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Abstract: Since the intricate and complex steps in pathogenesis and host-viral interactions of
arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches,
which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of
great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae,
Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift
Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology
of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence,
provide novel insights for the development of new antiviral drugs or therapies.
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1. Introduction

Arboviruses form a diverse group consisting of over 500 viruses from different families
that are transmitted by a variety of arthropod vectors, including mosquitoes, ticks, flies
and midges, where they multiply, resulting in a high-titred load, especially in salivary
glands, and are subsequently transmitted to humans and other vertebrate hosts through
bites. Their transmission can be maintained through a sylvatic cycle, where viruses are
stably transmitted from vectors, and wild animals with sporadic spillover to humans or
domestic animals, or a human or domestic animal host infected can act as an amplifier
to other humans and animal hosts and trigger epidemics, which is the case of the urban
cycle [1]. Their emergence and re-emergence are of great public health importance. The
clinical effects are associated with neurological, viscerotropic and hemorrhagic diseases.
Their ability to adapt to new environments, new arthropods, and human hosts causes major
health and socioeconomic issues. The great majority are classified as neglected diseases
due to the lack of antiviral treatment, with only symptomatic treatments and prophylactic
measures to contain the available vectors [2,3].

Considering the impact that arboviruses have throughout the world, a multi-omics
approach to comprehend viruses, virus-host interactions, and the disease process is of
significant relevance. Genomics, transcriptomics, proteomics and metabolomics have been
widely used as technological advances made high-throughput and cost-efficient analysis
available. From the identification of genetic variants of the diseases, characterization, RNA
(transcript) levels, protein abundance, structure and interactions to the identification of
small molecules derived from cellular metabolism, the disease process can be deciphered as
well as disease biomarkers, which are of utmost importance for the development of future
antiviral therapies and drugs [4]. Technological advancements in techniques such as DNA
sequencing [5], transcriptomics via RNA-seq [6], SWATH (Sequential Windowed Acquisition
of all Theoretical fragments) and Mass Spectrometry (MS)-based proteomics [7,8], Nuclear
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Magnetic Resonance (NMR), and MS-based metabolomics [9,10] permit us to integrate data
from these different areas, although still challenging, as the specific analytical tools for each
omics must be well-suited for logical comparisons of the obtained results [11].

Here, we present a review of general viral characteristics along several omics stud-
ies applied to well-known mosquito-borne viruses within the Togaviridae, Peribuyaviridae
and Phenuiviridae families, more specifically, the following arboviruses: Rift Valley Fever,
Oropouche, Chikungunya and Mayaro virus [12,13].

2. An Overview of the Genera
2.1. Togaviridae—Alphavirus

Arboviruses from the Alphavirus genus are classified into three major clades, including
several complexes. The Venezuelan equine encephalitis complex comprises the Venezuelan
Equine Encephalitis virus (VEEV), and the Western Equine Encephalitis complex comprises
the Western Equine Encephalitis virus (WEEV) and the Sindbis virus (SINV). Another
complex is the Semliki Forest complex, in which we find the Semliki forest virus (SFV),
Chikungunya virus (CHIKV), Mayaro virus (MAYV) and Ross River virus (RRV). Other
known complexes are the Barmah Forest, the Eastern equine encephalitis complex, and the
Middelburg and Nmdumu complexes [14]. Alphaviruses belong to the Togaviridae family,
characterized as enveloped, spherical viruses with a single positive RNA strand. The
Alphavirus viral particle is around 70 nm in diameter T = 4 icosahedral symmetry capsid,
which presents 240 copies of the capsid protein in the nucleocapsid core (NC), coated by
a host-derived lipid membrane with glycoprotein spike-like projections that consist of
envelope E1 and E2 heterodimers associated as trimers [15]. The ~11 kb single-stranded
RNA codes for structural and nonstructural proteins, as illustrated in Figure 1 [16], and
contains a 5’ 7-methyl-GpppA cap and a 3’ poly(A) tail [17]. Genome organization can be
summarized as 5′m7G-nsP1-nsP2-nsP3-nsP4-(junction)-C-E3-E2-6K/TF-E1-An3′ [18]. Some
conserved and repeated sequences are present in the 5’ and 3’ ends, which are important
for RNA synthesis and replication regulation. Two open reading frames (ORFs) are present
in the genome. The first ORF is responsible for translating directly from genomic RNA
and encodes the four nonstructural proteins (nsP1, nsP2, nsP3 and nsP4) required for RNA
synthesis [19]. The second ORF is expressed by producing a subgenomic mRNA generated
by an internal promoter in the minus-strand RNA replication intermediate. It encodes
the structural proteins C—capsid, E—envelope E3, E2, E1 and 6K/TF (transframe is a
C-terminal extension of the 6K protein after a frameshift event), which are responsible
for the assembly of new virion particles and their entry into the cells. The short 5’ and 3’
untranslated regions form stem-loop structures with repeats are presumed to be responsible
for viral adaptation to a range of vectors and hosts. They are presumably responsible for
viral gene expression, replication, and virus-host interactions [20]. The capsid protein (C) is
the icosahedral nucleocapsid (NC) component and is present with 240 copies that compose
the important structure for viral RNA packaging. The NC is formed by a host-derived
lipid-bilayer where E1 and E2 glycoproteins are embedded along with smaller amounts of
other membrane-associated proteins (6K/TF) that also form part of the viral particle [21].
As E1 and E2 interact, a rigid structure is formed across the viral membrane, creating the
icosahedral format that surrounds the virus. E3 glycoprotein works as a signal sequence for
insertion of the remaining polyprotein into the endoplasmic reticulum for later processing,
and 6K seems to act as a signal sequence for processing the E1 protein [22,23].
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Figure 1. Togaviridae family. Genome structure of Alphavirus and nsP3 non-structural protein domains
(the macro domain, the alphavirus unique domain (AUD) and the hypervariable region (HVD).
The genome organization can be summarized as 5′m7G Nonstructural ORF-(junction)-Structural
ORF-An3′, in which two open reading frames (ORFs) are present. The non-structural ORF (NS-ORF)
encodes the four non-structural proteins (nsP1-nsP4) which are required for replication. The struc-
tural ORF, produced by a subgenomic mRNA, encodes the structural proteins in the viral particle
(C, E3, E2, 6K/TF, E1). The genomic RNA with noncoding regions is represented as solid black
lines and ORFs as open boxes. Based on Götte et al. (2018) [24] and created with BioRender.com
(Accessed on 14 September 2022).

Viral entry in cells is mediated mainly by clathrin proteins through membrane invagi-
nation and scission to form a clathrin-coated vesicle that contains the viral particle, which is
delivered into the cell and taken by endosomes with a low pH environment that facilitates
E1/E2 glycoproteins fusion to the endosomal membrane due to putative binding sites
(Figure 2). Multiple entry receptor pathways have been suggested, including membrane
proteins prohibitins (PHB) [25], phosphatidylserine-mediated virus entry-enhancing recep-
tors (PVEERs) [26], glycosaminoglycans (GAGs) [27], and others [28,29]. After fusion, the
nucleocapsid is released and dismantled in the cytoplasm, and the viral genome is liberated
(Figure 2). The translation of the RNA genome is a membrane-associated process that,
in most Alphavirus and RNA viruses, induces host membranes into forming cytoplasmic
structures known as type-1 cytopathic vacuoles (CPVs). The genomic RNA is translated
into the P1234 polyprotein, which is then cleaved by nsP2 protease function and forms the
minus strand replicase complex P123 and nsP4 [30]. This complex initiates the minus strand
RNA synthesis that will be the template for the production of genomic and subgenomic
RNAs. The P123 polyprotein is also cleaved into nsP1 and P23, forming the nsP1/P23/nsP4
replicase complex that synthesizes positive-strand RNAs from the minus strand RNAs
previously produced for genomic and subgenomic production [31].
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endosomes, whose low pH environment promotes envelope proteins E1/E2 fusion to the endosomal
membrane, and the nucleocapsid is released into the cytoplasm with further viral RNA liberation
(3, 4). Translation of the non-structural proteins is initiated, and replication occurs associated with ER
membranes forming the cytopathic vacuoles (CPVs) (5, 6). After the replication process and synthesis
of structural proteins, viral assembly and maturation (7, 8) take place, and budding from the cell
membrane occurs through interactions of the nucleocapsid proteins with membrane glycoproteins,
and virion are released to infect new cells (9, 10). Based on: Garoff, Sjôberg and Cheng (2004) [32]
and created with BioRender.com (Accessed on 14 September 2022).

After this process, the P23 portion, which is present only for a few seconds, is pro-
cessed, yielding the fully cleaved replicase complex that promotes RNA synthesis with
the individual nonstructural proteins nsP1, nsP2, nsP3 and nsP4 [19,33]. After forming
the RNA replicase complex by the nonstructural proteins, the positive-stranded RNA is
translated into a polyprotein that is cleaved into three structural proteins: C—the capsid
protein, PE2, and E1. PE2 is then processed into E2 and E3, responsible for envelope assem-
bly together with the E1 glycoprotein. The viral envelope comprises a lipid bilayer derived
from the host cell membrane and the main E1 and E2 glycoproteins anchored as spikes
in an orderly arrangement [34,35]. The structural proteins, essential for virion assembly,
are translated from subgenomic RNA, as CHIKV shuts down cell mRNA translation to
produce its mRNAs. Viral particle assemblage occurs on the membrane of infected cells,
and nsP1 works as a defence mechanism against host antiviral effects at this stage [29]. As
alphaviruses disseminate mostly through the lymphatics and microvasculature, the blood is
loaded with virion particles and infected monocytes that target other organs. The liver and
spleen are sites for further viral replication and dissemination (Figure 3). Subsequently, the
viral particles can reach bones, muscles, and articular tissues, which characterizes the acute
phase of the disease, where inflammatory infiltrate rich in monocytes, macrophages, natu-
ral killer cells, CD4+ and CD8+ lymphocytes are prevalent and affect joints and muscles,
inducing the characteristic arthralgia and arthritis symptoms [36–38].
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Regarding the nonstructural proteins, nsP1 presents both guanine-7-methyltransferase
and guanylyl transferase activities required for the capping and methylation of new viral
genomic and subgenomic RNA. It is also believed to anchor replication complexes to the
cytoplasmic membrane, which is required to initiate and maintain the minus-strand replica-
tive intermediates [22], along with membrane and cytoskeletal rearrangements [39,40]. The
nsP2 protein possesses several enzymatic functions in its N-terminal regions, such as heli-
case, nucleoside triphosphatase (NTPase), and RNA-dependent 5′-triphosphatase activity.
In contrast, the C-terminal region yields a viral cysteine protease required for nonstruc-
tural polyprotein processing [41]. Also, during infection, a portion of nsP2 remains in the
nucleus. It is responsible for host-cell transcription shut-off and cytopathogenicity [42,43].
Along with E1 and E2, it has been shown to strongly antagonise IFN-β and other signalling
molecules involved in the MDA5/RIG-I receptor signalling pathway [44].

Concerning nsP3, it is known to present three domains: the macro domain, the
alphavirus unique domain (AUD), and the hypervariable region (Figure 1) [19]. The N-
terminal region of nsP3 is highly conserved among alphaviruses and has a macrodomain
that presents homologues across other domains of life [45]. The macrodomain has nucleic
acid binding and phosphatase activities and has been found to bind to DNA, RNA and poly
ADP-ribose [46,47]. The AUD comprises the central portion of nsP3 and has strong sequence
homology among alphaviruses, and the C-terminal domain, which is the hypervariable
region, presents poor conservation among the genus [48]. nsP3 associates with other nsPs as
part of the replication complex and is required for replication due to its N-terminal region,
which also presents an ADP-ribose 1-phosphate phosphatase activity region [24,49]. It is
known that some part is also liberated and forms cytoplasmic aggregates that can interact
with host factors such as G3BP (Ras-GTPase-activating protein (SH3 domain)-binding
proteins) proteins and others, independent of but possibly enhancing replication [24,50]. In
some alphaviruses, nsP3 can also act as an important neurovirulence factor [51], although
E2 and other structural proteins are usually virulence determinants [24,52].

Finally, nsP4, the highly conserved polymerase among alphaviruses [53], is suggested
to act as a scaffold for interaction with other host proteins or nsPs. When not integrated
into the replication complex, it is targeted for degradation by a ubiquitin-dependent N-end
rule pathway, depending on the N-terminal residue [54]. Its N-terminal domain presents
adenylyl transferase activity (ATase), possibly indicating a polyadenylation function [55]. In
contrast, the C-terminal region has an RNA-dependent RNA-polymerase (RdRp) function
which is solely responsible for the RNA synthetic function of the replication complex
associated with the P123 replication complex after the P1234 polyprotein cleavage [56,57].

2.2. Bunyavirales—Orthobunyavirus and Phlebovirus

The Orthobunyavirus (Oropouche Virus) and Phlebovirus (Rift Valley Fever Virus) gen-
era belonged to the Bunyaviridae family until 2016, when the International Committee on
Taxonomy of Viruses (ICTV) created the order Bunyavirales that replaced Bunyaviridae and
placed the Orthobunyavirus and Phlebovirus into the Peribuyaviridae Phenuiviridae families,
respectively [58]. These viruses are negative or ambisense RNA viruses that can infect a
variety of animals, plants, and humans with the capacity to cause severe disease in hosts,
including haemorrhagic fever, with over 350 viruses mainly transmitted by arthropod vec-
tors [59,60]. They are lipid-enveloped viruses of 80 to 120 nm in diameter that include three
ssRNA segments: large (L), medium (M) and small (S). These segments are surrounded
by a helicoidal nucleocapsid and encode the RNA-dependent RNA polymerase (RdRp),
the surface glycoproteins Gn and Gc arranged in spikes, and the nucleocapsid protein
N, along with two other nonstructural proteins NSm and NSs that are encoded by the M
and S segment, respectively, as shown in Figure 4 [60–62], which are mainly associated
with virulence. The coding sequences of the three segments are flanked by two terminal
non-translated regions (NTRs) 5’ and 3’ that present 11 nucleotides, highly conserved
among the segments but with a variable number of nucleotides in length. Such regions
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are complementary, allowing genomic RNA circularization to work as replication and
transcription promoters [63,64].
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Figure 4. Genome segments of Orthobunyavirus and Phlebovirus. The three-segmented negative-sense
single-strand RNA are nominated according to their size as L (large), M (medium) and S (small).
The L segment encodes the multifunctional RNA-dependent RNA polymerase (RdRP) named L
protein. The medium segment encodes the Gn and Gc glycoproteins, and the small segment encodes
the nucleocapsid protein (N). Additional non-structural proteins such as NSm and NSs can also
be encoded by segments M and S, respectively, which can be cleaved by cellular proteases during
polyprotein maturation. Based on: Ferron et al. (2017) [65].

The small (S) RNA segment encodes the N protein, which presents regions involved
in oligomerization, polymerase binding and RNP (ribonucleoprotein complex) assembly
into virus particles and is also thought to promote virus template recognition by the RNA-
dependent RNA polymerase [66]. The S segment also encodes the nonstructural protein
NSs responsible for regulating host antiviral response by inhibiting host transcription and
terminating interferon production, therefore working as a major virulence factor. Both
proteins are translated from the same mRNA produced by the S segment [67]. The medium
(M) segment yields a polyprotein precursor inserted into the endoplasmic reticulum mem-
brane during translation. Later, it is cleaved by host proteases into two polypeptides called
Gn and Gc [66,67]. Together they form the Gn-Gc heterodimer, which is retained in the
Golgi apparatus due to glycosylation and promotes virus assembly associated with the
RNP complex, viral particle formation, budding, attachment and entry into new host cells.
Most orthobunyaviruses also produce the NSm protein from the same polyprotein that
serves as a complex for translation initiation and polyprotein processing [68]; it is thought
to participate in viral assembly as well as inter-cellular transmission. At the same time, for
Phlebovirus, NSm is non-essential for replication, but there is speculation that it may work
on apoptosis regulation mechanisms [69].

The viral RNA-dependent RNA polymerase (RdRP) is encoded by the large segment
(L), the largest segment with ~250 kDa, for RNA replication and mRNA transcription.
A comparison of several RdRPs from negative-strand RNA viruses shows a well-known
polymerase module, including its motifs pre-A, A, B, C, D and E [68,70]. The RNA segments
are templates for RNA replication and mRNA transcription. They are always associated
with viral NPs (nucleoprotein complex) with at least one copy of the L protein assembled
into the complex due to the negative polarity of the viral RNA (vRNA), and the one needed
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first to transcribe their mRNAs and produce the viral proteins essential for replication and
formation of new virion particles [65]. The synthesis of a complementary RNA (cRNA)
with positive polarity starts with 5’ nucleoside triphosphates for genomic replication,
and it is the viral RNA segment’s full-length complementary (antigenomic) copy. At the
same time, transcription requires a host-cell derived cap primer to signalize initiation and
ends at specific termination signals before the 3’ end region without adding a poly-(A)
tail [66,71,72].

Viral entry in the cell generally occurs through a clathrin-mediated endocytic path-
way, with different pathways and interactions that have been proposed for different bun-
yaviruses, including members of the integrin family, and binding to filopodia or dendrites
with the formation of non-coated vesicles [60] and glycosaminoglycans. After membrane
fusion and endocytosis, the viral ribonucleoprotein complex (RNP) is released into the cyto-
plasm. It accumulates in the Golgi stacks, where so-called viral tubes are formed, composed
of the host cell and viral components (NSm) [73], for the viral polymerase packed with
the RNP to initiate primary transcription for the synthesis of mRNA. During the primary
transcription, N mRNA and NSs mRNA are produced (~40 min after infection) from the S
segment. Within two hours post-infection, replication of the viral RNA commences, increas-
ing mRNAs and proteins. The RNP is probably packed into the virions by interaction with
the cytoplasmic domains of Gn and Gc at the Golgi apparatus. The three RNA segments
are co-packed in a manner where M and S segments may assist L segment packaging [74].
Finally, the new virions bud from the Golgi complex is released from the cells undergoing
further morphological changes for maturation and total infectivity capacity (Figure 5) [60].
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3. Omic’s Study across Members of the Togaviridae Family
3.1. Chikungunya Virus

Chikungunya virus (CHIKV) is the pathogen responsible for Chikungunya fever,
mainly transmitted by Aedes aegypti and Aedes albopictus mosquitoes. It was first recognised
in an epidemic on the Makonde Plateau in the Southern Province of Tanganyika (Tanzania)
from 1952 to 1953 [75], and since then has triggered several outbreaks and epidemics around
the world and has been identified in over 40 countries [76,77]. The word “Chikungunya”
belongs to the Makonde dialect and means “that which bends up”, which refers to the
contorted posture of infected patients due to severe joint pain. The clinical manifestations
of CHIKV may vary but are usually very debilitating and are characterized by sudden onset
fever that can appear two days post-infection, skin rash, arthralgia and arthritis, joint and
muscle pain, joint swelling, fatigue, nausea, vomiting, headaches and even conjunctivitis.
Infected individuals may present protracted arthralgia even weeks, months, or years post-
infection. Some cases observed from the 2006 outbreak on La Réunion Island included
encephalitis, Guillain-Barré syndrome, myocarditis, and hepatitis [78].

It is known that the CHIKV lineages spread across the world derive both from African
and Asian lineages (the Asian Urban lineage—AUL; the Indian Ocean lineage—IOL; the
East, Central and South African lineage—ECSA; and the West African lineage—WA) in a
series of genetic and evolutionary events that enabled adaptation and transmission in new
environments and vector species. A recent investigation of CHIKV phylogeny with analysis
of the RNA architecture of the UTRs (untranslated regions) from all CHIKV lineages, which
are well-conversed evolutionarily with known elements related to viral pathogenesis, re-
vealed some lineage-specific structured and unstructured repeat elements that are possibly
involved in pathogenicity, vector adaptation and specificity, viral replication and host
factor binding [79,80]. Based on the results and geographic distribution of CHIKV lineages,
the authors suggested three major epidemic clades, the ECSA-MASA (ECSA + Middle
Africa/South American lineages), the AUL-Am (Asian Urban + American lineages), and
the ECSA-IOL (Eastern Africa + Indian Ocean Lineage). The main observation was that the
ECSA lineage is no longer a single lineage due to the co-circulation of multiple lineages re-
vealing the presence of ECSA subgroups. Composition and length of the 3′UTRs were also
compared, revealing substantial differences among lineages and the characterization of five
highly conserved regions into four structured and one non-structured element, including
stem-loop elements. However, their functional roles remain to be determined [80].

CHIKV virus infection generates temporary dsRNA intermediates during the repli-
cation process that can engage with pathogen receptors in cells such as Toll-like receptor
3 (TLR3), TLR7, TLR8 and the retinoic-acid-inducible gene I (RIG-I) [81,82], which induces
a cascade leading to the activation of type I interferons (IFNs), cytokines and chemokines
production. IFNs activation is regulated by MAVS (mitochondrial antiviral-signalling
protein), and IL-1β production may be induced. In mouse models, the defence mechanism
was also dependent on the TLR adaptor myeloid differentiation primary response protein
88 (MYD88), which can also act as an adaptor for the interleukin-1β receptor (IL-1R) that
may be activated by the secretion of IL-1β from infected cells and activate type I IFN in
cells that are not infected [77,83]. Moreover, it has been reported that CHIKV nsP2, E2 and
E1 proteins are major suppressors of IFN-β activation through the MDA5-RIG-I pathway,
and nsP2 has been specifically shown to induce host cell shut-off by inhibiting cellular
transcription and therefore promoting a decrease in signalling molecules involved in the
IFN-β pathway to effectively evade host immunity (Figure 6) [43,84].
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Figure 6. Proposed CHIKV signalling cascades. Engagement of the pathogen receptors in cells
(TLR-X) and (RIG-I) induces a cascade that activates the type I interferons. Recognition of viral RNA
in the endosomes of infected cells leads to the recruitment of adaptor proteins such as MyD88. This
results in activating several signalling cascades and the phosphorylation of transcription factors:
IRF3, IRF7 and NF-kB (Nuclear factor kappa B). When phosphorylated, these transcription factors
can translocate from the cytosol into the nucleus and induce the transcription of type I interferons
(IFN-α and IFN-β) and proinflammatory cytokines (IL-1b, IL-6, TNF-α). CHIK nsP2, E2 and E1
proteins suppress IFN-β through the MDA5-RIG-I pathway. Created with BioRender.com (Accessed
on 11 September 2022).

Mammalian and human cells infected with CHIKV rapidly undergo apoptosis. It
presents highly cytopathic effects due to the disturbance of cell physiological processes,
inhibiting cell transcription and translation and redirecting cellular mechanisms and re-
sources towards viral replication and virion production. However, innate immune response
with type I and II IFNs can usually reduce viral content within a few days post-infection,
reducing symptoms and viremia [85]. Numerous proinflammatory mediators are pro-
duced during infection, including IFN-α, IL-4, IL-10 and IFN-γ, with a high circulation
of CD8+ and CD4+ lymphocytes, monocytes and leukocytes. During the early phases of
the infection, infected monocyte/macrophages migrate to the synovial tissues of infected
patients, contributing to the inflammation process and joint pain symptoms, which may
persist for a long time after infection because these areas may become viral reservoirs,
generating chronic arthralgia. In addition, these infected cells may also be responsible
for viral dissemination in other tissues, such as the nervous system, and contribute to the
development of other clinical features [86].

Using RNA-seq and Ribo-seq, Jungfleisch and colleagues showed that CHIKV infec-
tion induces codon-specific reprogramming of the host translation machinery in order to
favour the translation of viral RNA genomes over host mRNAs. This reprogramming was
mostly apparent at the endoplasmic reticulum, where CHIKV RNAs showed high ribosome
occupancy. Mechanistically, it involves the CHIKV-induced overexpression of KIAA1456,
an enzyme that modifies the wobble U34 position in the anticodon of tRNAs, which is
required for the proper decoding of codons that are highly enriched in CHIKV RNAs [87].

BioRender.com
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Recently, defective viral genomes (DVGs) generated during infection in mammalian
and mosquito cells revealed interesting antiviral effects that interfere with viral dissemi-
nation, especially in Ae. aegypti cells. It was shown that, although DVGs vary in type and
abundance depending on the viral strain and host environments, most DVGs possessed
promising inhibiting abilities resulting from the hijacking of the replication machinery
and host resources in a competitive manner against non-defective genomes. Some DVGs
may even function against other CHIKV strains as well as other alphaviruses. Such cross-
reactivity may be used in favour of antiviral research for the development of future antiviral
studies and therapies against arthritogenic alphaviruses. However, much research is still
needed on identifying these DVGs and testing their antiviral functions, as well as develop-
ing efficient delivery systems [88]. Another inducer of antiviral response discovered in a
recent transcriptomic RNA-seq analysis was IL27 (interleukin 27). The results of this study
demonstrated that CHIKV-infected human monocytes-derived macrophages (MDMs) with
recombinant expressed IL27 lead to the activation of JAK-STAT signalling, inducing a
pro-inflammatory and antiviral response in order to control viral replication. Furthermore,
treatment of cells with IL27 inhibits CHIKV in a dose-dependent manner [89].

Proteomic analyses of liver and brain tissues from mock and CHIKV infected newborn
mice by two-dimensional electrophoresis (2-DGE) revealed differentially expressed proteins
involved in iron metabolism, with upregulated transferrin levels (mostly related to defence
against infection), dysregulation of the urea cycle and fatty acid oxidation. Furthermore,
many proteins identified were related to cellular stress, such as catalase, peroxiredoxin-6,
molecular chaperone proteins (Hspd1 and DNA K chaperonin), and heat shock proteins
(HSPs), all related to stress response, including oxidative stress, inflammation and apopto-
sis. Other related pathways affected by CHIKV were energy metabolism (decrease in gly-
colytic enzymes), urea cycle enzymes (carbamoyl phosphate synthase, arginase, ornithine
carbamoyltransferase, glutamate dehydrogenase—leading to accumulation of ammonia).
CHIKV infection results in the rise of nitrogenous metabolites, cytoskeletal proteins (coro-
nin 1A), fatty acid metabolism (increased levels of apolipoprotein A-IV and decreased
Acox1), apoptosis (with upregulated levels of prohibitin) and overall inflammation in both
tissues, with a clear demonstration of CHIKV neurotropism and neuroinvasiveness poten-
tial [90]. Comparatively, proteomic profiles of WRL-68 cells (a human hepatic cell line) by
2-DGE and MALDI-TOF/TOF (matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry) during early infection by CHIKV revealed alteration in the expression
of proteins related to mRNA processing and translation, energy and cellular metabolism,
ubiquitin-proteasome pathway (UPP), and cell cycle regulation, with cyclin-dependent
kinase 1 (CDK1) regulation for efficient viral replication, survival and transmission [91].

Treffers and collaborators, using SILAC LC/MS/MS (Liquid Chromatography Tandem
Mass Spectrometry) in a temporal approach—8, 10 and 12 h post-infection, identified over
4700 proteins, and the majority showed decreased abundance over time [92]. In agreement
to host shut-off caused by the virus, RNA polymerase II complex subunits presented
progressive degradation. Four other proteins, namely Rho family GTPase 3 (Rnd3), DEAD
box helicase 56 (DDX56), polo-like kinase 1 (Plk1) and ubiquitin-conjugating enzyme E2C
(UbcH10), which are likely overexpressed in order to reduce cell susceptibility to CHIKV
infection, also presented downregulation during infection as a mechanism for efficient viral
replication [92]. Moreover, in a 2-DGE proteomic analysis combined with MALDI-TOF MS
of human muscle cells, the expression of proteins involved in the synthesis and metabolism
of biomolecules, cell signalling, reorganization, cellular stress, and gene silencing via siRNA
was observed. Interestingly, the authors also observed an interaction of CHIKV nsP3 with
vimentin filaments, suggesting that this association plays an essential role in the anchorage
and trafficking of replication complexes (RCs) to ensure efficient viral replication [93].

A recent TimsTOF Pro Based LC/MS/MS proteomic study of Ae. aegypti mosquitoes
with the oral acquisition of CHIKV demonstrated exquisite but minor changes in the
mosquito proteome, possibly due to the adaptation of the vector to the infection. Overall,
enrichment of pathways such as oxidative phosphorylation, endocytosis and ribosome
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biogenesis was observed. At the same time, the attenuation of cellular RNA machinery re-
lated to RNA transport, RNA polymerase and Aminoacyl-tRNA biosynthesis was reported,
possibly for viral RNA protection from degradation in the mosquito and for maintaining
infection, or even for host defence as a means to decrease viral replication and consequent
titer yields in cells. Likewise, cytoskeleton proteins such as syntenin, actin, twinfilin and
the vesicle trafficking MON1-CCZ1 complex-like protein were modulated by infection,
with decreased levels as infection progressed (from 24 h post-infection onward), possibly
as a host response to avoid de novo cell and tissue infection. Finally, immune-related
proteins (RNA interference—RNAi; immune deficiency factor—IMD; Janus kinase-signal
transducer and activator of transcription—JAK-STAT; and defensin C) and serine-type
endopeptidases and metalloproteinases related to cell entry, signalling, viral synthesis,
maturation and release were also affected during infection, although further studies are
essential to properly assess their functions related to the infection itself [94].

An isobaric tag-based high-resolution MS (mass spectrometry) proteomic study of in-
fected Ae. aegypti salivary glands by CHIKV, comparing the effects of other two arboviruses
(Dengue and Zika virus), showed virus-specific regulation patterns related to immunity,
blood-feeding and cellular machinery processes, with a total of 58, 27 and 29 regulated
proteins (by Dengue, Zika and Chikungunya viruses, respectively) and four upregulated
proteins common to the three infections all related to antiviral functions (ADA—adenosine
deaminase, SGS1—salivary gland surface protein 1, GILT-like protein—gamma-interferon
responsive lysosomal thiol-like protein, and SGBAP—salivary-gland broad-spectrum an-
tiviral protein). Results showed that the ADA, a saliva protein that was upregulated in
all three infections, exerted an anti-CHIKV effect, possibly through regulating immune
activation and repression. The SGBAP had an antiviral potential against all three viruses
by inhibiting viral propagation. However, its mechanisms remain to be discovered through
homily investigation [95].

Moreover, a very recent label-free quantitative proteomic analysis of Ae. aegypti Aag-
2 cells revealed a total of 196 regulated proteins related to energy metabolism, protein
synthesis, signalling pathways and apoptosis, with antiviral and proviral effects. A known
mechanism to control viral propagation was observed with the shutoff of general protein
synthesis in a 48 h post-infection period and the induction of autophagy by ROS (Reactive
oxygen species) production in mitochondrial nets to delay apoptosis and prolong survival
of the infected cells before apoptosis [96].

In order to comprehend the mechanisms involved in CHIKV-induced arthralgia, a
proteomic analysis of primary human fibroblast-like synoviocytes (HFLS), which play a
pivotal role in joint damage in arthritic disorders, was performed through gel-enhanced
chromatography-mass spectrometry (GeLC-MS/MS). The study was conducted 12 and 24 h
post-infection, and 259 and 241 proteins were identified, respectively. Investigation of pro-
tein functions revealed mechanisms such as cytoskeletal organization (MAEA—macrophage
erythroblast attacher; NEFL—neurofilament light polypeptide and FLG—filaggrin) and
cellular trafficking (Rab-8B—Ras-related protein; DNAH5 and DNAH12—dynein heavy
chain 5 and 12; VPS13D—vacuolar protein sorting-associated protein 13D and NSFL1C—
NSFL1 cofactor 47), cellular homeostasis, immune response (HLA-A, HLA-B and HLA-G—
MHC class I antigen proteins; MAPKAPK2—MAP kinase-activated protein kinase-2 and
TRAF3IPI—TRAF3-interacting protein 1), protein modifications and metabolic processes
(SLC27A3—long-chain fatty acid transport protein-3 and APOL1 – apolipoprotein L1, both
involved in lipid metabolism). The findings included some commonly known proteins
involved in arthralgia and arthritis (i.e., MAEA; NEFL; FLG as well as COL23A1—collagen
alpha 1 XXIII chain; DMGDH—dimethylglycine dehydrogenase and PDE3A—cGMP-
inhibited 3′,5′-cyclic phosphodiesterase A) and also in cell death (such as USP30—ubiquitin
carboxy-terminal hydrolase 30) [97].

Transcriptomics analysis of infected mice showed, as predicted, many pathways asso-
ciated with viral infection with an upregulation of transcription factors involved in inflam-
matory response such as NFκB, USF1 (Upstream Transcription Factor 1), FOX (Forkhead box
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transcription factors), class I antigen presentation and complement pathways, cytokines and
chemokines in general. Similarly, cell-death pathways were upregulated with strong apop-
tosis evidence along with necroptosis-related genes (such as MLKL—Pseudokinase mixed
lineage kinase domain-like protein, RIPK—Receptor-interacting serine/threonine-protein
kinase 1 and 3) in early and late stages of infection and BIRC2 and BIRC3 (Baculoviral IAP
repeat-containing proteins) necroptosis inhibitors upregulation as well. Apoptosis genes
such as caspase-3 and 9, TNF-α and pyroptosis-related genes caspase-1, IL-18 and IL-1β
mRNAs showed increased expression during infection [98].

AN analysis of the Ae. aegypti transcriptome response to CHIKV infection showed
a variety of differentially expressed transcripts from different functional categories such
as binding, catalytic activity, cellular process, immune response, metabolic alterations,
stimulus-response, biological process regulation, structural molecular activity, transporter
activity, signal transducer activity and development in a total of 1299 upregulated and
1217 downregulated genes 3 h post-infection [99]. Orally acquired CHIKV by Ae. aegypti
mosquitoes through a mixture of infected cells in solution revealed gene expression patterns
in the midgut of the fed mosquitoes. Genes related to immunity were upregulated along
with other genes not related to immune response, such as genes that encoded three synaptic
vesicle protein genes, which seem to be important in viral assembly and/or budding [100],
the cysteine-rich venom protein gene that contains a trypsin inhibitor-like domain (TIL)
and may function as serine protease inhibitors, and two C-type lectins (CTL), which
have been supposed to function as ligands, recognizing specific extracellular glycans that
facilitate mosquito infection and promote gut microbiome homeostasis [101]. Other genes
that were also significantly upregulated were the cytochrome p450 gene, the juvenile
hormone inducible protein gene, the heat shock protein gene and a microtubule protein
gene. Besides, genes that could be related to midgut escape of CHIKV when it crosses
the midgut basal lamina (BL) were identified and included serine collagenases, glutamate
carboxypeptidase, M1 zinc metalloproteases, serine-type endopeptidases and ten trypsins,
all related to BL degradation/remodeling due to infection [102–104]. Comparatively, RNA-
seq analysis of Ae. albopictus viral disseminating body parts (heads and thorax, 8 days
post-infection) showed the differential regulation of various biological processes, including
RNA and mRNA binding, lysosomal pathways and also the down-regulation of defensin
genes, possibly as a result of either mosquito immune response or the viral modulation
of immunity, which had also been observed in a previous transcriptomic analysis of Ae.
albopictus midguts by the same authors [105]. In addition, the differential expression of
two odorant binding proteins (OBPs) was observed, which could be related to reducing
chemosensory and transmission mosquito abilities. Interestingly, upregulation of the BTKi,
an inhibitor of Bruton’s tyrosine kinase (Btk), which is involved in several innate immune
response mechanisms, was identified, and these results correlate with the effects of Btk
inhibition in higher-level organisms in a protective manner, ameliorating the excessive
inflammatory response [106].

Finally, NMR metabolomics of the patient’s serum analysis showed alteration in
glycine, serine, threonine, galactose metabolism and TCA (tricarboxylic acid cycle), similar
to DENV infection [107,108]. Alteration in the TCA cycle is possible because CHIKV
requires high energy for the rapid multiplication and generation of lipids, proteins, and
RNA components. In addition, joint damage and arthralgia were correlated with high
hypoxanthine and 4-hydroxyphenylpyruvic acid levels and carbon metabolism alterations.
Sorbitol, 2-ketobutyric acid and sarcosine are biomarkers that differentiate CHIKV and
DENV co-infections [107,108].

3.2. Mayaro Virus

The Mayaro virus (MAYV) is a neglected tropical arbovirus responsible for causing a
mild febrile illness that may be accompanied by severe incapacitating arthralgia. It was
first isolated from the serum of a forest worker in 1954 in Mayaro County on Trinidad
Island. Since then, its presence has been reported in several countries within the tropical
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regions of South and Central America. It is highly underestimated as a neglected arbovirus
that affects mostly poor regions in tropical and subtropical areas. Little investment has
been made for epidemiological studies of it, which is considered dangerous, as it could
become a public health issue due to its high urbanization potential and remarkable host
plasticity [22].

MAYV comprises an enzootic cycle involving Haemagogus mosquitoes and monkeys
as reservoirs. Secondary vectors such as Ae. aegypti, Ae. albopictus and Ae. scapularis
have shown potential for viral infection and spread and secondary hosts such as humans,
which poses a significant risk for urban outbreaks and epidemics [109]. The virus is, by
phylogenetic analysis, a member of the Semliki complex that consists of seven other viruses:
CHIKV, Bebaru virus (BEBV), Getah virus (GETV), Semliki Forest virus (SFV), Ross River
virus (RRV), O’nyong-nyong virus (ONNV) and the Una virus (UNAV). The group is
characterized by some common antigenic sites that generate polyclonal immune sera cross-
reactivity among species and common disease manifestations such as fever, arthritis and
skin rash [110]. Phylogenetic studies also classify MAYV into three genotypes: D, widely
spread in South America; L, limited to Brazil; and N, recently discovered in Peru [111,112].

As a response to MAYV infection in the human hepatocyte cell line (hepG2), reactive
oxygen species (ROS) were produced, causing relevant oxidative stress with increased
protein carbonyl and malondialdehyde (MDA) levels, namely biomarkers of lipid peroxida-
tion and protein oxidative modification [113]. There was also a decrease in reduced versus
oxidized glutathione (GSH/GSSG) ratio and higher levels of antioxidant activity by CAT
(Catalase) and SOD (Superoxide dismutase) enzymatic systems, which was not efficient
in restoring the normal redox status due to high oxidative stress levels. As the infection
progressed, decreased antioxidant activity and glutathione contents proved that ROS ac-
cumulation, such as H2O2, was enhanced [114]. Similarly, MAYV infection was linked to
oxidative stress biomarkers in mouse models, such as malondialdehyde, carbonyl protein,
myeloperoxidase (MPO) and GSH/GSSG ratio, as well as SOD and CAT activity in the liver.
Liver damage was also observed by increased aspartate and alanine aminotransferases
(AST/ALT) and high levels of inflammatory cells [115].

Research searching for prominent epitopes for the development of antiviral vaccines is
essential, as most of these arboviruses still have no vaccine available. In a recent study for
vaccine candidate epitopes conserved and homologous among CHIKV and MAYV, where
identification of CD8+ T cell epitopes (CTL) was accomplished from the antigenic structural
polyprotein (KPGDSGRPI, TCTMGHFIL, ALSVVTWNK, KPGRRERMC and GRRERM-
CMK), two other epitopes were identified for CD4+ T cells (HTL) (MCMKIENDCIFEVKH
and DRTLLSQQSGNVKIT) and one for B cell (BTL) (GGRFTIPTGAGKPGDSGRPI). All
epitopes demonstrated high population coverage, and screening for toxicity, allergenicity,
and antigenicity yielded high safety and efficacy results. Using docking analyses, the
binding affinity of HTL and CTL epitopes to HLA alleles (MHC class I and II alleles)
resulted in high affinity and binding potential. However, further studies are still necessary
for structural modification and stability prior to developing vaccine candidates, as these
epitopes are short and could easily be degraded by host enzymes [116].

Proteomic analysis of Ae. aegypti Aag-2 cells infected with MAYV by label-free mass
spectrometry resulted in identifying 5330 peptides and mapping several protein groups
within the periods prior to and post-infection (0, 12 and 48 hpi). A total of 161 proteins were
identified as differentially expressed. Proteins such as ATP synthase, heat shock proteins
(HSP-20 and HSP-60), enolase phosphatase E1 (ENOPH1), membrane-related proteins
(such as prohibitin, an important viral entry receptor), vesicle-associated membrane pro-
teins (VAMPs), and overall proteins related to redox, energy metabolism, oxidative stress
and viral particle maturation were identified, mostly with increased abundance over time
of infection. Glycolytic enzymes related to the energy demand and manipulation of the
host metabolism were identified as upregulated. An increased abundance of intermedi-
ate metabolites such as glyceraldehyde-3-phosphate was observed, demonstrating high
modulation of the glycolysis pathway during infection [117].
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An analysis of transcriptomic and small RNA responses to MAYV infection at 2, 7 and
14 days post-infection in Anopheles stephensi mosquitoes infected by blood meal resulted
in 487 regulated transcripts, with 78 identified miRNAs and a siRNA response towards
the MAYV genome. Enrichment of serine proteases related to the activation of the Toll
pathway for an innate humoral response during infection was observed from 2 to 7 days
post-infection. Moreover, later during infection, results showed the depletion of autophagic
and apoptotic pathways, with induction of JNK and MPK cascades as well as repression of
JAK/STAT signalling pathways due to repression of MAPK signalling, indicating that such
mechanisms are part of mosquito defences against viral replication and the production of
new viral particles at late stages of infection. Several differentially expressed miRNAs were
identified, such as miR-286b, miR-2944a, miR-2944b, miR-307, miR-309, and novel miRNAs
such as mirNOV10 and mirNOV17, and pathway analyses revealed effects in reduced
oocyte viability, protein binding and signalling functions, ion channels and transport, actin
filament binding and gene transcription. In addition, the identification of piRNA-like small
RNAs revealed an antiviral function against replication in the mosquito, along with an
increase of siRNAs during infection time related to an increased innate immune response
from early to later stages of infection [118].

Bengue and collaborators’ studies on the human brain cells revealed the modulation of
the immune gene expression profile in MAYV-infected astrocytes, analyzed at 48 hpi (hours
post-infection) that PRRs (pattern recognition receptors) such as TLRs are present in brain
cells, and the expression of TLR3, and not TLR7 (as for CHIKV infection), was found to be
upregulated by MAYV, they also observed a strong induction of the PRRs IFIH1 and DDX58
transcripts by MAYV infection. The chemokines CXCL10, CXCL11 and CCL5, known to
be expressed in the CNS during various viral infections, including those by encephalitic
arboviruses, were upregulated by the MAYV virus, pointing to the induction of a strong
inflammatory response [119].

Metabolic alterations in MAYV infected Vero cells’ exometabolome showed a va-
riety of altered components, such as amino acids, organic acids (gamma-keto acid, beta
hydroxy acid, carboxylic acid, dicarboxylic acid and phenylpropanoic acid), guanidine com-
pounds (polyamine), monoamine (phenol), carbohydrates (monosaccharides) and lipids,
all involved in glycolysis, TCA cycle, phosphate-pentose pathway or lipid β-oxidation.
Therefore, alterations were observed in different periods of infection; for instance, in
a 2 hpi period, metabolites such as tryptophan, 3-phenylpropionate, valine, carnitine,
3-hydroxyisobutyrate, 2-oxoglutarate and pyruvate presented high levels, whereas, in a
6 hpi period, tyramine, galactose, glucose, creatine, phosphate creatine, galactarate, serine
and methyl guanidine were elevated. These results demonstrate that the alteration of
metabolites directly influences biochemical reactions in response to viral infection and are
generally related to amino acid metabolism, energetic metabolism and lipid metabolism
that can be the focus of the future investigation of specific pathways and how viruses affect
their hosts metabolically [120].

4. Omic’s Study across Members of Bunyavirales Order—Orthobunyavirus
and Phlebovirus
4.1. Rift Valley Fever Virus

Rift Valley virus (RVFV) is a mosquito-borne virus known for causing Rift Valley
Fever in humans and livestock throughout Africa and the Arabian Peninsula. It was first
described in 1931 and isolated from inoculated lambs with infected sheep serum near Lake
Naivasha in Kenya’s Rift Valley. Since then, it has caused several economically devastating
epizootics with high death ratios among sheep and cattle. Outbreaks were reported in
Kenya in 1968, 1978–1979 and 1997–1998, and in Southern Africa, Zambia, South Africa
and Zimbabwe. In West and Central Africa, it was only isolated in 1974 and caused severe
outbreaks in Mauritania in 1987 and 1998. Other countries such as Senegal, Mali, Guinea,
Egypt, Tanzania, Somalia and Madagascar have also reported RVFV outbreaks throughout
the years [121,122]. Transmission mainly occurs via infected mosquitoes of the genus Aedes,
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Culex, Anopheles, Eretmapodites and Mansonia, as well as Culicoides (biting midges), Simuli
(black flies) and even ticks (Rhipicephalus). Direct contact with an infected animal’s body
fluids, tissues or aerosols can also be a risk factor for the infection. Usually, veterinarians
and workers who deal with livestock are at significant risk [122].

Based on molecular analysis of the Gn glycoprotein gene sequence, the classified virus
isolates from 16 countries into 15 lineages (from A to O) [123]. The RVFV genome is highly
conserved, with no defined serotypes and genetic differences that are mainly random
single-site mutations with variable regions that are not well defined. Although differences
in virulence of strains exist, genetic diversity is considerably low, and multiple strains can
co-circulate during endemic periods; co-circulation, as well as co-infection with more than
one viral strain, can lead to viral reassortment, a common mechanism in segmented RNA
viruses, where exchange of genomic segments occurs in the host cell, resulting in either
viable or non-viable reassortants [58]. Technologies for genetic surveillance are essential
to tracing outbreaks’ origins and their effects. As of very recently, Juma and associates
developed a web-based computational tool in order to improve RVFV genomic surveillance.
The efficiency was validated by large datasets containing whole genome sequences of the
L, M and S segments and the Gn glycoprotein gene sequence with optimal classification
results of all 15 lineages at a phylogenetic level, proving to be an effective tool to aid in
RVFV surveillance [124].

RVFV outbreaks outside the endemic regions can cause severe public health and
agroeconomic issues. In humans, the disease is mainly characterized by fever. However, it
can progress to a more severe state, including encephalitis, blindness, fulminant hepatitis,
retinitis, thrombosis or hemorrhagic syndrome, and the mortality rates are near 20% [121].
RVFV also has a high probability of vertical transmission, as observed in Saudi Arabia in
2000, where pregnant women experienced a series of symptoms such as fever, headaches,
dizziness, and myalgia and presented IgG specific to RVFV [125]. In animals, symptoms
can also vary from fever, viremia, diarrhea, hemorrhage, lethargy, and death. However,
there is a high chance of post-infection sequelae such as limb paralysis and severe hepatitis.
In newborn lambs, the virus causes fatal disease and causes symptoms such as high fever
(40–41 ◦C), loss of appetite, lethargy and prostration just a few hours before they die [74].

In the 1960s, a formalin-inactivated vaccine was elaborated to be tested in humans gen-
erating neutralizing antibody response [126], and ever since, several formalin-inactivated
vaccines have been developed, but meagre quantities still exist and are administered and
studied. In a study with seven individuals (37 to 61 years old, four males and three females)
that received one to six doses of the RVFV vaccine (ranging from 7–24 years ago), T-cell
responses, which have been shown to modulate and eliminate the RVFV disease, could still
be detected through the ELISA and neutralization assays. This is due to the many doses of
the vaccine received, although with varying responses, probably due to the many years of
past vaccination. The study also presented a panel of peptides from N, Gn and Gc antigens
that could be applied to further vaccination studies to investigate vaccine effects, T-cell
responses and patient long-lived immune protection [127]. Other types of vaccines, such as
live-attenuated and new generation vaccines, are still being investigated and developed as
human and veterinary vaccines [128].

During infection, RVFV inhibits host cellular RNA synthesis through NSs protein tar-
geting of the transcription factor TFIIH, decreasing its cellular concentration by interacting
with its p44 and XPB subunits, inhibiting TFIIH subunits assembly and formation as a
means of evading host response, as TFIIH is crucial for host transcription (Figure 7) [129].
Some aspects of innate and adaptive immune response to RVFV were analysed in goats.
They developed viremia one-day post-infection (dpi), which persisted for at least four days.
The detection of IL-6, IL-12, IL-1β, IFN-γ, and TNF-α was observed, which resulted in
neutralising antibodies post viremia. The absence of IFN-α, which is one crucial antiviral
cytokine, was detected [130] and, in agreement with other experiments that established that
the NSs protein might also have an essential role in blocking immune response by inhibiting
IFN (interferon) α/β production and action, therefore promoting evasion from host de-
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fences and presenting more virulent and pathogenic characteristics [131]. Furthermore, NSs
seem to promote the downregulation of the double-stranded RNA (dsRNA)-dependent
protein kinase (PKR)-mediated eukaryotic initiation factor (eLF)2a phosphorylation in
order to secure efficient viral translation, as this mechanism suppresses RVFV translation
when NSs is not present [132]. Another virulence factor, the RVFV NSm protein, was
identified as an apoptosis inhibitor by suppressing caspase-8, a death-receptor-mediated
apoptotic pathway, along with caspase-9 and caspase-3, which are downstream caspases
involved in apoptotic pathways, and this makes NSm the first Phlebovirus protein identified
with antiapoptotic function [133].
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TFIIH subunits assembly and the formation of the complex to evade host response and shut off host
transcription. Created with BioRender.com (Accessed on 14 September 2022).

LC/MS/MS proteomic analysis of RVFV (MP-12 strain) detected various virion and
host-derived protein interactions during infection. Host cytoskeleton protein association to
RVFV, such as actin filaments and integrins, was identified, probably for the entry and exit
of infected cells and the Golgi viral tubes formed during viral production. The Ras protein
superfamily members were also involved, suggesting that they may participate in viral
entry. Chaperones have also been observed from heat shock HSP70 and HSP90 protein
families, such as HSPA5 (BiP) and HSPA8, subunits of the T-complex protein chaperone
(TCP)—CCT2 and CCT6A, and others, working either as host factors used to promote viral
replication (BiP) or with antiviral roles to prevent it (HSPA8), which makes these proteins
potential targets against RVFV infection [134].

In a reverse phase protein array (RPPA) of attenuated and virulent RVFV strains
infecting human cells, changes in phospho-signalling cascades were identified, especially in
Smad transcription factors, which are primarily phosphorylated by and transducers of the
transforming growth factor-beta (TGF-β) superfamily receptors. Increased phosphorylation
of the Smad proteins was related to RVFV replication, and further analysis of transcripts
altered by RVFV infection identified 913 genes that contained a Smad-response element. It
was related to axonal guidance cell-signalling pathways for cellular adhesion/migration,
hepatic fibrosis, cytoskeletal reorganization and calcium influx. A Smad complex on the

BioRender.com
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interleukin-1 receptor type 2 (ILIR2) promoter was identified, which may be responsi-
ble for the disruption of IL-1 receptor activation and the generation of an inflammatory
response during infection [135]. In human small airway epithelial cells, RVFV infection
increased phosphorylation and activation of MAPK—Mitogen-activated protein kinases
(with activation of p38 as a protective cellular response and control of viral replication by
ERK—extracellular signal-regulated kinase) and transcription factors such as STAT1 (Signal
transducer and activator of transcription 1), AFT2 (Activating transcription factor 2), MSK1
(Mitogen- and stress-activated protein kinase 1), CREB (cAMP response element binding
protein) and NF-kB (Figure 8). The activation of p53 was correlated to increased levels
of apoptotic pathways (caspases -3, -6 and -9) and the downregulation of antiapoptotic
pathway regulator AKT (also known as PKB—protein kinase B) and apoptosis-inhibitor
XIAP (X-linked inhibitor of apoptosis protein) [136].
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Transcriptome analysis of human HEK293 cells infected with a vaccine attenuated
strain of RVFV resulted in 2090 upregulated genes and 216 downregulated genes. The most
upregulated genes were ISGs (interferon-stimulated genes), particularly IFIT2 (Interferon-
induced protein with tetratricopeptide repeats 2) and OASL (2’-5’-Oligoadenylate Syn-
thetase Like), both at 18 and 48 hpi, along with other 2′-5’ oligoadenylate synthase (OAS)
family members and inflammatory cytokines and chemokines such as CXCL10 (C-X-C
motif chemokine ligand 10), CCL5 (C-C motif chemokine 5), IL16 (Interleukin 16), ANPT2
(Angiopoietin 2) and CXCL11 (C-X-C motif chemokine ligand 11). Other upregulated
genes were related to cell adhesion (ITGAM—Integrin alpha M), microtubule activity
(DNAH12—Dynein axonemal heavy chain 12), Wnt signalling (FAP), membrane transport
(NPC1L1—Niemann-Pick C1-Like 1), metabolism (CPA2—Cation-proton antiporter 2) and
apoptosis (XAF- X-linked inhibitor of apoptosis (XIAP)-associated factor 1). Among the
downregulated genes, MIR210HG, a microRNA involved in oxidative stress, was very
relevant, possibly due to oxidative stress caused by RVFV infection, as NSs are also known
to affect mitochondria function and cause redox imbalance generating reactive oxygen
species, besides transcription inhibition and other virulent functions [137]. Other signifi-
cantly downregulated genes were ionotropic glutamate receptors (GRIA3, GRID2), kinesin
family member 12 (KIF12) and several noncoding RNAs [138].

In general, pathway analysis showed many genes involved in type I IFN response (NF-
κB—nuclear factor kappa-light-chain-enhancer of activated B cells signalling, TNF—tumour
necrosis factor signalling, toll-like-receptor signalling, RIG-I—retinoic acid-inducible gene-
I-like receptor signalling and cytosolic DNA sensing) post RVFV infection. The key features
include activating cytokine-mediated inflammatory response, cytokine-cytokine receptor
interaction, chemokine signalling, and NOD-like receptor signalling. In addition, pathways
involved in linoleic acid and arachidonic acid metabolism were altered, indicating their
influence on immune and inflammatory responses during infection. Other pathways
altered post RVFV infections were PI3K/AKT/mTOR signalling and extracellular matrix
(ECM) receptor interaction, probably involved in viral entry and cell-to-cell spread of the
virus [138], G2/M DNA damage checkpoint, ATM signalling, mitochondrial dysfunction
and ILK signalling (also involved in cell adhesion, cytoskeletal reorganisation and cell
mobility) [139–141].

The role of exosomes in modulating the immune response to bacterial and viral
infections remains to be fully elucidated, although its importance has been recognized.
How these exosomes affect viral replication in infected cells and regulate antiviral responses
is still not fully clear. Alem and collaborators demonstrated that exosomes released from
RVFV infected cells (Exi-RVFV) containing sequences of the viral genome but lacking the L
polymerase (RdRp) or the NSs protein play a protective role against infection by inducing
the RIG-I dependent activation of IFN expression leading to autophagy of infected cells in
order to resist subsequent viral dissemination [142].

RNA-seq transcriptomic analysis of Ae. aegypti cell lines infected by RVFV and DENV
(Dengue virus) revealed the upregulation of 39 genes in early (27 genes), late (22) or both
early/late (10) responses. Upregulated genes from both infections and early and late
responses included proteins such as PGRP (Peptidoglycan recognition protein), GNBP
(Gram-negative binding protein), CTLMA 13 and 14 (C-type lectins-mannose binding)
and transferrin that are involved in antiviral immune response, and family B and D clip-
domain serine proteases (CLIP-B15, CLIP-B34, CLIPB-35, CLIP-B46 and CLIP-D1), which
might have roles in defence responses such as hemolymph coagulation, antimicrobial
peptide synthesis as well as the melanization of pathogen surfaces [143]. Comparatively,
exploring Culex pipiens mosquitoes-RVFV molecular interactions through RNA-seq de
novo transcriptomic analysis, Nuñez and collaborators identified a total of 451 differen-
tially expressed genes (DEGs), mainly at an early stage of infection and corresponding
to metabolic and cellular processes. Forty-eight were characterized by focusing on the
immune response-related genes, mostly related to Toll, IMD (Immune deficiency) and RNAi
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(RNA interference) pathways, and a great majority were involved in apoptosis or the UPP
pathway (Ubiquitin-proteasome pathway), even at an early stage of RVFV infection [144].

Metabolomic studies to evaluate the effects of RVFV infection are still not available in
the literature. However, a metabolic profile of anti-RVFV medicinal plants was character-
ized using 1H NMR and chemometric analytical techniques along with UHPLC-qTOF-MS
(Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spec-
trometry) in order to confirm the compounds that are common in plants with antiviral
activity. Compounds with significant discriminating results and potential antiviral activity
were selected and included chlorogenic acid, vanillic acid, ferulic acid and trigonelline, all of
which have already been reported as potent antivirals. Other compounds such as flavonoids
(rutin, kaempferol, flavonol glucoside and kaempferol 3-O-rutinoside) were also identified,
along with two hydroxylated fatty acids (13S-Hydroxy-9Z,11E,15Z-octadecatrienoic acid
and 13-Hydroxy-9Z,11E-octadecadienoic acid), which were identified for the first time in
the antiviral plants’ samples [145].

4.2. Oropouche Virus

Oropouche virus (OROV) is the agent of oropouche fever transmitted mainly by
Culicoides paraensis midges that circulate in South and Central America and has caused over
30 epidemics with more than half a million cases over the past 60 years in Brazil—being
one of the most critical arboviruses in the Amazon region—Peru, Tobago, Trinidad and
Panama. It is characterized by acute febrile illness similar to dengue fever with symptoms
such as fever, headaches, skin rash, and muscle and joint pain. In severe cases, it may
develop into meningitis or encephalitis [146]. In 1955, OROV was first isolated from a forest
worker in Vega de Oropouche in Trinidad [147]. In Brazil, its first isolation occurred in
1960 from a blood sample of a sloth (Bradypus trydactylus) seized during the Belem-Brasilia
Highway construction. Since then, it has circulated in the Amazon region (South and
Central America) and Latin America. More recently, due to climate change, the expansion
of the arthropod vectors, globalization and its potential public health significance, it has
attracted research attention along with other emerging viruses [61].

OROV is a member of the Bunyaviridae family belonging to the Orthobunyavirus genus
and is a member of the Simbu serogroup that comprises 22 other virus species according to
serological evaluation [63]. According to genome sequence analysis, its diversity comprises
four genotypes (I-IV) that are spread throughout the regions where OROV is present [148].
Genotype I was reported only in Trinidad and Tobago, while genotype II was restricted
to Peru and genotype III was found only in Panama. In Brazil, both genotypes I and II
were found, the former restricted to the eastern Amazon and the latest to the western
Amazon region. Genotype III was found in Acre and the Minas Gerais States, and genotype
IV was exclusively isolated from an outbreak in Manaus in the 1980s and is restricted to
Brazil [63,149]. Genetic reassortment is also common among bunyaviruses (as in segmented
RNA viruses), making genetic analyses of all three segments crucial for identifying such
reassortants, which has yielded a variety of results classifying OROV reassortants based
on high similarity of L, S and M segments and its proteins with at least four different
viruses (Jatobal virus—JATV, Iqtos virus—IQTV, Madre de Dios virus—MDDV and Perdoes
virus—PERDV) [150].

OROV infection in HeLa cells is mediated via clathrin-coated pits, and in an acidification-
dependent endocytic pathway, it reaches late endosomes in about an hour. It also causes
cell apoptosis via an intracellular pathway that involves mitochondria and is dependent
on viral replication and protein expression [61,151]. In mice, OROV infection triggers
the activation of mitochondrial antiviral-signalling protein MAVS, interferon regulatory
factors such as IRF-3, IRF-7, IRF-1 and IRF-5, which regulate expression and production
of type I IFN and ISGs (Interferon-stimulated genes) for host defence and viral control in
non-myeloid cells [152]. High levels of liver transaminases and low glucose levels were
found, which have also been reported in human serum analysis [153]. Severe liver damage
was observed after OROV infection in immunocompromised mice, mainly due to high
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levels of cytokines and chemokines such as IL-6, IL-12, p40, G-CSF, KC and others, and
immune targeting of infected cells by natural killer and/or cytotoxic T cells, as observed in
Flavivirus infection [154]. In addition, IRF-5 has been suggested to play a significant role
in modulating host response in peripheral organs controlling OROV dissemination in the
central nervous system (CNS), inhibiting the neuroinvasive disease manifestation and also
viral replication in the liver, blood, and spleen in mice in early stages of the disease [155].

During OROV infection, IFN-induced responses and TNF signalling components
such as TNF-Receptor Associated Factor 3 (TRAF3) and Stimulator of Interferon Genes
(STING) are essential for innate immune control. As the infection advances, the virus
down-modulates these mediators, trying to escape antiviral pathways, increasing short
noncoding miRNAs and type-I IFN [156]. High levels of IFN-α were present in early and
late seroconverter patients, as it was considered a universal biomarker of human OROV
infection. Early seroconverters presented high levels of CXCL8 (C-X-C Motif Chemokine
Ligand 8) and IL-5 through the disease, consistent with the role of IL-5 in B cell activation for
antibody production of plasma cells. Late seroconverters produced high levels of CXCL10
and IL-17 along with CCL2 (C-C motif ligand 2), which could be potential complementary
biomarkers of OROV fever that precede seroconversion in patients [157,158]. Human
peripheral blood mononuclear cells (PBMCs) were susceptible to OROV, where expression
of IFNs I, II and III was increased at 24 and 48 hpi, associated with an increase in Mx1 and
IFIT1 and decreased supernatant viral titers. Similarly, an increase in RIG-I and MDA5
expression was observed, which are two essential proteins for viral recognition in the
cytoplasm (Figure 6), all corroborating for suppression of viral replication in these cells
along with an overall increase of IFNs and ISGs, as immunodeficient environments created
by blocking IFN response resulted in efficient viral replication [159].

Using sliced cultures from an adult human brain, Almeida and colleagues investigated
OROV infection of mature human neural cells, which resulted in the release of TNF-α
(pro-inflammatory cytokine tumour necrosis factor-alpha) and the reduction of cell viability
and tissue damage in a 48-h period post-infection, which could generate further neuronal
dysfunctions and neurological symptoms in human infections. Although OROV infects
both neurons and microglia, the latter were the preferred central nervous system (CNS)
cells infected by the virus, again demonstrating that OROV infection may lead to neuronal
complications, as microglia cells are the primary defence cells in the CNS that might even
serve as viral reservoirs in the brain [160]. OROV infection has also been studied in human
blood mononuclear cells, and results demonstrated that T CD4+ lymphocytes (Jurkat cells)
were more susceptible to infection than other lymphoid lineages. Moreover, CD3+, CD14+
and other cell populations also showed productive infection, and the presence of a viral
genome throughout a few subculturing events is indicative of persistent infection [159].

Hepatocarcinoma cell line HuH-7 infected with OROV submitted to RT-qPCR-based
screening detected 13 differentially expressed miRNAs, known for regulating gene expres-
sion post-transcriptionally and playing important roles in viral infections [161]. These
results demonstrated that miR-217 and miR-576-3p were upregulated during infection,
and gene targets involved in apoptosis, type I interferon-mediated response, and antiviral
restriction factors were associated with those miRNAs. Also, miR-217 and miR-576-3p
are described as inhibitors of IFN-β antiviral response, leading to a decrease in antiviral
response as the infection continues, and the NSs protein regulates innate host immunity
response, modulating the IFN pathway [156,162].

An investigation of genome-wide transcriptomic alterations of human primary as-
trocytes infected by the Oropouche, Zika, Chikungunya and Mayaro viruses presented
different pathways affected by each virus, but with common signatures related to the
down-regulation of innate immune pathways, antiviral response and interferon-associated
inflammatory cytokines. Examples of common down-regulated genes/protein expression
were DDHX58 (RIG-I), IFN- β and transcription factors related to interferon pathways
such as IRF-7. OROV infection alone revealed the up-regulation of pathways related to
cell division and cell cycle, DNA maintenance and replication, along with extracellular
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matrix remodeling (SPARC/Osteonectin/SPOCK3; ITGAM—Integrin Subunit Alpha M;
and COL17A1—Collagen Type XX Alpha 1 Chain; COL20A1—Collagen Type XX Alpha
1 Chain). Interference with cell cycle, DNA condensation and cellular transcription has
been observed with orthobunyaviruses. Cell cycle arrest might account for the increased
availability of capped mRNAs to act as donors for translation, the cap-snatching mech-
anism [163,164]. The down-regulation of interferon response and genes with antiviral
activities was also observed (RSAD2—Viperin; OASL and OAS1—2′5′-Oligoadenylate Syn-
thethase, MX1/2—MX Dynamin-like GTPase 1; IFIT2—Interferon-induced Protein with
Tetratricopeptide Repeats 2), and evidence of the down-modulation of ion channels, trans-
membrane solute carriers and synapse regulation pathways was also identified, revealing
manifestations of OROV neuropathology [165].

As no vaccination is available, studies on immunogenic and antigenic epitopes are
fundamental for developing antiviral therapies. Through immunoinformatic techniques,
analyses of OROV proteome for the search of T-cell and B-cell epitopes were performed
along with finding inhibitor-binding sites by docking simulation of the putative OROV
polyprotein, which was identified as the most antigenic protein with a total of 128 epitopes
with the highest antigenic scores. By narrowing criteria (antigenicity, immunogenicity
and conservancy), a total of 18 highly conserved T-cell epitopes were identified as po-
tential vaccine candidates, with significant population coverage and with one particular
epitope (LAIDTGCLY) defined as a putative vaccine candidate due to its binding affinity
to both MHC-I and MHC-II alleles identified through docking experiments. Moreover,
five highly conserved B-cell epitopes were also identified, and one in particular (HHYKP-
TKNLPHVVPRYH) presented promising results. The 3D OROV polyprotein structure
presented ten possible ligand-binding pockets, and its amino acid residues were iden-
tified, supporting its potential as an antiviral target for future research against OROV
infection [166].

5. Remarks and Conclusions

As arboviruses are the causative agents of recurrent epidemics worldwide, and the
infection of humans may result in long-term complications and chronic conditions, un-
derstanding the viral structure, mechanisms and interactions with hosts is a key step for
the development of antiviral approaches. Among the nearly 540 arboviral species com-
prised within several families and genera are the mosquito-borne Chikungunya, Mayaro,
Oropouche and Rift Valley viruses which belong to the Alphavirus, Orthobunyavirus and
Phlebovirus genera, respectively, and which were the main focus of this review, which
aims to provide information on arboviral mosquito infection-related aspects obtained
from "omics" studies and approaches. Herein, we aimed to display how some of the
tools and technology sensitivity of omic approaches provide a better understanding of
biological systems and validate the potential effects these viruses have on experimental
animal models, cell culture, and, more importantly, humans. The study integration of
genes to transcripts, proteins and metabolites can provide a holistic and unique perspective
on biomarkers and biochemical fingerprints present in a specific host due to different
conditions set by pathogens or diseases. Improving knowledge of how these viruses affect
organisms, especially humans, is critical for developing future therapies or medications to
prevent or treat such relevant public health issues. Although the combination of several
omics approaches and the integration of these results for biological interpretation is still a
challenge, thanks to technology advances and improvement of online databases, future
studies regarding these viruses or other pathogens under the multi-omics approach might
be able to offer new perspectives on systems biology to elucidate several aspects of such
recurrent human pathogeneses.
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