0.08 0.22 0.33 0.07 0.41 0.43 0.71

Shoot to grain 0.06 0.01 0.33 0.112 0.38 0.55 0.116 0.95

Ramgarh Lake, In-
dia (Experimental

site)

Soil to root 4.20 7.19 0.38 0.05 0.09 0.03 0.18 1.28

Root to shoot 0.03 0.10 0.26 0.27 0.08 0.34 1.03 0.33

Shoot to grain 0.09 0.02 0.28 0.10 0.29 0.75 0.54 0.71

East Coast Road
(ECR), India

Soil to root - 0.30–0.60 0.20–0.40 0.20–0.30 0.09–0.20 0.40–0.90 0.30–0.70 -
Satpathy et al.

[32]
Root to shoot - 1.30–2.40 0.07–0.30 0.50–0.80 0.20–0.60 0.20–0.50 1.30–2.30 -

Shoot to grain - 0.09–0.20 0.04–0.80 0.30–0.70 1.10–2.50 1.00–1.50 0.20–0.30 -

Ranau Valley,
Sabah, Malaysia

Roots to
shoots - - - 0.03–0.06 0.04–0.34 2.01–2.48 0.58–1.28 - Aziz et al. [52]

Kompipinan
Papar district,

Sabah

Roots to
shoots - 0.94 0.29 1.97 0.37 3.43 - - Payus et al.

[53]

Area of Study Paddy parts
Translocation Factor (TF) Values

References
As Cd Pb Cr Cu Zn Mn Hg

Isfahan Province,
Iran

Soil to root - 1.52 0.486 - - 0.389 - -
Rahimi et al.

[99]Root to shoot - 0.688 0.656 - - 0.732 - -

Shoot to grain - 0.854 0.456 - - 1.228 - -

Kalasin Province,
Thailand

Soil to root - - 2.10 0.28 - 2.76 - -
Neeratanaphan

et al. [95]
Root to stem - - 0.11 0.49 - 3.80 - -

Stem to leaf - - 3.23 1.40 - 1.90 - -

Stem to grain - - 1.67 1.14 - 0.22 - -

Note: -, Not included in study.

3.4. Enrichment Factor (EF)

There is a limited study on the enrichment factor (EF) specifically for paddy plants
and soil. EF was calculated in order to derive the degree of soil contamination and heavy
metal accumulations in soil and in plants growing on contaminated site with respect to
soil and plants growing on uncontaminated soil [112]. EF was calculated by the following
equation (Equation (3)):

EF =
Concentration of metals in soil or plant parts at contaminated site

Concentration of metals in soil or plant parts at uncontaminated site
(3)

Satpathy et al. [32] found that all metals (Cu, Cd, Zn, Cr, Mn, and Pb) showed EF
values that were greater than 1, which indicates that the samples have relatively high
potential to uptake metals from the soil [96]. In addition, the high availability and metal
distribution in contaminated soils eventually cause metal accumulation in plant species
grown in soil to increase [102,112]. Similarly, the EF values of eight metals (Cr, Cd, Mn, Pb,
As, Zn, Hg, and Cu) in experimental soil, root, stem, and grain parts of paddy were greater
than 1 [28]. Barman and Bhargava [113] reported that the EF value for edible parts, such as
rice grain, is an important criterion for the selection of suitable crop species, which can
be selected for cultivation in a field having an elevated level of metal contamination or
receiving industrial effluent.
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4. Human Diseases Associated with Heavy Metal Contamination in Rice

Rice is a major crop globally and it is especially important in Asia [114,115]. Therefore,
the information on rice consumption with toxic metal contamination and its health-related
issue is of paramount importance. Cd, As, and Pb are among the major contaminant in rice
in Asia, where they have been ranked as the most hazardous substances according to the
criteria of frequency of occurrence in the environment, toxicity, and potential exposure to
humans [116]. The increased risks of all-cancer mortality were reported due to long-term
environmental exposure to Cd [117].

Studies that were conducted at a few locations in (a) Japan [118–120], (b) China [49],
and (c) Thailand [121] similarly found the relationship between human Cd disease and the
survival of rice farmers. Cadmium exposure was found to be related to the consumption
of rice and presented a high risk to local farmers in Japan particularly the female farmers
over 70 years of age had decreased function of renal tubular [119]. Locally produced rice in
Japan was found to be contaminated with Cd and those people who had Cd poisoning from
rice consumption suffered spinal and leg pain with other complications, including anaemia,
coughing, and kidney failure, which primarily caused death [118]. This phenomenon is
also known as the ‘itai-itai’ disease, which generally related to environmental pollution due
to local mining activities in Japan. The heavy metal contamination and its accumulation
in China has also become a serious and major environmental problem because of the
continuous industrialization and urbanization [122,123]. The Hunan Province, for instance,
which provides the main area for rice production, had a food safety issue in regards to the
discovery of “Cd rice” [49], which resulted in a high incidence of malignant tumors among
the local population [117,124]. Besides Japan and China, rice grains grown in Thailand,
specifically at Mae Sot district of Tak Province, have elevated levels of Cd resulting in
higher amounts of urinary Cd as compared to those living in other districts [121]. In 2010,
Swaddiwudhipong and colleagues [125] have reported a greater excretion rate of urinary
total protein, which reflects that Cd exposure might cause severe tubular damage and/or
glomerular permeability to larger proteins. Therefore, cadmium-exposed persons should
be screened for other medical conditions, such as diabetes and urinary stones, found to be
related to proteinuria that lead to neuropathy.

Rice, together with other food and drinking water, may be a source of consider-
able combined exposure to inorganic arsenic. Inorganic arsenic, which is more toxic,
is known to cause several diseases and cancers of different parts of the body, including the
skin, cardiovascular system, and reproductive systems [126], and even diabetes through
epigenetic mechanisms, as reported by several studies in South Asia [63]. Studies by
Jayasumana et al. [127] revealed that the usage of phosphate fertilizer is a main source of
As in areas that are affected with chronic kidney disease in Sri Lanka.

Moreover, among the hazardous heavy metals, Pb has been listed as “the chemical of great
concern” by the new European REACH regulations, and it was known as the second most
harmful pollutant following arsenic [128]. High levels of Pb in rice grain employed quality issues
and adverse health implications to human liver, endocrine, and reproductive system [129].

5. Health Risk Assessment (HRA) of Heavy Metals in Rice

Health risk assessments (HRA) are generally focused on target populations by evalu-
ating their potential health effects when exposed to certain toxic elements. HRA includes
non-carcinogenic and carcinogenic risk assessments through three exposure pathways,
which are ingestion, dermal contact, and inhalation, which have been recognized as impor-
tant tools for identifying health risks in human activities and providing risk evidence for
decision makers [130].

Indeed, rice consumption was considered to be the major pathway of human exposure
to heavy metals [46]. The HRA that was conducted by Man et al. [131], Zota et al. [132],
and Qu et al. [133] found that children are highly susceptible to heavy metal pollution as
compared to adults due to their physiological and behavioral characteristics. The toxicity
of metals in terms of toxicological effects may vary in each person. One way to predict
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their bioaccumulation and transformation is to develop a mathematical model for HRA
when associated with heavy metal contamination, especially in soil [134].

There are various mathematical models for risk assessments, such as health risk
index (HRI), target cancer risk (TCR), hazard index (HI), and target hazard quotient
(THQ), which have been used to assess the carcinogenicity of the particular heavy metals
present, especially in food and drinks. Table 4 tabulates the mathematical models for risk
assessment on heavy metal exposure on rice consumption. Uncertainties might occur
when conducting risk assessments from natural variability in an individual’s response,
variability in toxicants concentration, in measurement or parameters estimation, a lack
of precise knowledge, and data scarcity [135,136]. Therefore, deterministic or stochastic
approaches can be used as health risk assessment models. Monte Carlo Simulation (MCS)
is an example of a stochastic approach, and it has been widely used in risk assessment.
Djahed et al. [137] used MCS for both non-carcinogenic and carcinogenic risk assessments
on rice consumption in Iran to specify the uncertainty by analyzing and controlling the
existing uncertainty in the input parameters.

5.1. Exposure Estimates

Chronic daily intake (CDI) can be used to evaluate heavy metal exposure from soil
through inhalation, dermal contact, and ingestion [122,138], whereas average daily dose
(ADD) or estimated daily intake (EDI) can be measured for exposure from rice grain.

5.1.1. Chronic Daily Intake (CDI)

Heavy metals potentially accumulate in the human body through the food chain and,
thus, constitute serious health threats [139]. There are three pathways that are involved in
the estimation of the direct exposure to heavy metal via soil, which are: (i) the inhalation
of particulates emitted from the soil, (ii) dermal contact with the soil, and (iii) incidental
ingestion of the soil [122]. The CDI of these three exposure pathways can be defined
employing U.S Environment Protection Agency (USEPA) methodology [140]. The exposure
pathways can be measured using the following equation:

CDIInhalation =
PM10 × MPM × ET × IRair ×EF × ED

BW × AT × PEF
(4)

CDIDermal =
Csoil × SA × PE × AF × ABS × ED

BW × AT × 106 (5)

CDIIngestion =
Csoil × IRair × EF × ED

BW × AT × 106 (6)

where PM10 is the ambient particulate matter in the area of study (mg/m3); MPM is the
heavy metal concentration of airborne particulate matter, which is assumed to be equal to
Csoil, where dust is derived from the soils [141]; ET is the exposure time (hours/day); IRair
represents the inhalation rate of air (m3/day); EF is the exposure frequency (days/year);
ED is the exposure duration (year); Csoil is the concentration of heavy metals in soil (mg/kg);
SA is the skin surface area for soil contact (cm2/day); FE is the fraction of dermal exposure
ratio to the soil; AF is the soil adherence factor (mg/cm); ABS is the fraction of applied
dose absorbed across the skin; and, 106 is the conversion factor, from kg to mg.

Based on the findings from Liang et al. [138], soil ingestion was the main contributor
in all of the soil exposure pathways, whereby the soil pathways are reduced in the order of
ingestion > dermal absorption > inhalation. Similarly, Hu et al. [122] and Xiao et al. [142]
also found the same trend of CDI values for ingestion, dermal absorption, and inhala-
tion. Therefore, soil ingestion was the most significant contributor to the total health risk
of inhabitants.
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5.1.2. Average Daily Dose (ADD) and Estimated Daily Intake (EDI)

ADD or EDI is a parameter used to calculate the oral exposure dosage during a specific
period by expressing it as a daily dose per unit body weight [143]. The equation of ADD or
EDI in Equations (7) and (8) was formulated as:

ADD = (C × IR × EF × ED)/(BW × AT) (7)

EDI = (C × CON)/BW (8)

where C is the heavy metal concentration in rice grain (mg/kg); Con is the average daily
consumption of rice in the region (kg/day); and, BW is the average body weight of people
in the region (kg) [144]. IR, ED, EF, and AT represent the ingestion rate, exposure duration,
exposure frequency, and averaging time, respectively [41,145]. The ADD or EDI of metals
rely on the concentration of metal in food and daily amount of food consumed [41,95,143].
The EDI of heavy metals via rice ingestion reported by Neeratanaphan et al. [95] was higher
than the previous study conducted by Huang et al. [146], which indicates that the rice
consumption among local inhabitants in Khong Chai district of the Kalasin Province in
Thailand is probably exposed to heavy metal contamination. The average daily intake of
rice among adults and children living around Huludao Zinc Plant in China was 389.2 and
198.4 g/person/day, respectively [87]. Fan et al. [143] reported that the ADD value for Cd
is much higher than other heavy metals and suggested a heavy daily intake of Cd from rice
for adult from three main areas of mines (Liuyang, Hengyang, Loudi) of Hunan Province,
China. The perennial intake of contaminated rice crops is likely to induce adverse health
effects from heavy metal exposures.

Table 4. Mathematical models for risk assessment on heavy metal exposure. Adapted from EPA [147].

Model of Risk Assessment Mathematical Equation Description of Equation

Health Risk Index (HRI) ∑ n (Cn × Dn)
RfD−Bw or EDI

RfD

Cn = Heavy metal concentrations in samples (mg/kg)
Dn = Daily intake of samples (mg/person/day)

RfD = Oral reference dose (mg/kg/day)
Bw = Body weight for children and adults (kg)

EDI = Estimated Daily Intake (mg/kg/day)

Hazard Index (HI) ∑n
i=1 HRI or ∑ HQ HRI = Hazard risk index

HQ = Hazard Quotients

Hazard Quotient (HQ) ADI
RfD

ADI = Average Daily Intake (mg/kg.day)
RfD = Oral reference dose (mg/kg/day)

Target Hazard Quotients
(THQ)

MC × FI × EFr × ED
RfD × Bw × AT × 10−3

MC = Metal concentration in samples (mg/kg)
FI = Ingestion rate (mg/day/person)

EFr = The exposure frequency (days/year)
ED = Total exposure duration (years)

RfD = Oral reference dose (mg/kg/day)
Bw = Body weight for children and adults (kg)

AT = The non-carcinogen averaging time
(ED ×365 days/year)

Cancer Risk (CR) ADI × SF ADI = Average Daily Intake (mg/kg·day)
SF = Cancer Slope Factor (mg/kg·day)−1

Target Cancer Risk (TCR) (Cb × I × 10−3 × CPSO × EFr × EDtot)
(BWa × ATc)

Cb = Heavy metal concentrations in samples (mg/kg)
I = The ingestion rate (mg/day/person)

CPSO = The carcinogenic potency slope, oral (mg/g/day)−1

EFr = The exposure frequency (days/year)
EDtot = Total exposure duration (years)

ATc = The carcinogen averaging time (days/year) ED × 365
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5.2. Non-Carcinogenic Risk Assessment
5.2.1. Health Risk Index (HRI)

In determining the HRI value, the equation shown in Table 4 involves the ratio between
the daily intake of metal through consumption and the oral reference dose, together with
general body weight of children and adults [12,106,148–151]. An HRI index value of more
than 1 shows that human health is at risk or unsafe [152]. A changing of age in adults
and children has determined the observation of health risk. The exposure was observed
differently because of the different contact pathway. The health risk between age groups
and locality of inhabitants may not be similar. [153]. Table 5 shows non-carcinogenic risk
assessment from rice consumption in selected areas of different countries. The findings by
Satpathy et al. [32] found that the Zn element has the highest HRI value in adults, which is
beyond the value of 1. Similar to Neeratanaphan et al. [95], besides Pb, the HRI value
for Mn was found to be greater than 1. However, Zn and Mn are known to be essential
micronutrients that are necessary for plant growth; however, the micronutrients can be
extremely toxic at high concentrations [154]. Although the health risk of single metal
exposure was generally considered to be safe for consumption, the combination of several
heavy metals may cause risk to local inhabitants. The exposure to two or more pollutants
may result in additive or interactive effects [155].

5.2.2. Hazard Quotient (HQ) and Target Hazard Quotient (THQ)

HQ and HI are example models that are used to analyze human non-carcinogenic risk
for local inhabitants. Besides using total HRI value, the hazard quotient (HQ) also can be
used to determine HI. The HQ formula that is shown in Table 4 is almost similar to HRI,
where the equation involves the ratio of average daily intake (ADI) and reference dose
(RfD) [147]. This equation is able to characterize the health risk of non-carcinogenic adverse
effects due to exposure to toxicants [156,157], by which RfD is the estimated allowable
dose for human via daily exposure [37]. The target hazard quotient (THQ) is another
term used other than HQ to measure the potential non-carcinogenic effects of individual
heavy metal [158]. It is used as a method to estimate risk, as provided by USEPA [158]
in the U.S EPA Region III risk-based concentration table and the equation involved was
based on Chien et al. [159], Yang et al. [160], and Fang et al. [161], as shown in Table 4.
If HQ or THQ < 1, adverse health effects would unlikely be experienced, whereas, if HQ or
THQ ≥ 1, then potential non-carcinogenic effects would occur [37,162,163].

Fan et al. [143] and Zeng et al. [37] reported that the HQ levels of Cd via brown rice
consumption for local residents in Hunan Province exceeded 1, which indicated that this
could pose potential non-carcinogenic risks for human health and are likely to increase
due to the continuing consumption of contaminated brown rice by resident near mines
area. Similarly, Wang et al [164] has revealed that the mean value of THQ for Cd exceeded
the threshold value. The value indicates that the local inhabitants carry high potential for
chronic health risk through rice consumption.

In Nigeria, HQ for Cd and Pb was found > 1, which will likely induce adverse health
effect via rice consumption [146]. In contrast, Horiguchi et al. [165] suggested that heavy
metals that are ingested by human are not equal to the absorbed pollutant dose in reality,
as some fraction from the ingested heavy metals may be excreted and some of them may
remain accumulated in the human body tissues, which could possibly affect their health.
Meanwhile, in Iran, Djahed et al. [137] discovered that As has a HQ value more than 1,
which indicated a considerable non-carcinogenic adverse health effect and consumption of
rice from the collected samples is probably unsafe.

5.2.3. Hazard Index (HI)

HI is calculated through the average daily consumption of rice for individual (adults
and children) in order to obtain the measure of the potential risk of adverse health effects
from a combination of chemical elements in rice. HRI or HQ can be summed across the
constituents, as shown in Table 5, by assuming additive effects in order to calculate the
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hazard index (HI) for a specific receptor combination, such as diet [32,37,122]. Chronic
risks are assumed to be unlikely to happen if the value of HI < 1, but, in case of the HI
value reaching ≥ 1, non-cancer risk is likely to occur [143,166].

With reference to Table 5, Satpathy et al. [32] reported the HI values of heavy metals
to be 1.561 and 1.360, respectively, for adults and children, in the East Coast Road, India,
which indicates that they will undergo poor health effects in the near future due to the
biomagnification caused by heavy metal accumulation over a period of time. Song et al. [41]
stated the HI values of rice and vegetables in functional site of three toxic metals (As, Pb,
and Cd) were greater than 1, whereas the HI values in the control site were less than 1 for
adults and children. However, if the pollution continues to be severe in the control site,
then it may greatly affect human health risks in their residents’ area.

In contrast with China, Zeng et al. [37] found the greater value of HI, which was
up to 14.6 after evaluating the brown rice consumption with seven elements (Cd, Cr, As,
Ni, Pb, Mn, and Hg). This value means that there is high non-carcinogenic risk from the
ingestion of local brown rice. Praveena and Omar [167] found that rice that was collected
from markets in Malaysia has a high potential of non-carcinogenic risk based on HI values
for both adults and children by 27.0 and 18.0, respectively, through a combination of trace
element and heavy metal exposure. Silins and Hogberg [168] suggested that cumulative
trace element and heavy metal exposures will increase the health risks more than individual
exposure of trace element and heavy metals.

Table 5. Non-carcinogenic risk assessment from rice consumption in selected areas of different countries.

Area of Study HRI/HQ/THQ Individuals
Risk Values

HI References
As Pb Cd Cu Cr Zn

East Coast Road,
India

HRI
Adults - 0.269 0.042 0.001 0.123 1.126 1.561 Satpathy et al.

[32]Children - 0.234 0.036 0.001 0.108 0.981 1.360

Kalasin Province,
Thailand HRI Local

inhabitants - 1.50 - - 0.30 - - Neeratanaphan
et al. [95]

Hunan Province,
China HQ Local

inhabitants 8.18 0.045 2.29 - 0.258 - 14.6 Zeng et al. [37]

Hunan Province,
China HQ Local

inhabitants 0.7264 0.0484 11.798 - - - - Fan et al. [143]

Fuzhou, China THQ Adults 0.8 0.1 0.6 0.3 0.00044 - 1.9 Fu et al. [169]
Children 0.8 0.1 0.6 0.3 0.00050 - 2.0

Zhejiang, China HRI
Adults 0.34 0.84 0.77 - - - - Huang et al.

[46]Children 0.44 1.09 1.00 - - - -

Hunan Province,
China THQ Local

inhabitants - 0.081 3.047 0.877 0.005 0.771 8.138 Wang et al.
[164]

Enugu, Nigeria HQ Adults - 1.11 1.20 - 0.008 0.24 3.028 Ihedioha et al.
[145]

Malaysia HQ
Adults 0.51 0.051 0.47 0.4 0.0008 0.26 27.0 Praveena and

Omar [167]Children 0.33 0.11 0.3 0.25 0.005 0.17 18.0

Iranshahr, Iran HQ Local
inhabitants 5.23 0.14 0.15 0.32 - - 1.64 Djahed et al.

[137]

Note: Health Risk Index, HRI; Hazard Quotient, HQ; Target Hazard Quotient, THQ; Hazard Index, HI.

5.3. Carcinogenic Risk Assessment
Cancer Risk (CR) and Total Cancer Risk (TCR)

For carcinogenic risk assessment, cancer risk (CR) or target cancer risk (TCR) are
calculated using the equation that is shown in Table 6 in order to estimate the incremental
probability of an individual developing cancer over a lifetime. For example, a CR of 10−4

indicates a probability of 1 in 10,000 individuals developing cancer [170]. The total CR
(CRt) from all carcinogens is summed by assuming the additive effects, if the multiple
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carcinogenic elements are present. USEPA Region III Risk-Based Concentration provided
the method of estimating TCR [156]. According to Ma et al. [171] and Cao et al. [166], it is
considered acceptable if the risks are in the range of 1.0 × 10−6 to 1.0 × 10−4.

The International Agency for Research on Cancer (IARC) [4] has categorized As,
Cr, and Cd as carcinogenic to humans, whereas Pb, Co, Cu, Fe, Al, and Zn are non-
carcinogenic to humans. A study conducted by Fu et al. [169] on the carcinogenic risk
of As in rice among Fuzhou population, Jiangxi Province of China, found that the TCR
values were slightly higher than the acceptable range, which are 3.5 × 10−4 for adults and
3.8 × 10−4 for children. The values showed that As was present in the form of inorganic
As in rice with 100% bioaccessibility for consumers. Therefore, the authors concluded
that the carcinogenic risk of As might be overestimated, since the percentage of inorganic
As is not 100% in food commodities. The consumption of local brown rice by people in
Hunan Province, China poses potentially great carcinogenic risk based on the multiple
carcinogenic evaluations, which was up to more than 400× higher than the limit set by
USEPA [156], which is one to one hundred in a million chance of additional human cancer
over a 70-year lifetime [37].

Table 6 shows the summary of carcinogenic risk assessment via rice consumption in
selected areas of different countries. With reference to the table, the CR value for Cd in
brown rice grown near the three mining areas of Hunan Province was the highest, with a
total cancer risk of 0.0423 in 2015 [37] and 0.1773 in 2017 [143], indicating a great potential
of carcinogenic risk from brown rice consumption in this region due to metal mining
and waste discharge. For Malaysia, a study on 22 varieties of marketed rice samples to
determine both the total and bioaccessibility of heavy metals revealed that the cumulative
carcinogenic health risk via rice consumption for the combined exposure of As and Pb in
adult and children was 0.0049 and 0.0032, respectively [167]. The findings showed that
the exposure from combined heavy metals has a potential carcinogenic risk, especially
in children growth development. Zeng et al. [37] and Fan et al. [143] reported that Cd
contribute to cancer risk by approximately 99.77% and 81.2%, respectively. Long-term
exposure towards Cd was reported to lead to an increased risk of mortality from all
cancers [172]. Recently, Djahed et al. [137] and Fakhri et al. [173] conducted a study in
Iran on the carcinogenic risk assessment from rice consumption among local inhabitants
and found that the ingestion of rice for lifetime consumption would induce cancer risk,
since the values of CR for both studies exceed the acceptable range. Hence, the remediation
of contaminated soil is one of the effective measures to secure and reduce the risk of the
local communities. In addition, it is strongly suggested that a routine monitoring of heavy
metals in soil and rice in these areas be implemented.

Table 6. Carcinogenic risk assessment via rice consumption in selected areas of different countries.

Area of Study CR/TCR Individuals
Heavy Metals CRt References

As Pb Cd Ni Cr

Hunan Province,
China CR Local

inhabitants 0.00368 - 0.0343 0.00393 0.000388 0.0423 Zeng et al. [37]

Hunan Province,
China CR Local

inhabitants 0.0003 - 0.1769 - - 0.1773 Fan et al. [143]

Fuzhou, China TCR
Adult 0.00035 - - - - NA Fu et al. [169]

Children 0.00038 - - - - NA

Malaysia CR
Adult >0.0001 <0.0001 - - 0.0049 Praveena and

Omar [167]Children >0.0001 <0.0001 - - - 0.0032

Iranshahr, Iran CR Local
inhabitants 0.00237 - - - - NA Djahed et al.

[137]

Iran CR Local
inhabitants 0.04864 0.02623 - - - 0.0749 Fakhri et al. [173]

Note: Cancer risk, CR; Target Cancer Risk, TCR; Total Cancer Risk, CRt; Not available, NA.
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5.4. In Vitro Digestion Model

Other than estimating HRA by mathematical models, in vitro digestion models can
be conducted in order to determine the bioaccessible form of trace element and heavy
metals [174,175]. This model involves the total fraction of trace element and heavy metal
concentration present in a specific environmental field within a time period and uptake
through the indirect ingestion by organisms [176]. Rijksinstituut voor Volksgezondheid
en Milieu (RIVM) in vitro digestion model is an example of the bioavailability method
used in rice studies via rice ingestion, where the models involved are quite similar to the
physiological conditions in a human body. According to Fernández-García et al. [177],
the in vitro model minimizes the use of experimental animals and the massive number of
different matrices, which makes it easier to measure a large number of sample and allows
for replication.

These kinds of characteristics make it widely applicable for health assessment and
nutritional efficiency prediction. There are three compartments that are involved based
on the human physiological condition, which are oral cavity, stomach, and small intestine,
including the parameters of pH, residence time, and particle size [174]. According to
Lee et al. [178], the bioavailability concentrations are much preferred when compared to
total heavy metal concentration due to overestimates of human health risks from heavy
metal exposure. However, it is insufficient to identify health risks that are posed by
humans through consumption by only assessing the bioavailability in rice below the
maximum permitted levels. The detailed HRA should be associated with both carcinogenic
and non-carcinogenic health risks to understand heavy metal exposure among adults
and children [167].

Cooked rice is considered to be the best form of matrix to be used in human health
risks studies when compared to raw rice, as the sample must be as if it was ingested by
consumers in a way to reflect real situation of human exposure [179]. Omar et al. [174]
found that the bioavailability of heavy metal concentration in cooked rice samples was
reduced from Zn > Fe > Cu > Cr > Cd, and all of the varieties of cooked rice samples studied
were considered to be safe for human consumption. However, the concentration of harmful
heavy metals, such as Cd and Cr in low amounts, can potentially risk renal impairment
and bone disease, such as osteoporosis in adults, both male and female [51,180]. A study
conducted by Yang et al. [181] on Cd bioaccessibility in uncooked rice from rural mining
areas revealed that the bioavailability fraction of Cd in uncooked rice has a significant
positive correlation with the total concentration of Cd in cooked rice. The bioaccessibility
of Cd from food depends not only on its binding forms, but also on the properties of
food, such as the source of food and processing method. A recent study by Praveena and
Omar [167] reported that the bioaccessibility of trace element and heavy metal concen-
tration in cooked rice samples are below the maximum permitted level set by Malaysian
Food Regulation [182] with a decreasing order of Zn (4.3 mg/kg) > Fe (1.9 mg/kg) > Cu
(1.1 mg/kg) > Al (0.89 mg/kg) > Cr (0.11 mg/kg) > Co (0.032 mg/kg) > Cd (0.027 mg/kg)
> Pb (0.022 mg/kg) > As (0.016 mg/kg).

Furthermore, Praveena and Omar [167] revealed that no potential non-carcinogenic
risk was found to exist in adults and children through individual trace element and heavy
metal exposure (HQ <1), but As was found to be present as a potential carcinogenic health
risk with a CR value of more than 1 × 10−4. Examples of potential health risk from As
exposure from cooked rice grain are malignant neoplasms, melanosis, and depigmentation;
hence, concern on children should be more focused, since As and Pb can affect their brain
and nervous system development [183]. Limitations on the available data for Malaysian
ingestion rate (IR) values may influence the HRA, since the study was based on a previous
report by Zheng et al. [87].

6. Mitigation Methods

There are several preventive measures for reducing heavy metals exposure to human
(Table 7), by reducing their concentration in soil, and finally reducing their rice uptake.
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These approaches can be categorized as: (i) agriculture management practices, (a) water
management [184], (b) soil amendments [185,186], (c) nutrient management [187], and (d)
Tillage management [188], (ii) Bioremediation strategies, (a) Phytoremediation [189], (b) Mi-
crobial remediation [190], and (iii) Genetic approaches [191].

Table 7. Mitigation methods for reducing heavy metals availability in rice grains.

Mitigation Methods Heavy Metals References

Agriculture management practices

Alternate wet and dry method (AWD) converts As (III) to As (V)
which is less soluble in water; henceforth less uptake by plants As(III), As(V) Rinklebe et al. [192]

(a) Water management

Flooding before and after heading lessens Cd concentration
while aerobic condition rises Cd concentration in rice Cd Hu et al. [193]

AWD states reduced the activity of Hg(II)-methylating microbes
which caused limited MeHg and THg concentrations in rice MeHg, THg Tanner et al. [194]

Silica strives with As(III) throughout uptake and down
regulates Si transporters in root As(III) Wu et al. [195]

Application of silica limited Cd uptake and its accumulation in
rice plants Cd Nwugo and Huerta [196]

Si and nano Si application limited Pb uptake in rice grain Pb Liu et al. [197]

Application of iron halt soluble Cd and As via formation of Fe
plaques on root surface Cd, As Suriyagoda et al. [198]

(b) Soil amendments

Fly Ash addition and Steel Slag lessens the Pb and Cd uptake in
rice owing to immobilization of heavy metals in soil via in situ Pb, Cd Gu et al. [199]

Reduction of Cd solubility in soil as a result of their high
calcium content, total calcium carbonates and alkalinity. Cd Shaheen and Rinklebe [200]

(c) Nutrient management

Sulphur boosts complexation of As by synthesising Fe plaques
and forming thiols As Dixit et al. [190]

Application of sulphur declines Cd and As uptake due to the
rise of glutathione contents in the plants leaves Cd, As Fan et al. [201]

Application of phosphorus rises soil pH leading to sorption of
Cd in the soil Cd Ahn et al. [202]

PO4
3− ions changed into Pb5(PO4)3OH when reacting with

surface-adsorbed Pb.
Pb Cao et al. [203]

Biochar adsorbs As and make it not available to plants As Yu et al. [204]

Biochar comprises of limestone (carbonate), which elevates soil
pH, which encourages Cd precipitation and Cd sorption Cd Bian et al. [205]

Biochar retain Pb in soil as a result of high pH, cation exchange
capacity (CEC), active functional groups, and porosity Pb Bian et al. [205]

(d) Tillage management

High soil organic condition underneath reduced tillage
management can elevate Cd adsorption and complexation Cd Gao et al. [206]
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Table 7. Cont.

Mitigation Methods Heavy Metals References

Bioremediation strategies

Plants such as Solanum nigrum, Arabidopsis halleri, and many
others, are classified as Cd hyperaccumulators and meant for
phytoremediation of Cd contaminated sites.

Cd Seregin et al. [207]; Wei et al.
[208]; Ali et al. [209]

(a) Phytoremediation

Some Azolla like species including Azolla fi liculoides Lam and
Azolla caroliniana Willd. accumulates As in their body parts
Chinese brake fern known as Pteris vittata L. is a famous As
hyperaccumulator

As Zhang et al. [210]
Ma et al. [90]

Arbuscular mycorrhizal fungi (AMF) lessen uptake of Cd by
rice, via changing chemical forms and subcellular distribution
of Cd in rice

Cd Li et al. [211]

Inoculation of rice with single or combined AMF reduced
uptake of As in rice As Chan et al. [212]

(b) Microbial remediation

Sarchosphaera coronaria, the ectomychorrizal fungus accumulates
As at high levels in its fruiting bodies. As Falandysz and Borovička [213]

Genetic approaches

Paracoccus species (aioA gene), the As (III) oxidizing- bacteria
like converts As (III) to As (V) which is less mobile and less
toxic than As (III). Inoculation of this species not just lessens the
burden of As nonetheless encourages rice growth.

As(III), As(V) Zhang et al. [214]

An arsM gene transforms As (III) into methylated species i.e.,
monomethylarsonic acid (MMA). As(III) Suriyagoda et al. [215]

7. Conclusions

Most rice producing countries experience heavy metal contamination, owing to hu-
man activities such as mining and smelting. Soils are the major sources of heavy metals,
and its accumulation in grain is significantly important, as it will be processed for human
consumption. Therefore, the health risk assessment on heavy metal exposure can provide
an estimation of health risks that would be experienced by the targeted population, in-
cluding infants and children. In fact, a standard of toxic heavy metal level in infant and
children food products should be strictly imposed, as they are more susceptible to toxic
metal poisoning. Data on bioavailability of heavy metals in rice grain are still insufficient,
especially in high-risk areas, such as China and Japan. Besides, the availability data of the
risk factor, such as ingestion rate in local area, should be of concern by relevant authorities
for a particular population in a risk exposure assessment. Overall, the extensive study on
heavy metal distribution should be done on risk areas of rice cultivation in order to reduce
the public health risks and control rice yield for future demand.
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AL aluminum;
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Ni nickel
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