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Interactive analysis of single-cell epigenomic
landscapes with ChromSCape
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Chromatin modifications orchestrate the dynamic regulation of gene expression during
development and in disease. Bulk approaches have characterized the wide repertoire of
histone modifications across cell types, detailing their role in shaping cell identity. However,
these population-based methods do not capture cell-to-cell heterogeneity of chromatin
landscapes, limiting our appreciation of the role of chromatin in dynamic biological processes.
Recent technological developments enable the mapping of histone marks at single-cell
resolution, opening up perspectives to characterize the heterogeneity of chromatin marks in
complex biological systems over time. Yet, existing tools used to analyze bulk histone
modifications profiles are not fit for the low coverage and sparsity of single-cell epigenomic
datasets. Here, we present ChromSCape, a user-friendly interactive Shiny/R application
distributed as a Bioconductor package, that processes single-cell epigenomic data to assist
the biological interpretation of chromatin landscapes within cell populations. ChromSCape
analyses the distribution of repressive and active histone modifications as well as chromatin
accessibility landscapes from single-cell datasets. Using ChromSCape, we deconvolve
chromatin landscapes within the tumor micro-environment, identifying distinct H3K27me3
landscapes associated with cell identity and breast tumor subtype.
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istone modifications are key regulators of gene expression,
driving chromatin folding, and gene accessibility to
transcription machineries. The recent development of
single-cell methods to study epigenomes now enables the
appreciation of the heterogeneity of chromatin modifications
within a population. These experimental methods assess the
distribution of histone marks at single-cell resolution by coupling
next-generation sequencing to high-throughput microfluidics
DNA barcoding (scChIP-seq)!2 or in situ reactions (scChIL-seq?,
scChIC-seq*, scCUT&Tag’). In contrast to scATAC-seq
approaches that identify open regions of the chromatin®$,
these methods can capture various chromatin states, enriched in
repressive or active histone marks (H3K27me3 or H3K4me3 for
example). Using these approaches, we can study the heterogeneity
of epigenomes within complex biological samples, such as
tumors!, and start appreciating the role of epigenomic diversity
and the dynamics of chromatin in disease and development.
Existing tools used to analyze bulk ChIP-seq experiments are
not fit for the low coverage and sparsity of these single-cell his-
tone modifications datasets, which is due to the inherent low
number of copy of DNA molecules per cell —maximum two for a
diploid genome. Several computational methods for the analysis
of scATAC-seq have been developed to deal with the specificities
of single-cell DNA-based datasets. They were recently bench-
marked?, with SnapATAC!0, CisTopic!l, and Cusanovich2018!2
being the top-three performing methods. These tools, initially
dedicated to scATAC-seq and without graphic interface, require
some scripting skills. Biologists with limited computational
training can manipulate and analyze scRNA-seq and scATAC-seq
datasets using applications such as “scOrange”!% and ““SCRAT”14.
Here we present ChromSCape (Fig. 1), a user-friendly, step-by-
step and customizable Shiny/R application to analyze all types of
sparse single-cell epigenomic datasets, distributed as a Bio-
conductor package. The user can interactively identify sub-
populations with common epigenomes within heterogeneous
samples, find differentially enriched regions between subpopula-
tions and interpret epigenomes by linking regions to associated
genes and pathways. The pipeline starts from aligned sequences
or count tables, and is designed for high-throughput single-cell
datasets with samples containing as low as 100 cells with a
minimum of 1000 reads per cell up to 25,000 cells on a standard
laptop. ChromSCape accepts multiple samples to allow compar-
isons of cell populations between and within samples. It can
determine cell identities from single-cell histone modification

ChromSCape

profiles, whatever the technology, as well as scATAC-seq datasets.
We showcase the use of ChromSCape by deconvolving chromatin
landscapes within the tumor micro-environment; we identify
distinct H3K27me3 landscapes associated with cell identity and
breast tumor subtype.

Results

ChromSCape identifies cell identities from scChIP-seq data. To
test the efficiency of ChromSCape (Fig. 1) in identifying cell sub-
populations based on their epigenome (H3K27me3), we gener-
ated an in-silico dataset with known ground truth, mixing 4
different human cell types: Jurkat B cells, Ramos T cells, MDA-
MB-468 breast cancer cells and HBCx-22 tumor cells derived
from a luminal breast tumor PDX modell. Interestingly, Jurkat
and Ramos cells were processed within the same microfluidics
experiment, preventing the existence of any batch effect between
them (see Grosselin et al.!). We compared ChromSCape to
methods specifically designed for single-cell epigenomic datasets
(scATAC-seq) for their ability to identify cell identities. Based on
a recent scATAC-seq benchmark®, we selected the top-
performing methods, namely Cusanovich2018'2, SnapATAC!O,
and CisTopic!!. We also benchmarked EpiScanpy!®, a recent
analysis pipeline for various single-cell epigenomic data (scA-
TAC-seq, scDNA methylation, ...) developed in Python. We
applied hierarchical clustering on the reduced feature space
obtained by each method and used an ARI metric to evaluate
their ability to identify cell phenotypes. ChromSCape with default
parameters manages to separate almost perfectly the 4 cell types,
with an ARI of 0.998 (Fig. 2a), as Cusanovich2018 and CisTopic
(both an ARI of 0.996, Fig. 2b), followed closely by EpiScanpy
(ARI of 0.940, Fig. 2b). ChromSCape, EpiScanpy, and SnapATAC
were all run on 50 kbp bins, but SnapATAC had noisier clusters
and a slightly poorer ARI (0.822).

We also compared the agility of ChromSCape to manipulate
and interpret scChIP-seq datasets to two applications with
graphic interface, using the same reference dataset (Fig. 2c), with
either default settings or optimizing input and settings. scOrange
is a stand-alone platform allowing researchers to create workflows
to analyze single-cell datasets, offering a wide variety of analytical
modules. While for scRNA-seq many workflows have been
developed and are ready-to-use, in the case of epigenomic
datasets, users need to have prior computational knowledge to
organize a proper workflow. We managed to group cells

Single-cell png
epigenomic data
(scChlP-seq, scATAC-seq, pdf
SCCUT&TAG...)
csv
Count matrices, . Classification -
sc BED files, ‘ RData
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Fig. 1 Representation of ChromSCape workflow. Users upload single-cell epigenomic data formatted as count matrices, single-cell BAM or single-cell BED
files to start the analysis. The application includes Quality Control (QC), Classification and Interpretation tools. The user can save plots and tables in png,

pdf, or csv formats, and R analysis objects in RData format.
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Fig. 2 Benchmarking single-cell epigenomic tools with an in-silico mix of H3K27me3 scChlIP-seq. The mix is composed of human cells from an untreated
PDX (HBCx-22), human T cells (Jurkat), and B cells (Ramos) taken from! and from a TNBC cell line (MDA-MB-468). (a) UMAP plots obtained with
ChromSCape colored according to cluster and sample of origin. Adjusted Random Indexes (ARI) are indicated above the plot. (b) UMAP plots colored
according to cluster and sample of origin with other single-cell epigenomic analysis methods: Cusanovich2018, SnapATAC, CisTopic, and EpiScanpy.
Adjusted Random Indexes (ARI) are indicated above the plots. (€) Snapshots from scOrange and SCRAT applications. PCA and t-SNE representations from
scOrange and SCRAT respectively, using default parameters or after manually optimizing parameters.

according to sample of origin only with an optimized workflow
(Fig. 2c¢, default vs optimized). SCRAT is a Shiny/R package
presented as a user interface to analyze single-cell epigenomic
data. The default option for SCRAT is to count reads within
‘ENCODE Clusters’ corresponding to co-regulatory open chro-
matin regions obtained from DNAse-seq datasets, not adapted for
the analysis of repressive histone marks like H3K27me3. In order
to use SCRAT for our reference scChIP-seq datasets, we had to

pre-compute counts on pre-defined peaks called on the ‘pseudo-
bulk’ (see Methods and ‘Optimized’ panel), limiting the usability
of SCRAT. In addition, in contrast to ChromSCape, both
applications do not propose functionalities to associate genomic
regions to gene annotation, limiting the biological interpretation
of the results obtained with differential analysis.

Like single-cell transcriptomics approaches, single-cell epige-
nomic technologies can be influenced by various batch effects,
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e.g., library preparation, batch of hydrogel beads or efficacy of
immuno-precipitation or cleavage. To overcome this, we have
implemented in ChromSCape a module for batch correction
based on the fastMNN method!®. To test this functionality, we
used three datasets: two from our previous study (HBCx-95 and
HBCx95-CapaR, collected with batch 1 beads) and a new dataset,
HBCx95—Dbatch 2, which is a biological replicate of HBCx-95, i.e
a PDX tumor from the same PDX model but a different mouse,
processed with a new batch of beads. Using ChromSCape, we
analyzed together the three H3K27me3 tumor samples. As shown
in Supplementary Fig. 2a strong batch effect separates the two
biological replicates before batch correction (left panel). After
applying batch correction (right panel), cells from the two
biological replicates of untreated HBCx-95 tumors successfully
mix, but not with cells from the resistant tumor, suggesting that
the module corrects for batch effect without overcorrecting
biological differences.

We also evaluated the usability of ChromSCape for other types
of single-cell histone modification data obtained by other
technologies than scChIP-seq. We analyzed two public datasets
of scCUT&Tag and scChIC-seq targeting H3K27me3 and
H3K4me3 marks respectively. ChromSCape facilitates the
analysis of such public dataset as the user can directly upload
the GEO single-cell BED files into the application. We
recommend here for H3K27me3 mark—accumulating in broad
peaks—to aggregate the signal into 50kbp bins, and for H3K4me3
mark—accumulating in sharp peaks—to count within 5kbp bins
or around gene TSS (+2500bp). As shown in Supplementary
Fig. 1a, for the scCUT&Tag dataset the two K562 replicates
showed no batch effect and were clustered together separately
from HI1 cells (ARI=0.976). For the scChIC-seq dataset
(Supplementary Fig. 1b), 7 clusters are clearly observable on the
UMAP representation, as was found by the authors in their
study?.

ChromScCape classifies cells from scATAC-seq data. In order to
assess the capacity of ChromSCape to analyze all types of single-
cell epigenomic data, we re-analyzed a scATAC-seq dataset
(GSE99172) containing 8 cell lines and 4 patient-derived cells.
This dataset was partly produced and analyzed in a study using
chromVar, a dedicated scATAC-seq analytical tool!7; we used the
same color code as in the original study. This dataset contains
various biological samples as well as technical replicates for two
cell lines, K562 & GM12878, for which there are 6 and 4 technical
replicates respectively. Due to a relatively low number of cells per
sample (n =96 per sample), we set the read count threshold to
1000 for cells to be included in the analysis. We measured the
ability of ChromSCape to classify cells according to the cell type
of origin using assignment scores for each sample X and each
cluster Y (number of cells from sample X assigned to cluster Y/total
number of cells of sample X).

In the unsupervised analysis, we identified the optimal number
of clusters to be k=5 according to the relative change in area
under the CDF curve (Fig. 3a and Supplementary Fig. 3a). Cells
from different technical replicates of K562 and GM12878 all
grouped together in clusters 5 and 2 with assignment scores of
99.7% and 98.3%, respectively (Fig. 3b). Analyzing all samples
together, ChromSCape could robustly identify—i.e., as stable
separated clusters by consensus clustering—TF1, K562, and
GM12878 cells, affecting on average 99.4% of cells to correct
cluster. Cluster C1 grouped together AML, Mono, and LMPP
samples with HL60 cell line, which is also originally derived from
leukocytes of a patient with an AML cancer.

In order to get more insight into cell identities within cluster
C1, we re-analyzed cells from C1 with ChromSCape. In contrast

to the first round of analysis, ChromSCape was able to distinguish
cell identities within samples, and detect individual clusters of
cells, with high assignment scores for the two normal samples
(LMPP & Monocytes) and HL-60 (average assignment score
98.3%, Fig. 3c, d). Additionally, AML blasts from patient
SU070 show a larger proportion of monocytes than patient
SU353 (Fig. 3d, p-value = 0.0025, Fisher’s exact test, respectively
85.0% and 25.7% of SU070 and SU353 blasts cells cluster with
monocytes), as previously described for these cells in!S.
ChromSCape identifies distinct populations within the normal
immune cell environment based on their chromatin accessibility.
Within AML patient samples, ChromSCape matches each cancer
cell to the closest resembling cell in a healthy population.

ChromSCape deconvolves epigenomes of the tumor micro-
environment. To further showcase the use of ChromSCape, we
interrogated the heterogeneity of chromatin states within the
tumor micro-environment of two breast tumor subtypes: luminal
and triple-negative (TNBC) breast tumors. The tumor micro-
environment is a key player in tumor evolution processes, and
can vary between tumor types and with the response to cancer
therapy. Here our goal was to compare H3K27me3 landscapes of
cells from the tumor micro-environment of luminal and TNBC
subtypes, resistant or not to cancer treatment. The HBCx-22 and
HBCx-22-TamR datasets correspond to mouse cells from a pair
of luminal ER* breast PDXs!: HBCx-22, responsive to Tamoxifen
and HBCx-22-TamR, resistant to Tamoxifen. The HBCx-95 and
HBCx-95-CapaR correspond to triple-negative breast cancer
(TNBC) tumor model of acquired resistance to chemotherapy!.
We analyzed together these four H3K27me3 mouse scChIP-seq
datasets, two of which had not been analyzed in our previous
study!. Using ChromSCape, we propose a comprehensive view of
cell populations based on their chromatin profiles, and show the
identification of tumor-type and treatment-specific cell popula-
tions and respective chromatin features. All plots in Fig. 4 were
automatically generated by the application and are downloadable
from the interface. In the quality filtering step, a threshold of 2000
reads per cell was set due to a relatively high initial number of
cells (n=5516 cells).

After the dimensionality reduction step (Fig. 4a, b), we applied
our consensus clustering approach on the filtered dataset with
k=2 to k=10 clusters. We chose to partition the data into k =4
clusters based on the knee method, as a plateau in the relative
change in area under the CDF curve was observed between k = 4
and k=5 clusters (Fig. 4c, d & Supplementary Fig. 4a, b).
Consensus score matrix in Fig. 4d shows that most of the cells
were stably assigned to four chromatin-based populations (mean
consensus score for selected clusters of 0.91 which is significantly
higher than mean consensus score for other clusters, 0.17,
p-value = 2.2e-16, two-sided Student’s ¢-test). Assignment of cells
to cluster C2 and C4 is significantly less stable than C1 and C3
(p-value < 2.2e-16, Student’s two-sided #-test, mean consensus
scores are respectively 0.84 and 0.90 for C1-C3 and 0.70 and 0.71
for C2-C4, see Supplementary Fig. 3a), suggesting that cells from
C2 and C4 might share H3K27me3 features, whereas cells from
C1 and C3 have distinct H3K27me3 landscapes. Clusters C1, C2,
and C4 contain cells from all four samples, with a significantly
higher proportion of HBCx-22-TamR for C1 (p-value = 3e-05,
Pearson’s Chi-squared test) (Fig. 4e). On the other hand, cluster
C3 is almost exclusively composed of cells from model HBCx-95
(Fig. 4c, e), revealing a stromal cell population specific to the
triple-negative breast cancer model (HBCx-95).

To further identify the specific features of each chromatin-
based population, we proceeded to peak calling, differential
analysis, and gene set enrichment analysis using default

4 | (2020)11:5702 | https://doi.org/10.1038/s41467-020-19542-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19542-x

ARTICLE

a 60 60 b
‘ ) ®
30 1 30 -
L L3 .
[< %
E 4 e S ] S
% ; 0 , . ®
W e .
T N ! ' N
: - o | . ° | n
=301 - | =30 1 ", :
~60 1 — et 604 ' Lo e - —
-50 25/ 0 25 50 ~50 25 /0 25 50 Cluster 100
,,' t-SNE1 t-SNE1 20
LMPP /  AMLblastSU353 © BJ ! &
TF1 ! @ AMLblastSUO70 @ GM12878 1-4 ¢ ®C1 eC3 ¢G5 Percentage of cells 60
HL60 . ® AMLLSC SU070 K562 1-6 , C2 eocC4 assigned to cluster 4518
® Mono AML LSC U353 @ H1 | 30
-‘ 9 2
4 k
c d
@ ‘)Q) ® C ‘ .‘
10 1 e @ o 1
&, @@iﬁ» ¥
% o ? ® 3 [}
] 04 ]
° e ®
3 : g
& 10 1 =
- »
—20 - —20
.9
EY 00
:(é) (J I
—-30 1 -30
T T T T T T [ | |
-10 0 10 -10 0 10 Cluster
t-SNE1 t-SNE1

Fig. 3 ChromSCape identifies immune cell populations from scATAC-seq datasets. (a) t-SNE representations after correlation filtering (n =1309 cells),
points are colored according to sample of origin (left) or ChromSCape-determined clusters (k=15) (right). The GM12878 and K562 samples contained
respectively 4 and 6 replicates. (b) Assignment scores for each sample/cluster pair for the analysis with all samples. (¢, d) As in (a) and (b) for the

analysis with only AML, LSC, monocyte, LMPP & HL60 cells (n =347 cells).

parameters (see Methods). As H3K27me3 is a repressive histone
mark, we focused our analysis on loci depleted in H3K27me3,
where transcription of genes can occur, in cells from each cluster
versus all other cells. The differential analysis identified
respectively 189, 210, 83, and 9 significantly depleted regions
for clusters C1 to C4 (Fig. 4g, logFC <1, adjusted p-value < 0.01).
We found loci devoid of H3K27me3 specific to cluster C2,
enriched for genes involved in apical junction such as Bcarl
(Fig. 4f) and Ptk2, which are characteristic of genes expressed in
fibroblasts. We found a depletion of H3K27me3 specific to cluster
C3 over the genes Nrros (Fig. 4f) and Il10ra, two genes
characteristic of immune expression programs. The depletion of
H3K27me3 over the transcription start site of Raplgap2, a gene
expressed in endothelial cells, was a key feature of cluster C4
(Fig. 4f). For cluster C1 and C2, we found a depletion of
H3K27me3 over Eln, a gene expressed in fibroblasts.

Gene set enrichment analysis for genes located in regions
depleted of H3K27me3 enrichment only revealed very few
enriched gene lists, mostly for cluster C2 (g-value <0.1, Fig. 4h,
multiple gene sets related to stem and cancer cells) and one list
for Cl (“LPS_VS_CONTROL_MONOCYTE_UP”). Linking
H3K27me3 enrichment to transcription is indeed indirect, we
envisage such enrichment analysis more appropriate for
H3K4me3 scChIP-seq in which enriched regions are directly
associated with gene transcription.

Overall, these results are consistent with our previous analysis
of HBCx-95 scRNA-seq datasets where subpopulations were
differentially expressing markers of fibroblasts, endothelial, and
macrophage cells!. This analysis comprising the HBCx-22
dataset allowed us to identify the H3K27me3 signature of
potential endothelial cells (cluster C4). These cells are present
in each model, but might not have been previously detected in the
previous scChIP-seq analysis due to low cell representation. In
addition, the H3K27me3 signature of potential immune cells is
restricted to cells from the TNBC model (cluster C3), suggesting
that these immune cells are absent from the luminal tumor.

Discussion

ChromSCape is a Shiny/R application designed for both biologists
and bioinformaticians to analyze complex chromatin profiling
datasets such as scChIP-seq datasets. The comprehensive appli-
cation is quick to take over plus the direct visualization of cells
clusters combined to configurable parameters and incremental
saving of intermediary R objects eases bench-marking of para-
meters. We show that ChromSCape performs as well or better
than state of the art single-cell epigenomic analytic tools to
identify cell identities from an in-silico mix of H3K27me3
scChIP-seq datasets. It also manages to identify sub-populations
within a complex scATAC-seq benchmarking dataset, showing its
wide range of application for epigenomic analysis. In addition,
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using ChromSCape to study the epigenome of mouse stromal
cells in breast tumors, we can identify the various epigenomes
within the tumor micro-environment. Overall, we see ChromS-
Cape as a useful tool to probe heterogeneity and dynamics of
chromatin profiles in various biological settings, not only in
cancer development but also in cell development and cellular
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Methods

Implementation. ChromSCape is a Bioconductor R package developed in Shiny/R.
It uses various Shiny related packages (shinyjs, shinydashboard, shinyDirector-
yInput) for the user interface. The application takes advantage of public R libraries
for data vizualisation (RcolorBrewer, colorRamps, Rtsne, umap, colourpicker,
kableExtra, knitr, viridis, ggplot2, gplots, png, grid, gridExtra, DT) as well as for
data manipulation (Matrix, dplyr, tidyr, stringr, irlba, rlist, qualV, stringdistr).

ChromSCape uses Bioconductor packages (i) for the manipulation of single-cell
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Fig. 4 ChromSCape deconvolves epigenomic landscapes within the tumor micro-environment. Cells belonging to samples HBCx-22, HBCx-22-TamR,
HBCx-95, HBCx-95-CapaR PDX!. PCA and t-SNE plots are colored according to the amount of uniquely mapped reads per cell (@) and to sample of origin
(b). (c) t-SNE representations after correlation filtering (n = 903 cells), colored by cluster or sample of origin. (d) Hierarchical clustering and corresponding
heatmap of cell-to-cell consensus clustering scores cells portioning the dataset into k = 4 clusters. Consensus score ranges from O (white: never clustered
together) to 1 (dark blue: always clustered together). Cluster membership is color-coded above the heatmap. (e) Table of cluster memberships. P-value
column results from Pearson’s Chi-squared goodness of fit test without correction, checking if the observed distribution of samples in each cluster differs
from a random distribution. Source data are provided as a Source Data file. (f) t-SNE representation of scChlIP-seq datasets, points are colored according to
H3K27me3 enrichment signals in each cell for genes located within depleted regions in C1to C4, respectively Eln, Bcarl, Nrros, and Raplgap2. The adjusted
p-values and log2FC of the associated regions are indicated above each plot. (g) Barplot of differentially enriched regions identified by Wilcoxon signed-
rank test. Genomic regions were considered enriched (red) or depleted (green) in H3K27me3 if the adjusted p-values were lower than 0.01 and the
absolute fold change greater than 1. (h) Barplot displaying the -log10 of adjusted p-values from pathway analysis for cells of cluster C2 compared to all
other cells in depleted loci. Only the top 15 significant gene sets, ranked by adjusted p-values, are indicated.

data with SingleCellExperiment, scater!, scran?0, (ii) for the manipulation of
genomic regions with IRanges and GenomicRanges?!, (iii) for the manipulation of
genomic files with Rsamtools and BiocParallel, (iv) for the correction of batch
effects with batchelor!® and (v) to determine the optimal number of clusters with
ConsensusClusterPlus?2. In addition, ChromSCape makes use of custom R func-
tions which serve for both manipulation and visualization of datasets. Brief com-
mand lines enable users without any bioinformatics skills to install all R
dependencies and run the application in a web browser.

Demonstration application. A demonstration of ChromSCape is freely available at
https://vallotlab.shinyapps.io/ChromSCape/.

Input datasets, quality control, and pre-processing. Input files for ChromSCape
are either one or multiple count matrices with genomic regions in rows and cells in
columns or single-cell BAM or BED files. In this case, a directory containing single-
cell BAM or BED files must be specified and ChromSCape creates the count matrix
by aggregating the signal into successive genomic bins, peaks (BED file must be
provided by user) or into regions around genes Transcription Start Sites (TSS). For
H3K27me3 scChIP-seq datasets, with a distribution in broad peaks, we recommend
using bins of 50kbp, while for H3K4me3 scChIP-seq or scATAC-seq datasets we
recommend using smaller bins (e.g., 5kb), knowns peaks or regions around TSS.
The “condition” or “label” of each cell is then heuristically determined using file
names and the number of conditions specified by the user. Guidelines and links
toward datasets are given in the user guide (https://vallotlab.github.io/
ChromSCape/ChromSCape_guide.html).

In order to efficiently remove outlier cells from the analysis, e.g., cells with
excessively high or low coverage, the user sets a threshold on a minimum read
count per cell and the upper percentile of cells to remove. The latter could
correspond to doublets, e.g., two cells in one droplet, while lowly covered cells are
not informative enough or may correspond to barcodes ligated to contaminant
DNA or to library artifacts. Regions not supported by a minimum user-defined
percentage of cells that have a coverage greater than 1000 reads are filtered out.
Defaults parameters were chosen based on the analysis of multiple scChIP-seq
datasets from our previous study!: a minimum coverage of 1600 unique reads per
cell, filtering out the cells with the top 5% coverage and keeping regions detected in
at least 1% of cells. Post quality control filtering, the matrices are normalized by
total read count and region size. At this step, the user can provide a list of genomic
regions, in BED format, to exclude from the subsequent analysis, in cases of known
copy number variation regions between cells for example.

To reduce the dimensions of the normalized matrix for further analysis,
principle component analysis (PCA) is applied to the matrix, with centering, and
the 50 first PCs are kept for further analysis. The user can visualize scChIP-seq data
after quality control in the PCs dimensional space. The t-distributed stochastic
neighbor embedding (t-SNE) algorithm?3 and UMAP?# is applied on the PCA to
visualize the data in two dimensions. The PCA and t-SNE plots are a convenient
way to check if cells form clusters in a way that was expected before any clustering
method is applied. For instance, the user should verify whether the QC filtering
steps and normalization procedures were efficient by checking the distribution of
cells in PC1 and PC2 space. Cells should group independently of normalized
coverage. In our hands, for our scChIP-seq H3K27me3 datasets, minimum
coverage of 1,600 unique reads per cell was required to separate cells independently
of coverage post normalization!. A batch correction option using mutual nearest
neighbors “FastMNN” function from “batchelor” package!® is implemented to
remove any known batch effect in the reduced feature space.

Hierarchical clustering, filtering, and consensus clustering. Using the first 50
first PCs of computed PCA as input, hierarchical clustering is performed, taking 1-
Pearson’s correlation score as the distance metric. To improve the stability of our
clustering approaches and to remove from the analysis isolated cells that do not belong
to any subgroup, cells displaying a Pearson’s pairwise correlation score below a
threshold ¢ with at least p% of cells are filtered out (p is set at 1% by default). The

correlation threshold ¢ is calculated as a user-defined percentile of Pearson’s pairwise
correlation scores for a randomized dataset (percentile is recommended to be set as the
99th percentile). Correlation heatmaps before and after correlation filtering and the
number of remaining cells are displayed to inform users on the filtering process.
ChromSCape uses Bioconductor ConsensusClusterPlus package?? to determine
what is the appropriate k-partition of the filtered dataset into k clusters. To do so, it
evaluates the stability of the clusters and computes item consensus score for each cell
for each possible partition from k =2 to 10. For each k, consensus partitions of the
dataset are done on the basis of 1000 resampling iterations (80% of cells sampled at
each iteration) of hierarchical clustering, with Pearson’s dissimilarity as the distance
metric and Ward’s method for linkage analysis. The optimal number of clusters is then
chosen by the user; one option is to maximize intra-cluster correlation scores based on
the graphics displayed on the “Consensus Clustering” tab after processing. Clustering
memberships can be visualized in two dimensions with the t-SNE or UMAP plot.

Peak calling for genomic region annotation. This step of the analysis is optional,
but recommended in order to refine the peak annotation prior to enrichment
analysis. To be able to run this module, MACS2 is required®®. The user needs to
input BAM files for the samples (one separate BAM file per sample), with each read
being labeled with the barcode ID. ChromSCape merges all files and splits them
again according to the previously determined clusters of cells (one separate BAM
file per cluster). Customizable significance threshold for peak detection and mer-
ging distance for peaks (defaults to p-value =0.05 and peak merge distance to
5,000) allows to identify peaks in close proximity (<1000 bp) to a gene transcription
start site (TSS); these genes will be later used as input for the enrichment analysis.
For the annotation, ChromSCape uses the reference human transcriptome Gen-
code_hg38_v26, limited to protein-coding, antisense, and IncRNA genes.

Differential analysis and pathway enrichment analysis. To identify differen-
tially enriched regions across single-cells for a given cluster, ChromSCape can
perform (i) a non-parametric two-sided Wilcoxon rank-sum test comparing nor-
malized counts from individual cells from one cluster versus all other cells, or
cluster of choice, or (ii) a parametric test comparing raw counts from individual
cells, using edgeR2°, based on the assumption that the data follows a negative-
binomial distribution. We test for the null hypothesis that the distribution of
normalized counts from the two compared groups has the same median, with a
confidence interval 0.95. The calculated p-values are then corrected by the
Benjamini-Hocheberg procedure?’. The user can set a log2 fold-change threshold
and corrected p-value threshold for regions to be considered as significantly dif-
ferentially enriched (default settings are a p-value and log2 fold-change thresholds
respectively of 0.01 and 1). If users have specified batches, the differential analysis is
done using the “pairwiseWilcox” function from the scran package?, setting the
batch of origin as a “blocking level” for each cell.

For the top 100 most significant differential regions, single-cell H3K27me3
enrichment levels can be visualized overlaying H3K27me3 counts for each cell at
selected genes onto a t-SNE plot. Using the refined annotation of peaks done in the
previous step, the final step is to look for enriched gene sets of the MSigDB v5
database?® within differentially enriched regions (either enriched or depleted
regions in the studied histone mark). We apply hypergeometric tests to identify
gene sets from the MSigDB v5 database over-represented within differentially
enriched regions, correcting for multiple testing with the Benjamini-Hochberg
procedure. Users can then visualize the most significantly enriched or depleted
gene sets corresponding to the epigenetic signatures of each cluster and download
gene sets enrichment tables.

Datasets. H3K27me3 scChIP-seq human in-silico mix of 4 cell types: The samples
correspond to n = 326 human tumor cells from untreated PDX (HBCx-22), n =
201 human T cells (Jurkat) and # = 306 B cells (Ramos) taken from! and n = 454
cells from the MDA-MB-468 triple-negative breast cancer cell line (HBCx-22,
Jurkat and Ramos data are from “GSE117309”), MDA-MB-468 is available at
“GSE152502”).

| (2020)11:5702 | https://doi.org/10.1038/s41467-020-19542-x | www.nature.com/naturecommunications 7


https://vallotlab.shinyapps.io/ChromSCape/
https://vallotlab.github.io/ChromSCape/ChromSCape_guide.html
https://vallotlab.github.io/ChromSCape/ChromSCape_guide.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117309
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152502
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

H3K4me3 scChIC-seq human white blood cells dataset*: n = 285 white blood
cells from a human male donor were downloaded as gzipped single-cell BED files
from “GSE105012”, inputted directly into ChromSCape and aggregated into 50kbp
bins (default).

H3K27me3 scCUT&Tag human H1 and K562 cells®: A replicate of K562 cell
line comprising of # = 908 cells from “GSE124680, another replicate of n = 479
K562 cells and n =486 H1 cells from “GSE124690” were downloaded as gzipped
single-cell BED files, inputted directly into ChromSCape and aggregated around
gene TSS (+2500 bp).

H3K27me3 scChIP-seq human datasets: The samples correspond to human
cells from patient-derived xenograft (PDX) originating from two different human
donors!. For this study, we added a new scChIP-seq dataset, corresponding to a
biological replicate of HBCx-95 (“GSE152502”), processed with a novel batch of
hydrogel beads.

scATAC-seq datasets: The scATAC-seq dataset is composed of two cell types
derived from two acute myeloid leukemia (AML) (patients SU070 and SU353
blastocytes (blast) and leukemic stem cells (LSC) from!8) as well as multiple cell
lines: GM 12878 (4 replicates), TF1, BJ, H1, HL60, K562 (3 replicates) from2?, K562
(3 replicates) from!7; monocytes (Mono) and lymphoid primed multipotent
progenitor (LMPP) from!8. The count matrix of reads in peaks was downloaded
from GEO accession number “GSE99172”, split into distinct matrices for each
sample and formatted to be accepted as input by ChromSCape.

H3K27me3 scChIP-seq mouse datasets: The samples correspond to mouse cells
from patient-derived xenograft (PDX) originating from two different human donors!.
Raw FASTQ reads were processed using the latest version of our scChIP-seq data
engineering pipeline (see above) to produce 50 kbp binned count matrices given as
input to ChromSCape (matrices available at https:/figshare.com/projects/Single-
Cell_ChIP-seq_of_Mouse_Stromal_Cells_in_PDX_tumour_models_of_resistance/
66419).

Cell line. MDA-MB-468 cells, bought at ATCC (HTB-132"), were cultured in
DMEM 1640 (Gibco-BRL) and supplemented with 10% heat-inactivated fetal calf
serum. Cell numbers, as judged by Trypan Blue exclusion test, were determined by
counting cells using a Countess automated cell counter (Invitrogen). Cells were
cultured at 37 °C in a humidified 5% CO, atmosphere. The cell line was myco-
plasma negative. The MDA-MB-468 cells were trypsinized (Trypsin, Gibco-BRL).
Prior to single-cell ChIP-seq, cells were then re-suspended in PBS/0.04% BSA
(ThermoFisher Scientific, # AM2616).

Patient-derived xenograft (PDX). Female Swiss nude mice were purchased from
Charles River Laboratories and were maintained under specific pathogen-free
conditions. Their care and housing were in accordance with institutional guidelines
and the rules of the French Ethics Committee (project authorization no. 02163.02).
A PDX from a residual triple-negative breast cancer post neo-adjuvant che-
motherapy (HBCx-95) was previously established at Institut Curie with informed
consent from the patient!. Prior to single-cell ChIP-seq, PDX was digested at 37 °C
for 2 h with a cocktail of Collagenase I (Roche, # 11088793001) and Hyaluronidase
(Sigma, # H3506). Cells were then individualized at 37 °C using a cocktail of 0.25%
trypsin/Versen (ThermoFisher Scientific, #15040-033), Dispase II (Sigma, #D4693),
and Dnase I (Roche, # 11284932001). Red Blood Cell lysis buffer (ThermoFisher
Scientific, # 00-4333-57) was then added to degrade red blood cells. In order to
increase the viability of the cell suspension, dead cells were removed using the Dead
Cell Removal kit (Miltenyi Biotec). Cells were re-suspended in PBS/0.04% BSA
(ThermoFisher Scientific, # AM2616).

Single-cell ChIP-seq. The protocol for scChIP-seq was rigorously the same as in
Grosselin et al.!, and can be resumed by the main following steps. Cells were first
compartmentalized into droplets containing Mnase in a microfluidics chip, then fused
with barcoded hydrogel beads. After fusion of cell-containing droplets and bead-
containing droplets, Fast-link DNA ligase [Lucigen, # LK0750H] was used to ligate
segmented DNA to barcodes. Droplets were pooled and used for chromatin immuno-
precipitation with 2.5 pl of anti-H3K27me3 antibody ([Cell Signaling Technology,

# 9733]). After treatment with RNAse A (ThermoFisher Scientific, #EN0531) and
Proteinase K (ThermoFisher Scientific, # EO0491), barcoded-nucleosomes were then
amplified by in-vitro transcription using the T7 MegaScript kit (ThermoFisher Sci-
entific, # AM1334) and reverse-transcribed. After RNA digestion, DNA was amplified
by PCR. The final product was size-selected by gel electrophoresis. Single-cell ChIP-seq
libraries were finally sequenced on an Illumina NextSeq 500 MidOutput 150 cycles.

Demultiplexing and alignment of H3K27me3 scChiP-seq datasets. Raw
FASTQ reads were processed using the latest version of our scChIP-seq data
engineering pipeline that allowed a more precise removal of PCR and RT dupli-
cates (code available at https://github.com/vallotlab/scChIPseq_DataEngineering)
to produce 50 kbp binned count matrices given as input to ChromSCape (matrices
available at https://figshare.com/projects/Single-Cell_ChIP-seq_of_Mouse_
Stromal_Cells_in_PDX_tumour_models_of_resistance/66419). Rapidly, the first
56 bp of the Read2 were separated into three indexes and aligned using

bowtie2 separately against the reference of three pools of 96 16-bp long indexes.

Reads containing all three recognizable indexes (a full cell-barcode) were kept, the
genomic part of Read2 and Readl were aligned in paired-end mode using STAR
v2.7.0. For each barcode, aligned reads were deduplicated by removing successively:
(i) PCR duplicates, identified if #Readl + #Read 2 mapped at the same position, (ii)
RT duplicates, identified if #Read 1 mapped at the same position, and (iii) window
duplicates: all the reads falling in the same 50 bp window were stacked into one as
reads possibly originating from the same nucleosome. Reads were binned in non-
overlapping 50 kb bins spanning the genome to generate a n x m coverage matrix
with n barcodes and m genomic bins used in downstream analysis.

Benchmark of tools for scChIP-seq data analysis. Three methods dedicated to
the analysis of scATAC-seq with the best performance according to Chen et al.,
20199, were tested on a mixture of H3K27me3 scChIP-seq datasets (see Datasets
below), namely “SnapATAC”, “CisTopic”, and “Cusanovich2018”. The scripts were
taken from the GitHub repository of the benchmark paper (https://github.com/
pinellolab/scATAC-benchmarking). For “CisTopic” and “Cusanovich2018”, peaks
were called using MACS2 with options “-nomodel -extsize 300 -keep-dup all
-broad”. Peaks closer than 5000 bp were merged together using BEDTools. For
“SnapATAC”, 50kbp bins were counted from BAM files using “SnapTools”. In
addition, we also tested a recent method for single-cell epigenomic analysis,
“EpiScanpy”, following the basic steps described in the tutorial for scATAC-seq
(https://github.com/colomemaria/epiScanpy/blob/master/docs/tutorials/
Tutorial_Hackathon_Buenrostro_2.html) with the same 50 kbp matrices used for
ChromSCape. We extracted from each method the matrix of reduced feature space,
and used hierarchical clustering with Pearson’s dissimilarity as the distance metric
and Ward’s method for linkage. The adjusted Rand’s index (ARI), a widely used
measure to quantify clustering accuracy, was calculated for each method using R
package “mclust™, taking samples of origin as “true” clusters.

In addition, two softwares with graphic interface, dedicated to the analysis of
single-cell data, “scOrange”!? and “SCRAT”!4, were also tested on the same set of
cells both with “default” parameters and manually “optimized” parameters. default’
for scOrange corresponds to using the template called “Loading data from 10x
protocols”, a workflow meant for analyzing scRNA-seq of bone marrow cells,
replacing the input by our matrices of selected cells in 50kbp bins. The “optimized”
workflow is available at www.github.com/vallotlab/ChromSCape_benchmarking
and can be opened with the “scOrange” software. For ‘SCRAT’, we found that the
“optimized” counting method corresponded to counting signal within peaks called
on the “pseudo-bulk” (see above).

In order to be able to compare the distinct methods, ChromSCape was first to
run on the raw count matrices and a set of 1287 cells passing the quality control
thresholds were selected to be used as input for all methods. As the number of cells
in each sample was unbalanced (e.g., the raw MDA-MB-468 containing n = 3,382
cells while others have a maximum of n = 456 cells), 500 cells from MDA-MB-468
were randomly sub-sampled using ChromSCape “Perform Subsampling” option.
We removed from the analysis the segments corresponding to known
amplifications and homozygous loss of DNA of the Triple Negative Breast Cancer
cell line MDA-MB-468, corresponding to a total of 77Mbp, previously found by
analyzing the input of bulk ChIP-seq of the same cells (see Supplementary Note 2).

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

In this study, we produced H3K27me3 scChIP-seq data for MDA-MB-468 sample and a
new replicate of untreated HBCx-95. This sequencing data have been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus (GEO) and
are accessible through the GEO Series accession number “GSE152502”. Other datasets
used (described in “Datasets” in the Methods) can be downloaded from NCBI GEO
under the accession numbers “GSE117309”, “GSE152502”, “GSE105012”, “GSE124680”,
“GSE124690”, “GSE152502”, “GSE99172”. All other relevant data supporting the key
findings of this study are available within the article and its Supplementary Information
files or from the corresponding authors upon reasonable request. A reporting summary
for this Article is available as a Supplementary Information file.

Code availability

The package is available on Bioconductor v3.12, requiring R4.0. Source code, guidelines
for installation, and use of the application are provided at https://github.com/vallotlab/
ChromSCape. A docker container containing the application and it’s dependecies is
available on DockerHub (pacomito/chromscape:v0.0.9001), instructions on how to
launch it are available on the github page. Codes for the benchmark of “SnapATAC”,
“CisTopic”, “Cusanovich2018”, and “EpiScanpy” are available at https://github.com/
vallotlab/ChromSCape_benchmarking.
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