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Abstract 

Background: Integration of multi-omics data can provide a more complex view of the 
biological system consisting of different interconnected molecular components, the 
crucial aspect for developing novel personalised therapeutic strategies for complex 
diseases. Various tools have been developed to integrate multi-omics data. However, an 
efficient multi-omics framework for regulatory network inference at the genome level 
that incorporates prior knowledge is still to emerge.

Results: We present IntOMICS, an efficient integrative framework based on Bayes-
ian networks. IntOMICS systematically analyses gene expression, DNA methylation, 
copy number variation and biological prior knowledge to infer regulatory networks. 
IntOMICS complements the missing biological prior knowledge by so-called empiri-
cal biological knowledge, estimated from the available experimental data. Regulatory 
networks derived from IntOMICS provide deeper insights into the complex flow of 
genetic information on top of the increasing accuracy trend compared to a published 
algorithm designed exclusively for gene expression data. The ability to capture relevant 
crosstalks between multi-omics modalities is verified using known associations in 
microsatellite stable/instable colon cancer samples. Additionally, IntOMICS perfor-
mance is compared with two algorithms for multi-omics regulatory network inference 
that can also incorporate prior knowledge in the inference framework. IntOMICS is also 
applied to detect potential predictive biomarkers in microsatellite stable stage III colon 
cancer samples.

Conclusions: We provide IntOMICS, a framework for multi-omics data integration 
using a novel approach to biological knowledge discovery. IntOMICS is a powerful 
resource for exploratory systems biology and can provide valuable insights into the 
complex mechanisms of biological processes that have a vital role in personalised 
medicine.

Keywords: Integrative analysis, Multimodal omics, Bayesian networks, Regulatory 
networks, Knowledge discovery
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Introduction
The rapid development of high-throughput technologies has led to large production and 
availability of omics data. Single-omics technologies measure simultaneously molecules 
of the same type from biological samples. On the contrary, multi-omics data collect mul-
tiple modalities from the same set of samples and describe different aspects of cellu-
lar functioning. Therefore, multi-omics data contain complementary information and 
provide a holistic view of the biological system consisting of different interconnected 
molecular components.

Integration of multi-omics data can enhance our understanding of biological systems, 
crucial for developing novel personalised therapeutic strategies for complex diseases. 
Hence, developing a computational framework to infer regulatory relationships by inte-
grating multiple modalities is one of the most relevant and challenging problems in sys-
tems biology.

The regulatory network inference from high-throughput data is limited by noise or 
measurement errors. However, it could be significantly improved by incorporating a 
wealth of biological prior knowledge from the scientific literature [1, 2]. Gene regulatory 
networks inferred from single-omics data (gene expression) and prior knowledge were 
frequently used to model gene-gene interactions [1, 3–5]. However, the flow of genetic 
information in biological systems is very complex, and gene expression is a product of 
multiple biological processes and control mechanisms, such as copy number variations 
(CNVs), transcription factors (TFs), non-coding RNAs, DNA methylations, or histone 
modifications. TFs bind to regulatory elements in the promoter of a given gene and initi-
ate and regulate its transcription [6]. Copy number variations such as amplifications/dele-
tions of a DNA segment can affect gene expression through simple gene dosage effects 
and result in  the  overexpression/silencing of given genes [7]. DNA methylation of the 
promoter region is known to down-regulate gene expression by preventing the binding of 
transcription factors [8]. However, plenty of studies suggest that DNA methylation and its 
effect on gene expression needs to be interpreted differently in particular regions of the 
gene body [9–11]. Regarding all these aspects, it is crucial to progress from single-omics 
data analysis and derive causal relationships between features from multi-omics data.

There are several tools estimating the dependence structure among multi-omics data [12, 
13], estimating a large number of networks for each gene where different modalities are 
treated as nodes in a graphical model. Although this approach provides valuable insights, 
they are limited and should be complemented with gene-gene interactions. Several other 
tools for gene regulatory network inference from multi-omics data based on correlation or 
regression were proposed [14–16]. However, these tools do not integrate biological prior 
knowledge from the databases, and their main limitation is missing implementation.

[17] propose a framework to identify disease-specific pathways by integrating gene 
expression, mutation information and prior knowledge through a Bayesian network. 
One of its drawbacks is data discretisation, which implies substantial information loss. 
RACER [18] models the gene expression as response using transcription factor (TF) 
data, CNV, DNA methylation, and micro RNA (miRNA) expression signals as explana-
tory variables. RACER applies a two-stage regression framework: first infers the sample-
specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer 
specific TF/miRNA-gene interactions.
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During the last year, some up-and-coming tools were published for integrative analy-
sis of multi-omics data utilising prior knowledge to infer regulatory networks. COSMOS 
[19] developed a systematic approach to search public databases for plausible causal links 
between significantly deregulated TFs, kinases/phosphatases and metabolites. The prior 
knowledge from differential analysis is then used to systematically search causal paths 
between the deregulated TFs, kinases/phosphatases, and metabolites using a CARNIVAL 
and its integer linear programming optimisation approach [20]. To derive mechanistic 
hypotheses for experimental observations using COSMOS, we need a case-control study 
to perform differential analysis, and these data may not always be available. KiMONo [21] 
optimises sparse group LASSO (SGL; LASSO least absolute shrinkage and selection oper-
ator) penalisation [22] in the multivariate regression to model gene expression of each gene 
separately. The gene expression represents the criterion variable, and the input matrix is 
assembled by the features associated with the gene within the prior. SGL penalises within 
and between predefined groups of features (the authors call it ‘bi-level’ selection), enabling 
KiMONo to account for different underlying distributions between the features originat-
ing from multi-omics data. Finally, these fitted models are aggregated in the final hetero-
geneous multi-omics network. CANTARE [23] focuses mainly on relationships between 
omics modalities. CANTARE fits pairwise regression models across all pairs of omics data 
resulting in the network. The relationships from the resulting network are then utilised 
with other variables to predict the outcome by predictive logistic regression models.

Motivated mainly by [3, 4], we present IntOMICS, a novel Bayesian framework for multi-
omics data integration using prior knowledge to infer regulatory networks. Even if the 
intensive research has deposited a wealth of biological prior knowledge into public data-
bases, some regulatory events between genes are still missing. Although databases such as 
DbVar [24] or iMETHYL [25] exist, a database with known CNV/METH and gene expres-
sion interactions is missing. Therefore, IntOMICS incorporates a novel approach to biologi-
cal knowledge discovery—estimates the empirical biological knowledge to complement the 
available data from public databases. IntOMICS is designed to capture relevant crosstalks 
within and between copy number variation, DNA methylation and gene expression. The 
model parameters tuning guarantees accurate model design and robust results inference.

The performance of proposed algorithm at the multi-omics level is compared with 
RACER and KiMONo, algorithms that can also incorporate prior knowledge in the 
inference framework.

Werhli and Husmeier [4] algorithm (W &H) represents one of the most relevant 
gene regulatory network reconstruction tools based on Bayesian networks. Therefore, 
the W &H algorithm is selected for performance comparison with IntOMICS at the 
gene expression level. Both algorithms resemble the core formulation of prior distribu-
tion and integration of biological prior knowledge. On the contrary, they differ in two 
key aspects: (i) IntOMICS combines prior knowledge with data-derived evidence—the 
empirical biological knowledge (ii) IntOMICS is designed to infer not only dependencies 
among gene expression but also between gene expression, DNA methylation and copy 
number variation. W &H algorithm relies on conventional MCMC sampling, which 
tends to be slow in convergence and mixing and can often be stuck in low-probability 
regions. The inclusion of adaptive MCMC simulation and Markov blanket resampling 
(MBR) [26] minimise the weaknesses of the W &H algorithm.
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IntOMICS can theoretically be extended with any additional modality if the proposed 
model assumptions are satisfied. We assume that variables come from the multivariate 
Gaussian distribution, so no discretisation is needed. In addition, only biologically rele-
vant dependencies respecting the central dogma of molecular biology must be considered.

Bayesian networks
A Bayesian network (BN) is a graphical model representing probabilistic relationships 
among random variables. BN is defined by the joint probability distribution over the 
variables specified by (i) a network structure G represented by a directed acyclic graph 
(DAG) with a set of nodes (indicating a set of random variables) and a set of directed 
edges (indicating conditional dependence relations among random variables), and (ii) a 
family of conditional probability distributions with corresponding parameters character-
ising the dependencies represented by the set of edges.

Due to the Markov condition (each variable is conditionally independent of the set of 
all its non-descendants given the set of all its parents), the joint probability distribution 
factorises as follows:

where X1, . . . ,XN are random variables, Xpaj(G) are parents of Xj implied by the network 
structure G.

Learning the Bayesian network structure from the data is one of the most challenging 
tasks. It is guided by a scoring metric S, which assess the agreement between a given 
network structure and the available data  D. The aim is to identify the highest-scoring 
network structure.
S is proportional to the posterior probability of the network structure given the data 

D and factorises into a product where each term depends only on a given node and its 
parents:

The choice of scoring metric either requires the data to be discretised (BDe score, [27]) 
or can only capture linear regulatory relationships (BGe score, [28]). The BGe score is 
developed for continuous data sampled from a multivariate normal distribution. Since 
gene expression, copy number variation, and DNA methylation data are continuous, and 
we want to avoid data discretisation because of information loss, we consider BGe scor-
ing metric. Furthermore, it has been shown that BGe remains as powerful as BDe, even 
in the case of slight departures from the linearity assumption [29].

Methods
We present IntOMICS, a powerful Bayesian framework for multi-omics data integration 
to capture dependencies among different molecular features. Figure 1 summarises the key 
steps of our novel framework.

(1)P(X1, . . . ,XN |G) =

N

j=1

P(Xj|Xpaj(G)),

(2)P(G|D) ∝ P(D|G)P(G) =

N
∏

j=1

S(Xj ,Xpaj |D),



Page 5 of 23Pačínková and Popovici  BMC Bioinformatics          (2022) 23:351  

Fig. 1 IntOMICS framework. IntOMICS framework takes as input (i) gene expression matrix GE with m 
samples and n1 genes, (ii) the associated copy number variation matrix CNV  ( m x n2 ), (iii) the associated DNA 
methylation matrix of beta-values METH ( m x n3 ) sampled from the same individuals, and (iv) the biological 
prior knowledge matrix B ( n1 x n1 ) with information on known interactions among molecular features. An 
automatically tuned MCMC algorithm [30] estimates parameters and empirical biological knowledge. 
Conventional MCMC algorithm with additional Markov blanket resampling step is used to infer resulting 
regulatory network structure consisting of three types of nodes: GE nodes (highlighted in green) refer to 
gene expression levels, CNV nodes (highlighted in blue) refer to copy number variations, and METH nodes 
(highlighted in red) refer to DNA methylation. Edge weight wi represents the empirical frequency of given 
edge over samples of network structures
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IntOMICS integrates the biological knowledge from databases and is designed to cap-
ture relevant crosstalks within and between gene expression, copy number variation and 
DNA methylation. The missing biological prior knowledge is complemented by so-called 
empirical biological knowledge, estimated from the available experimental data. The 
empirical biological knowledge reflects hidden patterns in the available datasets derived 
from past iterations of the Markov chain.

The proposed framework avoids data discretisation, which implies substantial infor-
mation loss. IntOMICS parameters tuning guarantees accurate model design and robust 
results inference. The inclusion of adaptive MCMC simulation and Markov blanket resa-
mpling (MBR) [26] improves convergence and mixing of the Markov chain.

Biological prior knowledge integration

Biological prior knowledge with information on known interactions among molecular 
features is integrated into the regulatory network inference employing a prior probabil-
ity of the network structure G. As in [3, 4], we define the prior distribution over network 
structures as:

where G indicates a set of all possible network structures, and the parameter β controls 
the strength of the influence of the biological prior knowledge. The energy function E(G) 
measures the agreement between the biological prior knowledge and the current net-
work structure:

where B is adjacency matrix with Bij ∈ [0, 1] . The matrix B represents the biological prior 
knowledge with information on known interactions among molecular features. If there 
is the prior knowledge about the direct interaction from node i to node j, Bij = 1 . If there 
is the prior knowledge about the interaction of a transcription factor i and its target j, 
Bij = 0.75 . If there is no knowledge about the direct interaction from node i to node j, 
Bij = 0.5 . If we have prior knowledge that there is no edge from node i to node j, Bij = 0.

Then, from (4) we obtain the upper bound of the partition function Z(β) (see [4]):

In the current experiment, curated regulatory relationships of publicly available net-
work database KEGG [31] and target gene-transcription factor associations database 
ENCODE [32–34] are used as prior knowledge. Nevertheless, our approach is not lim-
ited to KEGG/ENCODE, any other available database can be used.

(3)P(G|β) =
e−βE(G)

Z(β)
=

e−βE(G)

∑

G∈G

e−βE(G)
,

(4)E(G) =

N
∑

j=1

ε(Xj ,Xpaj(G)),

(5)
ε(Xj ,Xpaj(G)) =

∑

i∈Xpaj

(1− Bij)+
∑

i/∈Xpaj

Bij ,

(6)Z(β) =
∏

j

∑

Xpaj

e
−βε(Xj ,Xpaj (G))

.
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MCMC sampling scheme for Bayesian network structure learning

A complete comparison of posterior probabilities is intractable since the search space 
of all possible network structures grows super-exponentially with the number of ran-
dom variables. Hence, a Markov Chain Monte Carlo (MCMC) sampling scheme [35] is 
adopted to generate a sample of network structures from the posterior distribution.

First, we sample a network structure Gc while keeping the β parameter fixed. We need 
to define the proposal distribution Q(Gc|Gs) to draw candidate network structures from 
an intractable posterior distribution. The candidate network structure Gc is proposed 
by either adding, deleting or reversing a particular directed edge from the current net-
work structure Gs . Besides a conventional single edge proposal move, the Markov blan-
ket resampling step [26] is introduced with a fixed probability pMBR = 1/15 to achieve 
faster mixing and convergence ( pMBR suggested by the authors). The acceptance prob-
ability A indicates how probable the candidate network structure is with respect to the 
current network structure, according to the posterior distribution. A candidate network 
structure proposed from the proposal distribution Q(Gc|Gs) is accepted according to the 
Metropolis-Hastings rule [36] with the acceptance probability given by:

After each iteration except the sampling phase (see “Technical details” section), a new 
parameter βc for fixed network structure G is proposed and accepted according to the 
following acceptance probability:

where βs refers to the current parameter value.

Technical details

The main steps of IntOMICS are summarised in Algorithm 1.
IntOMICS framework takes as input (i) gene expression matrix GE ( m x n1 ), (ii) the 

associated copy number variation matrix CNV  ( m x n2 ), (iii) the associated DNA meth-
ylation matrix of beta-values METH ( m x n3 ) sampled from the same individuals, and 
(iv) the biological prior knowledge matrix B ( n1 x n1 ) with information on known inter-
actions among molecular features.

DNA methylation is an epigenetic mechanism involving the transfer of a methyl group 
in CG dinucleotides (CpGs). DNA methylation microarrays use beads with long target-
specific probes designed to capture individual CpG sites. Because multiple CpG sites 
are associated with a single gene, we can use linear regression to detect relevant probes 
that are associated with the gene expression. If not stated otherwise, we considered indi-
vidual probes with a statistically significant coefficient (p-value < 0.5 ) and R2 > 0.3 as 
possible regulators of given gene expression. The ordered quantile normalisation [37] is 
used to transform DNA methylation beta-values to Gaussian distribution.

Adaptive MCMC algorithms use information from past iterations of the chain to 
improve computational efficiency. We use an automatically tuned MCMC algorithm 
[30] with default hyper-parameters to estimate parameter β and empirical biological 

(7)A = min

{

P(D|Gc)P(Gc|β)Q(Gs|Gc)

P(D|Gs)P(Gs|β)Q(Gc|Gs)
, 1

}

.

(8)Aβ = min

{

P(G|βc)

P(G|βs)
, 1

}

,



Page 8 of 23Pačínková and Popovici  BMC Bioinformatics          (2022) 23:351 

knowledge matrix B through multiple phases. The automatically tuned MCMC algo-
rithm consists of several distinct phases.

The first adaptive phase is used to roughly tune the parameter β , more precisely the 
variance of its proposal distribution σ 2

s  . The proposal distribution is βc ∼ N (βs, σ
2
s ) , 

where βs refers to the current parameter value, and βc refers to the candidate parameter 
value. The initial value of the parameter βs is randomly drawn from U[0, 10], and then 
we require β >= 0.5 . The initial value σs = 5.

The transient phase is applied to diagnose whether the chain has reached the mode of 
the target distribution.

The second adaptive phase is used to fine-tune the variance σ 2
s  , β parameter estima-

tion and compute the empirical biological prior matrix B . Assuming Bij = 0.5 , the prior 
knowledge about interaction from node i to node j is updated during the second adap-
tive phase after every conventional single edge proposal move. The Bij value corresponds 
to the ratio of acceptance (number of iterations with accepted candidate edge from node 
i to node j) and frequency (number of iterations with proposed candidate edge from 
node i to node j) (for details, see Table 1). Reversing an edge is equivalent to deleting the 
edge and adding the edge in the opposite direction.

The empirical biological matrix B and the parameter β determined by the second 
adaptive phase are used in the last sampling phase. In this phase, IntOMICS applies a 
greedy horizon approach. Three independent paths are executed with a fixed BGe score 
(except the MBR step). The most probable path is chosen after every 500 iterations. In 
our simulation, two independent samples of network structures are produced. Each sam-
ple consists of 200,000 DAGs (with a burn-in period of 100,000 iterations). The resulting 
samples of DAGs are thinned—discarded all but every 500th DAG. The burn-in period 
of 100,000 iterations and thinning frequency of 500 are arbitrary choices. We tested dif-
ferent settings of these parameters using in silico dataset with known network structure 
but they did not influence the resulting accuracy (see Additional file 1: Figs. S1 and S2).

Distinct DAGs can describe the same set of independence relations and have the same 
likelihood score. Such DAGs are from the same equivalence class. The equivalence class 
can be represented by completed partially directed acyclic graphs (CPDAGs). Therefore, 
we convert DAGs into corresponding CPDAGs and discard duplicated CPDAGs.

Table 1 Empirical biological knowledge estimation

Assuming there is no prior knowledge about the direct interaction from node i to node j, the empirical biological matrix B is 
estimated, with Bij =

aij
fij

∈ [0, 1]

Edge Operation Frequency Candidate Acceptance

Gi Gj Add fij = fij + 1 Accepted aij = aij + 1

Rejected aij = aij

Gi Gj Delete fij = fij + 1 Accepted aij = aij

Rejected aij = aij + 1

Gi Gj Reverse fij = fij + 1 Accepted aij = aij

aji = aji + 1

fji = fji + 1 Rejected aij = aij + 1

aji = aji
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The convergence of resulting Markov chains is examined using the crms measure [38]. 
The crms threshold is given by the third quartile of |crmsk − crmsk−1

| for each iteration k. If 
the crms value of the last 100 iterations (after thinning) is smaller than the crms threshold, 
the MCMC simulation stops. Otherwise, the simulation proceeds until this condition is 
met. Subsequently, we discard the CPDAGs from the burn-in period.

The strength of the probabilistic relationships expressed by the edges in the resulting network 
structure is measured as their empirical frequency over both independent sets of CPDAGs.

In the context of gene expression, gene transcription is usually controlled by a small 
number of transcription factors. In contrast, a transcription factor can control an almost 
unlimited number of genes. Therefore, we apply the upper bound of the number of par-
ents for each GE node: each GE node can have at most three GE parent nodes and one 
corresponding CNV node. There is no restriction on the number of METH parents for 
given GE node. CNV and METH nodes cannot have any parents. This restriction is sup-
ported by the biological literature [39].

Analyses were carried out using the free R software (www.r-project.org) version 4.0.0.
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Data and test procedures
Objective assessment of regulatory network inference is challenging [40], especially if 
we are interested in multiple molecular features, such as gene expression, copy number 
variation, and DNA methylation.

DREAM (the Dialogue on Reverse Engineering Assessment and Methods) project [40] 
was established to objective assess network inference methods on benchmark data sets. 
We use one of the DREAM4 gene expression datasets [41–43] for the IntOMICS evalu-
ation at gene expression level. But we must keep in mind, that simulated datasets cannot 
fully reflect underlying biological processes.

We use also several real datasets to evaluate the IntOMICS performance consider-
ing multi-omics data. There are multiple publicly available databases with well-known 
interaction pathways. We can use them as the ground truth. Nevertheless, a certain 
level of disagreement is likely to emerge due to biological diversity. Well-known interac-
tion pathways capture only simplified representations of mechanisms ongoing in most 
populations under given conditions. As a test case for IntOMICS, we focus mainly on 
the Wnt/Wingless and MAPK signalling pathways that have a prominent role in  can-
cer development. Hence, they have been extensively studied in the context of colon can-
cer, and most of the key gene-gene interactions have been revealed and experimentally 
tested [44–47]. Besides wild-type/normal tissue experiments, we assess the IntOMICS 
performance in samples affected by some perturbation (interventional gene expression 
data from knock-out experiments, tumour tissues).

DNA methylation is one of the most intensely studied epigenetic modifications of 
DNA that is important for the normal regulation of transcription, embryonic develop-
ment, genomic imprinting, genome stability and chromatin structure [48]. The Beta-
value (frequently converted to M-value through a logistic transformation) is a metric to 
measure DNA methylation levels. The Beta-value ranges between 0 (completely unmeth-
ylated) and 1 (every copy of the site was methylated) and follows the Beta distribution 
[49]. The copy number variations contain information on gains and losses of genetic 
information. CNV data are represented by continuous segment mean values reflecting 
the log2 ratio of probe intensities. Diploid regions have a segment mean of zero, ampli-
fied regions have positive values, and deletions have negative values [50].

Datasets

A summary of all data sets used in this study can be found in Table 2.
The Cancer Genome Atlas (TCGA) [51] provides publicly available multi-omics data-

sets for human cancers, including colon cancer (COAD) and its histologically normal 
tissue adjacent to the tumour (NAT). The copy number variation of the associated genes 
from TCGA-COAD samples were downloaded from the Broad Institute GDAC Fire-
hose (https:// gdac. broad insti tute. org/; accessed 30 December 2020). We use only sam-
ples with DNA methylation data from Illumina Infinium HumanMethylation450 (450K) 
BeadChip array available. The resulting subset of the TCGA-COAD consists of n = 115 
samples (27 microsatellite stable phenotype (MSS) stage II/III, 69 microsatellite instable 
phenotype (MSI), 19 NAT). Several TCGA-COAD samples lack information on micro-
satellite status. These samples were classified into MSI/MSS groups using MSI gene 
expression signature [52].

https://gdac.broadinstitute.org/
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GSE127960 includes the gene expression profiling of the human colon cancer cell lines 
HCT116 with ZIC5 wild-type (ZIC5 WT) and ZIC5 knockout (ZIC5 KO) replicates.

DREAM4 dataset [41–43] consists of five in silico networks with 10 nodes. We use 
steady state data reflecting gene expression measurements.

We utilise another dataset originating from TCGA [51]. We downloaded the processed 
TCGA-AML (acute myeloid leukemia) dataset used in the original RACER publication 
[18] to reproduce the most relevant results. TCGA-AML dataset consists of gene expres-
sion, copy number variation, DNA methylation and miRNA expression data. Methyla-
tion data are represented by the mean of multiple probes corresponding to a given gene.

PETACC-3 clinical trial [53, 54] investigates the benefit of irinotecan in the adjuvant 
treatment of stage III colon cancer patients. We use gene expression and copy number 
variation data of 176 MSS stage III colon cancer samples (PETACC-3 MSS). Missing 
MSS/MSI phenotype was determined by the MSI gene expression signature mentioned 
above.

Evaluation criteria

One of the main performance indexes is used the receiver-operating characteristic curve 
(ROC) as a function of the edge weights and area under the receiver-operating charac-
teristic curve (AUC). Edge weight in the resulting network structure reflects its empiri-
cal frequency over the final set of CPDAGs.

From a practical point of view, the edge weight expresses confidence in the real edge 
presence. If not stated otherwise, we define a threshold for a presence of an edge as 0.75 
quantile of all present edges in a given network structure.

The IntOMICS performance at gene expression level is compared with the W &H 
algorithm—one of the most relevant gene regulatory network reconstruction tools based 
on Bayesian networks [4]. The W &H algorithm was designed to infer only dependencies 
among gene expression data. Thus, we exclude CNV-GE and METH-GE edges identified 

Table 2 Summary of all used data sets

MSS microsatellite stability, MSI microsatellite instability, NAT histologically normal tissue adjacent to the tumour, GE gene 
expression, CNV copy number variation, METH methylation probe, KO knockout, WT wild‑type, AML acute myeloid leukemia

Dataset Investigated gene set Samples Details

GSE127960 ZIC5 WT 16GE / 0CNV / 0METH 2 HCT116 colon cancer cell line

GSE127960 ZIC5 KO 16GE / 0CNV / 0METH 4 HCT116 colon cancer cell line

ZIC5 knockout

TCGA-COAD MSS 24GE / 24CNV / 4METH 27 Primary tumour stage II/III

With MSS phenotype

TCGA-COAD MSI 24GE / 24CNV / 3METH 69 Primary tumour

With MSI phenotype

TCGA-COAD NAT 24GE / 24CNV / 16METH 19 Histologically normal tissue

Adjacent to the tumour

DREAM4 1-5 10GE / 0CNV / 0METH 1 Five independent in silico networks

To assess the consistency of prediction

TCGA-AML 25GE / 25CNV / 25METH 173 Acute myeloid leukemia

PETACC-3 MSS 39GE / 23CNV / 0METH 176 Primary tumour stage III

With MSS phenotype
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by IntOMICS in the performance comparison of these two algorithms. The criterion of 
the 83% confidence intervals (CIs) overlap [55] is used to test if there is a difference in 
the performance of both algorithms. To measure the agreement between IntOMICS and 
W &H algorithm, we add another performance metric—Cohen’s κ coefficient. To assess 
which of the tested algorithms estimate more biologically relevant gene-gene interac-
tions, we define a set of edges (missing in the prior knowledge) identified exclusively by 
IntOMICS or W &H, respectively, and compare them against other publicly available 
interaction databases [56–58].

To evaluate the IntOMICS performance in real datasets, we select the Wnt signalling 
pathway from the KEGG database and consider only interactions experimentally vali-
dated by low-throughput experiments listed in the BioGrid database [57]. We refer to 
this pathway as the gold standard Wnt pathway (GS Wnt pathway). GS Wnt pathway 
includes only interactions with strong experimental support but includes many false 
negatives. The missing interactions in the GS Wnt pathway are not necessarily incor-
rect. Regulatory networks derived using TCGA-COAD MSI/NAT, and GSE127960 ZIC5 
WT/KO are compared with the GS Wnt pathway used as the ground truth.
β-catenin regulation in MSI colon cancer Activating mutations in β-catenin (CTNNB1) 

result in decreased phosphorylation by GSK3β and increased Wnt signalling through 
the Tcf/Lef transcription factors. These mutations are more frequent in microsatellite 
instable (MSI) colon cancer [59–61]. KEGG Colorectal cancer pathway has MSI specific 
information on missing interaction between GSK3β and CTNNB1 genes. Therefore, 
we compare regulatory networks inferred by IntOMICS using both TCGA-COAD MSI 
samples and TCGA-COAD NAT samples. We choose 24 genes from the KEGG Wnt 
signalling pathway.

SLC2A1 regulation in colon cancer cell lines [62] found that the effectors of Wnt signal-
ling β-catenin (CTNNB1) and TCF7L2 in collaboration with ZIC proteins directly regu-
late SLC2A1 gene expression. We choose gene expression of 14 genes from the KEGG 
Wnt signalling pathway together with ZIC5 and SLC2A1 genes and observe any differ-
ence in SLC2A1 regulation between ZIC5 WT and ZIC5 KO samples. GSE127960 data 
set is used to assess the IntOMICS performance only at the gene expression level.

CNVs specific for MSS colon cancer The TCGA colon cancer (TCGA-COAD) micros-
atellite stable (MSS) samples were used to evaluate IntOMICS ability to infer dependen-
cies among different molecular features—gene expression and copy number variation. In 
this part, we utilise gene expression, DNA methylation, and CNV data of TCGA-COAD 
MSS stage II/III samples (n = 27). We choose a subset of 24 genes from the KEGG Colo-
rectal cancer pathway concerning CNVs identified by [54] in MSS stage II/III primary 
tumours. [54] identified several MSS specific aberrations. We focus on amplification of 
KRAS, MYC, BIRC5, CCND1, RAC3 and deletion of SMAD4.

DNA methylation specific for MSI colon cancer The TCGA colon cancer (TCGA-
COAD) microsatellite instable (MSI) samples have characteristic molecular biomark-
ers such as gene expression silencing through the MLH1 promoter hypermethylation 
[63, 64]. TCGA-COAD MSI samples were used to evaluate IntOMICS ability to infer 
dependencies among other molecular features—gene expression and DNA meth-
ylation. In this part, we utilise gene expression, DNA methylation, and CNV data of 
TCGA-COAD MSI samples (n = 69). We choose a subset of 24 genes from the KEGG 
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Colorectal cancer pathway and MLH1. Because there are many methylation probes with 
significant regression coefficient and R2 > 0.3 , we perform differential methylation anal-
ysis using ChAMP R-package [65]. We select CpG island methylation probes from the 
promoter region with differential methylation between NAT and MSI samples (p-value 
< 0.05 ), and the absolute value of delta beta was greater than its 0.75 quantile.

In Silico Dataset We use in silico dataset DREAM4 with the gold standard network 
structure available to evaluate the IntOMICS performance at the gene expression level. 
For each network, 50 % of the known interactions were randomly selected as the prior 
knowledge.

Comparison with Algorithms for Multi-Omics Regulatory Network Inference Finally, 
we compare IntOMICS to two existing approaches focused on modelling interactions 
between multi-omics modalities with available implementation, namely RACER [18] 
and KiMONo [21]. Both methods can predict the interaction between CNV/METH/
miRNA and GE modalities. miRNA-GE interactions are excluded from this compari-
son. RACER can also predict GE-GE interactions restricted to TFs and their targets. 
KiMONo is designed to evaluate only GE-GE interactions listed in the prior knowl-
edge. For this comparison, we use TCGA-AML (acute myeloid leukemia) dataset 
from the RACER publication [18] to reproduce the most relevant results. In this part, 
we focus on 25 genes from the Notch signalling pathway, that is crucial in malignant 
transformation and therefore extensively studied [66]. Two out of these 25 genes are 
known TFs with targets from Notch signalling pathway.

Real application of InfOMICS: ABCG2‑related chemoresistance in MSS stage III colon cancer

Resistance to chemotherapy is a major clinical problem in colon cancer treatment. 
Mechanisms associated with chemoresistance and novel biomarkers can iden-
tify patients with benefit from irinotecan-based regimens that could substantially 
improve the selection of cancer therapy for the individual patient.

PETACC-3 clinical trial [53] randomised colon cancer patients to fluorouracil/
leucovorin (5FU/FA) +/− irinotecan treatment groups. The combination of ABCG2 
and TOP1 gene expression significantly divided the stage III colon cancer patients 
enrolled in PETACC-3 into two groups regarding benefit from adjuvant treatment 
with FOLFIRI [67].

ABCG2 plays an essential role as an efflux transporter with various substrates, 
including chemotherapy drugs. Thus it is responsible for chemotherapy failure [68]. 
MYCN (by analogy, c-MYC) can contribute to irinotecan chemoresistance by regulat-
ing a specific set of ABC transporter genes, including ABCG2. Direct interaction was 
determined by chromatin immunoprecipitation (ChIP) assays and luciferase-reporter 
assays [69]. The authors have shown that ABCG2 gene expression is positively regu-
lated by MYCN in neuroblastoma cell lines.

The gene expression of ABCG2 could be increased by activation of mitogen-acti-
vated protein kinase cascade via phosphorylation of extracellular regulated kinase 
ERK1/2 and c-jun NH-terminal kinase/stress-activated protein kinase (JNK/SAPK) 
[70].
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We use IntOMICS to investigate mechanisms associated with chemoresistance 
using 176 MSS stage III colon cancer samples from the PETACC-3 (PETACC-3 MSS) 
clinical trial [53, 54]. We select 37 genes from the KEGG MAPK signalling pathway 
together with MYCN and ABCG2 genes. Copy number variation data are available 
for 23 out of 39 selected genes. Both PETACC-3 MSS samples treated by 5FU/FA 
(PETACC-3 MSS 5FU/FA) and PETACC-3 MSS samples treated by 5FU/FA + iri-
notecan (PETACC-3 MSS FOLFIRI) are dichotomized by 5-year relapse-free survival 
(RFS) into high/low-RFS groups (Table 3).

Results
The performance of IntOMICS and W &H algorithm in TCGA-COAD and GSE127960 
datasets is shown in Fig. 2. Corresponding AUC with 83% CIs, Cohen’s κ coefficient, and 
running time can be found in Additional file  2: Table  S1. In TCGA-COAD NAT and 
TCGA-COAD MSI datasets, the IntOMICS performance is significantly higher than the 
W &H. There is no statistically significant difference in the performance in GSE127960 
ZI5 WT and GSE127960 ZI5 KO datasets.

Cohen’s κ ranges between 0.12 to 0.38. In the TCGA-COAD datasets, Cohen’s κ is 
very low, which reflects the statistically significant difference in the performance. In the 
GSE127960 ZIC5 WT dataset, Cohen’s κ = 0.19 is also low, even if the performance of 
both algorithms is similar. However, we can notice the lack of convergence in W &H 
MCMC simulation. As a result of the Markov chain poor convergence, we can detect 
apparent anomalies in the trace plots of β values (Additional file  1: Fig.  S3a, b) and 
inconsistency of posterior probabilities of the edges (Additional file 1: Fig. S4a, b). [4] 
decided to run a fixed number of MCMC simulations for performance evaluation. We 
followed the same procedure in the W &H application and found out that this setting 
is insufficient in some datasets. Consequently, using a measure of convergence, such as 
the crms [38], is necessary for every MCMC simulation. IntOMICS trace plots of β val-
ues and the edge posterior probabilities of two independent MCMC simulations can be 
found in Additional file 1: Figs. S5 and S6.
β-catenin regulation in MSI colon cancer The W &H algorithm identified the inter-

action from CTNNB1 to GSK3β in both TCGA-COAD NAT and TCGA-COAD MSI 
datasets. Using the predefined threshold of edge weights, the interaction from GSK3β 
to CTNNB1 was missing in the resulting regulatory network derived by IntOMICS 
in TCGA-COAD NAT samples. The interaction was present in 50% of CPDAGs. In 
TCGA-COAD MSI samples, IntOMICS did not identify the interaction between 
these genes at all, even if Bij = 1 for i = GSK3β and j = CTNNB1. This result sug-
gests IntOMICS can discover relevant data-derived interactions despite distinct prior 

Table 3 Number of samples in PETACC-3 clinical trial according to the treatment and relapse-free 
survival

5FU/FA fluorouracil/leucovorin, FOLFIRI fluorouracil/leucovorin with irinotecan, RFS relapse‑free survival

5FU/FA FOLFIRI

Low-RFS 31 34

High-RFS 53 58
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knowledge. We can conclude the edge weight needs to be considered carefully when 
interpreting the results and drawing conclusions.

In the TCGA-COAD NAT dataset, 17% and 13% of edges identified exclusively by 
the W &H and IntOMICS algorithm were found in other databases, respectively.

SLC2A1 regulation in colon cancer cell lines Based on the [62] experiment, we 
assume SLC2A1 is directly regulated by ZIC5, CTNNB1, and TCF7L2 in ZIC5 WT 
samples ( Bij = 1).

In ZIC5 WT samples, both W &H and IntOMICS revealed all three interactions. 
Moreover, IntOMICS revealed GSK3B as the direct regulator of SLC2A1 and TCF7L2 
as the direct regulator of ZIC5. W &H revealed CTNNB1 as the direct regulator of 
ZIC5.

We expect a difference in SLC2A1 and ZIC5 regulation in ZIC5 KO samples. In 
ZIC5 KO samples, W &H revealed the same set of SLC2A1 regulators. The difference 
is missing interaction between CTNNB1 and ZIC5. IntOMICS identified a direct 
regulation from CTNNB1, TCF7L2, and CHD8 to SLC2A1. IntOMICS identified the 
same interaction from TCF7L2 to ZIC5 as in WT samples.

In the GSE127960 WT dataset, 7% and 18% of edges identified exclusively by the W 
&H and IntOMICS algorithm were found in other databases, respectively.

CNVs specific for MSS colon cancer IntOMICS identified edges from CNV to associ-
ated GE in five out of six genes of interest: KRAS, MYC, BIRC5, RAC3, and SMAD4. 
Even if the interaction from CCND1 CNV to CCND1 GE is not present in the result-
ing network structure, the edge weight is higher than the median of all edge weights 
in the resulting network.

Except five genes mentioned above, we should highlight other interesting interactions 
identified by IntOMICS: deletion of tumour suppressor SMAD2 directly connected with 
SMAD2 GE, amplification of proto-oncogene BRAF directly connected with BRAF GE, 
two DNA methylation probes located at the CpG island shore (2-kb-long region from 
CpG island) directly connected with FOS GE, and one DNA methylation probe directly 

Fig. 2 Performance comparison of IntOMICS and W &H algorithm [4] using real datasets. Receiver-operating 
characteristic curve (as a function of the edge weights) serves as the main performance index. Gold standard 
Wnt signalling pathway is used as the ground truth. NAT histologically normal tissue adjacent to the tumour; 
MSI microsatellite instability; WT wild-type; KO knockout
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connected with TGFBR2 GE. IntOMICS also identified interesting interplay between 
PIK3R5 CNV, one methylation probe located at CpG island of PIK3R5 and PIK3R5 GE. 
PIK3R5 was previously found to be mutated in colon cancer [71, 72].

The resulting regulatory network inferred by the IntOMICS algorithm using TCGA-
COAD MSS stage II/III samples can be seen in Additional file 1: Fig. S7.

DNA methylation specific for MSI colon cancer IntOMICS identified six DNA meth-
ylation probes (all located at CpG island) as MLH1 direct regulators. There are no 
descendant nodes of the MLH1 gene. This is in concordance with the hypothesis that 
DNA methylation of the MLH1 promoter region influences its gene expression.

The resulting regulatory network inferred by the IntOMICS algorithm using TCGA-
COAD MSI samples can be seen in Additional file 1: Fig. S8.

In Silico Dataset IntOMICS and W &H performance using DREAM4 in silico gene 
expression dataset in terms of ROC is shown in Fig. 3. The difference of IntOMICS 
AUC = 0.74, 83% CI = (0.71–0.78) and W &H AUC = 0.75, 83% CI = (0.71–0.79) is 
not statistically significant. We can see slightly different sensitivity in the region of 
high specificity. However, the sensitivity is balanced if specificity decreases to 90%. 
Cohen’s κ ranges between 0.22 to 0.59 (see Additional file 2: Table S1).

Presented results indicate a difference in favour of IntOMICS, and we can conclude 
that the proposed framework can compete with the W &H algorithm using only gene 
expression data.

Comparison with Algorithms for Multi-Omics Regulatory Network Inference Both 
RACER and KiMONo tested (i) 50 interactions between CNV/METH and correspond-
ing GE, and (ii) 11 interactions between TFs and their targets. On top of that, KiMONo 
allows CNV/METH to be a gene expression regulator of any other gene. RACER iden-
tified 17/50 interactions between CNV/METH and corresponding GE as significant. 
KiMONo identified 1/50 interactions between CNV/METH and corresponding GE 
as significant. On top of that, KiMONo identified another three interactions between 
CNV/METH and GE that were not tested by RACER or IntOMICS. Venn diagram 
of interactions between features originating from distinct omics modalities identi-
fied by RACER, KiMONo, and IntOMICS is shown in Fig.  4. RACER identified 3/11 

Fig. 3 Performance comparison of IntOMICS and W &H algorithm [4] using in silico gene expression 
dataset. Receiver-operating characteristic curve (as a function of the edge weights) with 95% confidence 
interval serves as the main performance index
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interactions between TFs and their targets as significant (one of them was identified also 
by IntOMICS). KiMONo identified 1/11 interactions between TFs and their targets as 
significant (IntOMICS identified this interaction in the opposite direction).

KiMONo is also designed to test GE-GE interactions defined in the prior knowledge. 
We used 24 known GE-GE interactions from the KEGG Notch signalling pathway as the 
prior knowledge. KiMONo identified 1/24 GE-GE interactions from the prior knowl-
edge as significant (from NOTCH3 GE to NCSTN GE). IntOMICS identified also 1/24 
GE-GE interactions from the prior knowledge (from MAML2 GE to RBPJL GE).

These results suggest there is some overlap between these algorithms, especially 
between RACER and IntOMICS. However, all these methods have its disadvantages over 
the others. RACER does not test any GE-GE interactions except TFs and their targets. 
KiMONo does not test any GE-GE interactions except the prior knowledge. KiMONo 
also derived several CNV/METH-GE interactions that are not straightforward to inter-
pret, such as interaction from NOTCH3 CNV to APH1B GE. IntOMICS requires con-
siderable time complexity and is limited by the number of input features. Nevertheless, 
IntOMICS provides the best choice for detailed knowledge discovery from multi-omics 
data.

Real application of InfOMICS: ABCG2‑related chemoresistance in MSS stage III colon cancer

There are several interesting differences in ABCG2 regulation in the PETACC-3 MSS 
samples. Genes with ABCG2 direct interaction determined by IntOMICS are listed in 
Table  4. In all PETACC-3 MSS samples, IntOMICS identified direct interaction from 
ABCG2 CNV to ABCG2 GE.

MAPK3/ERK1 and RPS6KA3 genes are identified as the direct regulators of the 
ABCG2 gene in the 5FU/FA low-RFS samples. In contrast, the confidence of ABCG2 
regulation by these genes is very low in other groups. These results support the findings 
of [70] about the regulation of ABCG2 by MAPK3/ERK1, which can have therapeutic 
consequences.

MRAS is identified as the direct regulator of the ABCG2 gene only in the FOLFIRI 
low-RFS samples (the confidence of MRAS GE and ABCG2 GE direct regulation is very 
low in other groups).

MYCN is identified as the direct regulator of the ABCG2 gene in the FOLFIRI high-
RFS samples (the confidence of MYCN GE and ABCG2 GE direct regulation is very low 
in other groups). ABCG2 contributes to chemoresistance through the efflux of anti-
cancer drugs from cancer cells [73] and MYCN was shown to be positive regulator of 
ABCG2 [69]. We can hypothesise that the direct interaction between MYCN GE and 

Fig. 4 The intersection of interactions between features originating from distinct omics modalities identified 
by RACER, KiMONo, and IntOMICS
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ABCG2 GE in the group of FOLFIRI high-RFS samples does not necessarily lead to iri-
notecan resistance development. We do not observe statistically significant difference in 
MYCN GE or ABCG2 GE between groups (Kruskal-Wallis test; p-value ≥ 0.1). On the 
contrary, the Spearman’s corelation coefficient test between ABCG2 GE and MYCN GE 
is at the margin of statistical significance in the FOLFIRI high-RFS samples and the cor-
relation coefficient is positive in comparison with other groups (see Table 5). The role of 
MYCN in ABCG2-related chemoresistance remains uncertain.

In our study, MAPK3/ERK1, MRAS, MYCN, and RPS6KA3 have the highest predic-
tive potential.

The direct interaction from MAPK1/ERK2 to ABCG2 is detected in FOLFIRI high-
RFS samples. In the context of ABCG2 regulation, we can speculate about the functional 
redundancy of MAPK1/ERK2 and MAPK3/ERK1.

Discussion
We present IntOMICS, a Bayesian framework for multi-omics data and prior knowledge 
integration to infer regulatory networks using a novel approach to biological knowledge 
discovery. Besides the integration of known interactions as prior knowledge, IntOMICS 
complements the prior knowledge using empirical biological matrix, which reflects hid-
den patterns in the available datasets. IntOMICS is designed to infer not only dependen-
cies among gene expression but also between gene expression, DNA methylation and 
copy number variation. Pathogenic copy number variations and epigenetic changes 
(such as DNA methylation) can affect gene expression, contribute to increased DNA 
instability and play an essential role in the initiation and progression of complex diseases 
such as cancer. The great benefit of IntOMICS is the use of continuous data. Because 
frequently used data discretisation in multi-omics data analysis implies substantial 
information loss. The proposed framework minimises the weaknesses of MCMC-based 

Table 4 Genes with ABCG2 direct interaction and the confidence of the regulation (w) determined 
by IntOMICS

Genes with the highest predictive potential are highlighted in bold. low w < 0.5 quantile of all edge weights; med 
0.5 ≥ w < 0.75 quantile of all edge weights; high empirical frequency w ≥ 0.75 quantile of all edge weights; NA the edge 
was not identified

5FU/FA FOLFIRI

Low‑RFS High‑RFS Low‑RFS High‑RFS

ELK1 High Med Low Med

HRAS Low Med Low High

MAP3K1 High Med Low NA

MAP2K1 Med High NA Low

MAPK1/ERK2 Low Low Med High

MAPK3/ERK1 High Low Low NA

MRAS Low Low High Low

MYC High Med Med Med

MYCN Low Low Low High

RAF1 Med NA Low High

RPS6KA3 High NA NA Low

ABCG2 CNV High High High High
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algorithms utilising state-of-the-art approaches such as Markov blanket resampling or 
adaptive MCMC algorithm. IntOMICS can be extended with any additional modality 
if the proposed model assumptions are satisfied (variables come from the multivariate 
Gaussian distribution).

Although IntOMICS evaluation and application is demonstrated using multi-omics 
data of colon cancer samples, it is not limited to any particular phenotype.

We have to mention that IntOMICS is not designed to infer genome-wide regula-
tory networks because of time complexity. At present, IntOMICS is restricted to infer 
regulatory networks within pathways with up to tens of features (nodes).

The main limitations of IntOMICS are time complexity and limited flexibility of the 
linear model. Therefore, the maximal number of parents for a node is limited. The 
BGe score does not provide such modelling flexibility and enables the modelling of 
only linear relationships between features. However, relationships in biological sys-
tems are more variable and complex. For example, co-regulation of a given gene by 
two exclusive regulators cannot be captured with a linear model. Moreover, Bayesian 
networks are also restricted to acyclicity and no feedback loops, common biological 
features. The user must always consider these limitations during the interpretation of 
the IntOMICS results.

Our Bayesian network-based framework tuned for gene expression, copy number 
variation, and DNA methylation is designed to work on any modalities defined in a 
continuous domain. However, IntOMICS is designed to infer regulatory network, 
even if copy number variation or DNA methylation data (or both) are not available.

Regarding future work, our Bayesian network-based framework could be extended 
by additional omics data types, such as miRNAs. Our next objective is to upgrade the 
proposed workflow to infer regulatory networks with an extensive set of features.

At the gene expression level, the performance of IntOMICS is comparable with a 
published algorithm based on Bayesian networks using both real and in silico data-
sets. In the context of multi-omics data, IntOMICS performance is significantly better 
in comparison with a published algorithm based on Bayesian networks. The ability 
to capture relevant crosstalks between copy number variation and gene expression is 
verified using known associations between copy number variation and gene expres-
sion in microsatellite stable stage II/III colon cancer samples. IntOMICS identified 
five out of six known associations. Microsatellite instable samples were used to verify 
crosstalks between gene expression and methylation. IntOMICS identified six DNA 
methylation probes as MLH1 direct regulators together with associated CNV.

Table 5 Spearman’s correlation coefficient between ABCG2 GE and MYCN GE in MSS stage III colon 
cancer and corresponding p-value

ρ Spearman’s correlation coefficient; 5FU/FA fluorouracil/leucovorin, FOLFIRI fluorouracil/leucovorin with irinotecan, RFS 
relapse‑free survival

Treatment and survival ρ p‑value

5FU/FA low-RFS − 0.17 0.35

5FU/FA high-RFS − 0.11 0.41

FOLFIRI low-RFS − 0.01 0.96

FOLFIRI high-RFS 0.23 0.09
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Additionally, IntOMICS performance was compared with two algorithms for multi-
omics regulatory network inference that can also incorporate prior knowledge in the 
inference framework. There is overlap of interactions between features originating 
from distinct omics modalities. However, all these algorithms have their advantages 
over the others. IntOMICS should be used if we are interested in detailed knowledge 
discovery from multi-omics data. Besides inferring relevant crosstalks between multi-
omics modalities, IntOMICS is designed to capture also interactions within gene 
expression.

Using our novel framework, several ABCG2 regulator genes are discovered as 
potential predictive markers in microsatellite stable stage III colon cancer samples. 
However, all regulatory relationships discovered by IntOMICS need to be verified 
using more refined approaches.

IntOMICS is a powerful resource for exploratory systems biology and can provide 
valuable insights into the complex mechanisms of biological processes that has a vital 
role in personalised medicine.
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