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Vitis amurensis Ruprecht root inhibited α-melanocyte stimulating 
hormone-induced melanogenesis in B16F10 cells
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BACKGROUND/OBJECTIVES: The root of Vitis amurensis Ruprecht, a sort of wild-growing grape, has been used in oriental medicine 
for treatment of skin ailments; however, its dermatological activity is not sufficiently understood. The aim of this study was 
to investigate tyrosinase inhibitory and anti-melanogenic activities of V. amurensis Ruprecht root methanol extract (VARM) in 
B16F10 mouse melanoma cells and to attempt to isolate and identify the active compound issued from VARM.
MATERIALS/METHODS: Anti-melanogenic activity of VARM was analyzed in α-melanocyte stimulating hormone (MSH)-stimulated 
B16F10 cells through evaluation of antioxidative activity as well as inhibited tyrosinase activity and melanin contents compared 
with those of kojic acid and arbutin. After anti-melanogenic analysis of VARM, serial fractionation, nuclear magnetic resonance 
(NMR), and thin layer chromatorgraphy (TLC) were applied for identification of active compounds contained in VARM.
RESULTS: VARM significantly inhibited oxidative stress and tyrosinase activity and attenuated α-MSH-induced melanin production 
in B16F10 cells. For isolation of active compounds, VARM was fractionated using a series of organic solvents, including dichloromethane 
(CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-BuOH). Among fractions showing anti-melanogenic activity, the CH2Cl2 fraction 
induced the most potent attenuation of melanogenesis without cytotoxicity and the major compound in the CH2Cl2 fraction 
was identified as betulinic acid. Betulinic acid isolated from the CH2Cl2 fraction of VARM significantly attenuated α-MSH-induced 
melanogenesis in a dose dependent manner, which was stronger than that of arbutin used as a positive control.
CONCLUSIONS: These results indicate that VARM inhibits oxidative stress, tyrosinase activity, and α-MSH-induced melanogenesis 
in B16F10 cells, due primarily to the active compound, betulinic acid, in the CH2Cl2 fraction.
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INTRODUCTION4)

Melanin, a naturally synthesized pigment in melanocytes, is 
stored inside the melanosome, which determines the color of 
human skin, hair, and eyes [1]. Melanin is originally produced 
to protect skin from ultraviolet (UV) radiation, however, 
overproduction and accumulation can cause various derma-
tological disorders such as melanoma, freckles, age spots, and 
other hyperpigmentation syndromes [2,3]. Melanogenesis is a 
complicated pathway made up of melanin synthesis, melanin 
transport, and melanosome release [4]. This cascade of melano-
genesis is stimulated by a variety of environmental biochemical 
factors, α-melanocyte stimulating hormone (α-MSH), cyclic AMP 
(cAMP) elevating agents, including forskolin, glycyrrhizin, 
isobutylmethylxanthine, and UVB exposure [5-9]. Among them, 
α-MSH, a naturally occurring melanotropic peptide, has been 
used as a melanogenesis inducer in many studies [10-12].

Enzymatic reaction for melanogenesis is associated with 
tyrosinase, TRP-1 (dopachrome tautomerase), and TRP-2 (DHICA 
oxidase) [10,13]. Tyrosinase, the critical and rate-limiting enzyme 
involved in the first two-step reaction of melanogenesis, 
hydroxylates tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) 
and the subsequent oxidation of L-DOPA to dopaquinone. 
Dopaquinone is auto-oxidized into dopachrome, which is 
converted to dihyroxyindole (DHI) or dihydroxyindole-2- carboxylic 
acid (DHICA) for production of black eumelanins, whereas 
similar reactions related to cysteine and glutathione conjugates 
of dopaquinone yield reddish-brown pheomelanins [14]. In 
addition, hydrogen peroxide (H2O2) and other reactive oxygen 
species (ROS) are synthesized during melanogenesis, which 
functions to enhance pigment formation by regulating levels 
of tyrosine [15]. Therefore, development of an effective tyrosinase 
inhibitor with antioxidative capacity can be a promising strategy 
for a potential anti-melanogenic agent. 
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Vitis amurensis Ruprecht, a species of grape native to Asian 
countries, exhibited various biological activities, including anti- 
oxidative [16-18], neuroprotective [19-21], anti-tumorogenic [22, 
23], antimicrobial [24], and anti-inflammatory activities [25,26]. 
Hence, many researchers have attempted to identify its functional 
compounds, which were proved as phenolic compounds [17, 
27], procyanidin [28], oligostilbenes such as amurensin A, B, and 
G [29,30], and stilbenes such as resveratrol and its tetramer, 
heyneanol A [19,22]. In addition, root of V. amurensis has also 
been used as a medicinal herb in oriental medicine. Although 
root of V. amurensis has been reported to possess anti- 
tumorigenic [22,31] and anti-inflammatory activity [32], no 
investigation of anti-melanogenic activity has been reported.

The aim of the current study is to investigate anti-oxidative 
and anti-melanogenic effects of V. amurensis Ruprecht root 
methanol extract (VARM) in B16F10 cells, and then identify its 
functional compounds among various solvent fractions. 

MATERIALS AND METHODS

Reagents
1,1-diphenyl-2-picryl hydrazyl (DPPH), mushroom tyrosinase, 

α-MSH, L-DOPA, and betulinic acid were purchased from Sigma 
(St. Louis, MO, USA). Dulbecco’s modified Eagle medium (DMEM), 
fetal bovine serum (FBS), and L-glutamine were obtained from 
Invitrogen Corporation (Carlsbad, CA, USA). Antibodies were 
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) 
for tyrosinase, actin, and secondary antibodies. Nitrocellulose 
membrane was purchased from GE Healthcare (Little Chalfont, 
Buckinghamshire, UK). All other chemicals were of the highest 
commercial grade available.

Preparation of VARM and its solvent fractions
V. amurensis Ruprecht root, which was purchased from 

Daehan Natural Drug (Busan, Republic of Korea), originated 
from Yeong cheon in Korea. Dried powder of V. amurensis 
Ruprecht root (5 kg) was extracted four times with five volumes 
of absolute (99.8%) methanol at 65°C. The extract was 
evaporated, freeze dried, and stored at 4°C until use. Methanol 
extract of V. amurensis Ruprecht root (VARM, 527.6 g) was 
suspended in water and serially fractionated into dichloro-
methane (CH2Cl2, C fraction, 21.3 g), ethyl acetate (EtOAc, E 
fraction, 81.1 g), n-butanol (n-BuOH, B fraction, 71.3 g), and 
water (H2O, W fraction, 246.1 g). The C fraction, which exhibited 
potent anti-melanogenic activity without cytotoxicity, was 
applied onto a silica gel (70-230 mesh, Merk, Darmstadt, 
Germany) column. The column was eluted using mixtures of 
n-hexane:EtOAc under gradient conditions [10 : 1, 5 : 1, 3 : 1, 2 : 1, 
1 : 1 (v/v)] to yield the four fractions (fraction 1 to 4). Among 
four fractions, fraction 3 was further purified by a silica gel once 
more to yield six fractions (fraction 1 to 6). Among them, 
fraction 3 was identified as a betulinic acid through 1H nuclear 
magnetic resonance (NMR) and 13C-NMR analyses. For identification 
of betulinic acid, TLC was performed on a precoated Merck 
Kieselgel 60 F254 plate (0.25 mm) and the spots were compared 
with standard betulinic acid purchased from Sigma.

DPPH radical scavenging activity assay
Antioxidative activity of VARM and its solvent fractions were 

determined using a DPPH radical scavenging assay as described 
previously [33]. Various concentrations of reagents and standard 
compound (Ascorbic acid) were added to DPPH solution. 
Absorbance was measured at 520 nm after 30 min incubation 
protected from light.

Mushroom tyrosinase inhibition assay
The effect of VARM on mushroom tyrosinase activity was 

determined as previously described [34]. In brief, 50 μL of 
mushroom tyrosinase (700 unit/mL), 50 μL of various concen-
trations of reagents, and 100 μL of 0.1 M phosphate buffer (pH 
6.8) were added to a 96-well plate and mixed, 100 μL of 2.5 
mM L-DOPA was added, followed by incubation for 20 min at 
room temperature. The amount of dopachrome formed in the 
reaction mixture was measured at 475 nm. Kojic acid was used 
as a positive control.

Cell culture and treatment
B16F10 murine melanoma cells (CRL-6475) were obtained 

from the American Type Culture Collection (ATCC, Rockville, MD, 
USA). Cells were maintained in DMEM supplemented with 10% 
FBS and 100 units/mL of penicillin/streptomycin at 37°C in a 
humidified atmosphere containing 5% CO2. Cells were treated 
with either α-MSH alone or reagents together. Cells not treated 
with α-MSH served as the negative control, while cells treated 
with α-MSH alone served as the positive control.

Cell viability assay
Cell viability was determined using a 3-(4,5-dimethylthiazol- 

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazoli
um, inner salt (MTS) assay purchased from Daeil Lab Service 
(Seoul, Korea) according to the manufacturer’s instructions [35]. 
After treatment with various concentrations of VARM and its 
solvent fractions, cells were incubated with MTS for 1 h and 
the viability was quantified by measurement at OD450 using a 
multi-plate reader (Paradigm, Beckman, CA, USA).

Cellular melanin contents
Effect of VARM and its solvent fractions on α-MSH induced 

melanogenesis on B16F10 cells was investigated according to 
the previous research, which was slightly modified [36]. Briefly, 
cells were stimulated with α-MSH (200 nM) and treated with 
VARM and its solvent fractions for 72 hr. After treatment, the 
cells were dissolved in 1 N NaOH/10% DMSO for 1 hr at 80°C, 
and solubilized melanin was measured at 475 nm.

Intracellular tyrosinase activity
Effect of VARM and its solvent fractions on α-MSH induced 

tyrosinase activity on B16F10 cells was investigated according 
to the previous research, which was slightly modified [36]. 
Briefly, cells were stimulated with α-MSH (200 nM) and treated 
with VARM and its solvent fractions for 72 hr. After treatment, 
the cells were washed with 1 × phosphate buffered saline (PBS), 
and then lysed into protein lysis buffer (Cell Signaling 
Technology, Boston, MA, USA). Each extract was placed in each 
well of a 96-well plate and the enzymatic assay was commenced 
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Fig. 1. DPPH radical scavenging activity (A) and tyrosinase inhibition activity (B) 
of VARM. Ascorbic acid (C) and Kojic acid (D) are used as positive controls for DPPH 
radical scavenging activity and tyrosinase inhibition activity, respectively.

DPPH (IC50, μg/mL) Tyrosinase (IC50, μg/mL)

VARM 12.78 ± 0.24 148.11 ± 23.28

Ascorbic acid* 3.65 ± 0.11 N/A***

Kojic acid** N/A*** 25.70 ± 0.57

* Ascorbic acid is used as a positive control for DPPH radical scavenging activity assay.
** Kojic acid is used as a positive control for tyrosinase inhibition activity assay.
*** N/A; not applicable

Table 1. IC50 of DPPH radical scavenging activity and tyrosinase inhibition activity
of VARM

      

  

Fig. 2. Effect of VARM on B16F10 cell viability (A) and α-MSH induced 
melanogenesis (B). Arbutin is used as a positive control. Values are expressed as mean
± SD (n = 3). *, **Significantly different from the vehicle treated control and α-MSH treated 
control, respectively (P < 0.05).

(A)

(B)

by addition of L-DOPA. After incubation, dopachrome formation 
was assayed by measuring absorbance at 475 nm.

Western blot hybridization
After treatment, the cells were washed with ice-cold 1 × PBS 

and lysed with cell lysis buffer (pH 7.4). The cell lysates were 
incubated on ice for 30 min and the homogenates were 
centrifuged at 13,000 × g for 10 min at 4°C. The supernatants 
were collected and protein concentration was determined using 
the Bradford protein assay. Protein samples (50 μg) were mixed 
with 2 × loading buffer, and boiled at 100°C for 5 min. The 
samples were separated on a 10% sodium dodecyl sulfate 
(SDS)-polyacrylamide gel and electrotransferred to nitrocell-
ulose membranes (WhatmanTM, GE Healthcare, Little Chalfont, 
UK). The membranes were blocked with 5% nonfat dry milk 
in 1 × PBST buffer (0.1% Tween 20 in PBS) for 1 hr at room 
temperature and incubated overnight with primary antibodies 
in blocking buffer at 4°C. The membranes were washed, 
followed by incubation with anti-rabbit-IgG or anti-goat-IgG 
with horseradish peroxidase for 1 hr at room temperature. After 
washing the membrane, final detection and quantification were 
performed using a chemiluminescence detection system 
(FluoChem® FC2, Alpha Innotech, CA, USA).

Statistical analysis
The data were expressed as mean ± standard deviation (SD). 

The values were compared to the control using analysis of 
variance (ANOVA) followed by unpaired Student’s t-tests. A P 
value < 0.05 was considered significant.

RESULTS

VARM scavenged DPPH free radical and tyrosinase activity
Thus far, a potent DPPH scavenger among natural resources 

has been regarded as a potential antioxidant candidate. In this 
study, VARM was evaluated for its anti-oxidative activity by 
DPPH, a stable free radical, scavenging capacity. As shown in 

Fig. 1A, VARM scavenged free radicals in a dose dependent 
manner, with an inhibitory rate of 15.6, 50.2, and 95.8% at 2.56, 
12.8, and 64 μg/mL, respectively. Dose for IC50 was calculated 
as 12.8 μg/mL. As shown in Fig. 1B, VARM suppressed the 
enzyme activity of mushroom tyrosinase, with an inhibitory rate 
of 6.7, 46.0, and 87.9% at 20, 100, and 500 μg/mL, respectively. 
The IC50 value was calculated as 148.1 μg/mL. IC50 values of 
DPPH radical scavenging and tyrosinase inhibitory activity 
issued from VARM-treated B16F10 cells are shown in Table 1.

VARM inhibited α-MSH induced melanogenesis without cytotoxicity
The cytotoxicity of VARM for 48 hr was determined using a 

colorimetric MTS assay in B16F10 cells. Fig. 2A shows the 
percent cell viability of VARM-treated cells compared with that 
of vehicle treated cells. No remarkable cytotoxicity was 
observed in cells treated with VARM under the concentration 
of 200 μg/mL, which was applied for the following cascade of 
experiments. As shown in Fig. 2B, melanin content of α-MSH 
stimulated cells was 2.5 times higher than that of vehicle treated 
cells, indicating that melanogenesis was successfully induced 
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Fig. 3. Scheme of the preparation and isolation of VARM, its solvent fractions, 
and active compounds originated from the C fraction of VARM

     

 

Fig. 4. Effect of VARM and its solvent fractions on B16F10 cell viability (A) and 
α-MSH induced melanogenesis (B). M, VARM; C, CH2Cl2 fraction; E, EtOAc fraction; 
B, BuOH fraction; W, H2O fraction. Arbutin is used as a positive control. *, **Significantly 
different from the vehicle treated control and α-MSH treated control, respectively (P <
0.05).

(B)

(A)

 

    

Fig. 5. Effect of VARM and its solvent fractions on cellular tyrosinase activity 
(A) and tyrosinase protein expression (B). M, VARM; C, CH2Cl2 fraction; E, EtOAc 
fraction; B, BuOH fraction; A, arbutin used as a positive control. *, **Significantly different 
from the vehicle treated control and α-MSH treated control, respectively (P < 0.05).

(A)

(B)

by α-MSH treatment. On the other hand, α-MSH-stimulated 
melanin production was significantly (P < 0.5) inhibited by 
treatment with VARM in a dose-dependent manner (Fig. 2B).

C fraction from VARM exhibited the most potent anti-melanogenic 
activity induced by α-MSH

VARM was serially fractionated with CH2Cl2, EtOAc, n-BuOH, 
and H2O for identification of active compounds possessing 

anti-melanogenic activity (Fig. 3). The effect of each fraction 
on B16F10 cell viability was evaluated in advance of the 
downstream experiment. As shown in Fig. 4A, VARM, C, and 
B fractions did not show any cytotoxicity below 250 μg/mL, 
while the E fraction exhibited a cytotoxic effect over 50 μg/mL. 
Followed by the result for cell viability, anti-melanogenic effect 
of each fraction was evaluated on non-cytotoxic doses. As 
shown in Fig. 4B, the C fraction induced the most potent 
inhibition of α-MSH induced melanogenesis among all fractions 
that exhibited an anti-melanogenic effect. In the W fraction, 
neither cytotoxic nor anti-melanogenic activities were detected.

VARM and its solvent fractions inhibited cellular tyrosinase activity
To confirm the anti-melanogenic effect of VARM and its 

solvent fractions, cellular tyrosinase enzymatic activity and 
protein expression level were analyzed. As shown in Fig. 5A, 
elevated tyrosinase enzyme activity induced by α-MSH was 
down-regulated by VARM and its solvent fractions, including 
C, E, and B. In addition, tyrosinase protein expression was also 
inhibited by VARM and its solvent fractions, which was in 
accordance with melanin contents and tyrosinase activity (Fig. 
5B). According to the results, anti-melanogenic effects of VARM 
and its solvent fractions originated from the inhibited tyrosinase 
activity. Among all fractions of VARM, the C fraction showed 
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Fig. 6. Anti-melanogenic activity of the C fraction (A) and betulinic acid 
originated from the C fraction (B) of VARM. Arbutin is used as a positive control. 
*, **Significantly different from the vehicle treated control and α-MSH treated control, 
respectively (P < 0.05).

(A)

(B)

the most potent anti-melanogenic activity without cytotoxicity 
(Fig. 6A).

Betulinic acid originating from the C fraction exhibited potent 
anti-melanogenic activity

Identification and purification of the functional compounds 
contained in the C fraction, which showed the most potent 
anti-melanogenic activity, was attempted. As a result, various 
compounds were identified as methyl palmitate, palmitate, 
methyl stearate, oleanolic acid, and betulinic acid. Among them, 
only betulinic acid significantly attenuated α-MSH-induced 
melanogenesis in a dose dependent manner, which was 
stronger than that of arbutin, a well-known depigmenting agent 
(Fig. 6B).

DISCUSSION

Appropriate melanogenesis provides an effective protection 
mechanism against harmful ultraviolet radiation; however, 
abnormal production of melanin and accumulation lead to various 
dermatological disorders. Therefore, many scientists have 
attempted to find new agents to alleviate hyperpigmentation 
and melanin accumulation. In this study, anti- melanogenic 
activity of V. amurensis Reprecht root was evaluated through 
analysis of tyrosinase and melanin content in α-MSH stimulated 
B16F10 cells. In addition, isolation and identification of the 
active compound possessing anti-melanogenic activity in V. 

amurensis Reprecht root was attempted.
During melanogenesis stimulatory cascade, α-MSH is an 

important component in both human melanocytes and murine 
melanoma cells [37]. Melanocortin 1 receptor (MC1R) bound to 
α-MSH regulates melanocytic pigmentation through modulation 
of G protein-coupled receptor (GPCR)-cAMP-microphthalmia- 
associated transcription factor (MITF) signaling cascade. Once 
MITF was activated, downstream target genes including TRP-1 
and 2, which play crucial role in melanogenesis, were activated 
serially [38]. Results of the current study indicate that α
-MSH-initiated melanin synthesis was abolished by treatment 
with VARM and its solvent fractions, suggesting that V. 
amurensis Reprecht root possesses the potential to disrupt 
melanin production cascade in melanocytes. 

Because tyrosinase is a rate-limiting enzyme related to the 
first two steps of melanogenesis, agents possessing tyrosinase 
inhibitory activity can be regarded as potential candidates for 
a depigmentation strategy [39]. Therefore, tyrosinase activity 
was analyzed for evaluation of the involved mechanisms of 
VARM and its solvent fractions-induced antimelanogenesis in 
B16F10 cells. In this study, two kinds of tyrosinases were 
investigated; an intracellular tyrosinase and a mushroom tyrosinase. 
Intracellular tyrosinase activity was analyzed by measurement 
of generated dopachrome in α-MSH stimulated B16F10 cells. 
Treatment with VARM and its solvent fractions resulted in 
significantly attenuated intracellular tyrosinase activity as 
evidenced by a decrease in the quantity of dopachrome. 
Mushroom tyrosinase activity was also analyzed to determine 
whether VARM and its solvent fractions-induced intracellular 
tyrosinase inhibitory effect originated directly from inhibited 
enzyme activity or disruption the enzyme synthesis pathway. 
In accordance with the result of intracellular tyrosinase assay, 
VARM and its solvent fractions attenuated dopachrome 
formation through modulation of mushroom tyrosinase activity, 
indicating direct inhibition of tyrosinase activity by VARM.

When the skin is exposed to UV radiation and other 
environmental oxidizing pollutants, largely generated ROS and 
reactive nitrogen species (RNS) can induce lipid peroxidation 
and enzyme inactivation in cutaneous tissue. Therefore, 
antioxidative compounds that can counteract oxidative damage 
have been considered as beneficial agents for skin. For example, 
oligomeric proanthocyanidins from grape seeds effectively 
inhibit UV-induced oxidative stress considered to promote 
melanogenesis [40]. VARM and its solvent fractions-induced 
melanin decrease may be attributed to its depletion of ROS 
and RNS.

These results suggest that V. amurensis Reprecht root 
possesses antimelanogenic activity by regulation of cellular 
tyrosinase activity in melanocytes. Therefore, an active 
compound contained in V. amurensis Reprecht root was isolated 
and confirmed as betulinic acid. Betulinic acid is a naturally 
occurring pentacyclic triterpenoid found in the bark of several 
species of plants [41]. Although various biological activities, 
including anti-inflammatory, antibacterial, and anticarcinogenic 
activities from various plants have been reported for betulinic 
acid, this is the first finding that not only does betulinic acid 
originate from V. amurensis Ruprecht root it also possesses 
anti-melanogenic activity [41-44]. Although melanogenesis 
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inhibitory compounds were also found from Saussureae Radix, 
that was not betulinic acid but betulinic acid methyl ester. 
Furthermore that compound showed lower activity than arbutin 
used as a positive control [45].

In this study, anti-oxidative and anti-melanogenic activities 
of VARM and its solvent fractions were evaluated. VARM and 
all fractions possessed potent anti-melanogenic activities 
originating from the direct inhibition of cellular tyrosinase 
activity, which mainly originated from the active compound, 
betulinic acid. These results suggest that V. amurensis Ruprecht 
root and betulinic acid may be utilized as potential depigmen-
ting agents by modulation of tyrosinase activity in melanocytes.
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