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Abstract

The MESA (Multi-Ethnic Study of Atherosclerosis) is an ongoing study of the prevalence, risk factors, and progression of
subclinical cardiovascular disease in a multi-ethnic cohort. It provides a valuable opportunity to examine the development
and progression of CAC (coronary artery calcium), which is an important risk factor for the development of coronary heart
disease. In MESA, about half of the CAC scores are zero and the rest are continuously distributed. Such data has been
referred to as ‘‘zero-inflated data’’ and may be described using two-part models. Existing two-part model studies have
limitations in that they usually consider parametric models only, make the assumption of known forms of the covariate
effects, and focus only on the estimation property of the models. In this article, we investigate statistical modeling of CAC in
MESA. Building on existing studies, we focus on two-part models. We investigate both parametric and semiparametric, and
both proportional and nonproportional models. For various models, we study their estimation as well as prediction
properties. We show that, to fully describe the relationship between covariates and CAC development, the semiparametric
model with nonproportional covariate effects is needed. In contrast, for the purpose of prediction, the parametric model
with proportional covariate effects is sufficient. This study provides a statistical basis for describing the behaviors of CAC
and insights into its biological mechanisms.
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Introduction

The MESA (Multi-Ethnic Study of Atherosclerosis) is an

ongoing study of the prevalence, risk factors, and progression of

subclinical cardiovascular disease in a multi-ethnic cohort (http://

www.mesa-nhlbi.org/) [1]. It provides a valuable opportunity to

investigate the development and progression of CAC (coro-

nary artery calcium), which is an important risk factor for the

development of coronary heart disease events [2]. In MESA, CAC

is measured with the Agatston score, which is the amount of

calcium at each lesion scaled by an attenuation factor and summed

over all lesions [3]. The histogram of log(1+CAC) in Figure 1

shows that, about half of the CAC scores are zero and the rest are

continuously distributed. In a relatively healthy cohort, such a

mixture CAC distribution is commonly observed.

The CAC has a ‘‘point mass at zero+continuous’’ distribution

and is a special case of zero-inflated data. Simple regression

models are not capable of describing such data. It is not our

intention to comprehensively review analytic methodologies for

zero-inflated data. Instead, we focus on the statistical models for

CAC. To describe nonzero CAC values, existing methods

include generalized estimating equations [4], Tobit regression

[5], zero-inflated normal model [6], quantile regression [7], and

others. To describe zero versus nonzero CAC values, existing

methods include logistic regression [5], relative risk regression,

and others.

In MESA, after extensive comparisons and evaluations,

Kronmal [8] suggested two-part models as the default for CAC.

Two-part models have a long history in economic, statistical, and

biomedical literature and can be a natural choice for data with a

mixture distribution. With two-part models, the development of

CAC is modeled in two steps (parts). The first step describes the

development from zero to nonzero CAC values. In this step, the

response variable is binary. The second step describes the

progression of nonzero CAC values. In this step, the response

variable is continuously distributed. The two steps have different

purposes and different types of response variables, and hence

demand different models with different covariate effects. Com-

pared with other models that can also describe mixture data, two-

part models have the advantage of being intuitive and not making

strong assumptions on the unknown data generating mechanisms.

On the negative side, our literature review suggests that existing

two-part model studies may have the following limitations. First,

they only consider parametric models. Such models are limited in

that they cannot describe the subtle, nonlinear relationships

between covariates and CAC. Second, they assume that the forms

of the covariate effects are known. Such an assumption is usually

not sufficiently justified. Third, they often focus on the estimation
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property and do not provide a comprehensive description of the

models.

Building on existing studies [8], we investigate two-part CAC

models in this article. This study has been motivated by the clinical

importance of CAC and limitations of existing models. It advances

from published studies in the following directions. First, besides

parametric models, we also consider semiparametric models, with

which we may discover the nonlinear relationships between

covariates and CAC development. Second, multiple forms of

covariate effects are considered. Particularly, besides ordinary

nonproportional covariate effects, we also consider proportional

covariate effects, which have fewer parameters, can be more

accurately estimated, and may provide insights into the biological

mechanisms underlying CAC development. Third, besides

estimation, we also investigate the prediction performance of

various models and thus are able to provide a more comprehensive

description of those models.

Methods

The MESA Study
The MESA is a study of the characteristics of subclinical

cardiovascular disease (disease detected non-invasively before it

has produced clinical signs and symptoms) and the risk factors that

predict progression to clinically overt cardiovascular disease or

progression of the subclinical disease [1]. 6814 participants 45 to

84 years of age were recruited from six US communities from

2000 to 2002. Among them, 2619 are white, 1898 are African-

American, 1494 are Hispanic, and 803 are Asian – predominantly

Chinese descent. At recruitment, all participants were free of

clinically apparent cardiovascular disease. Each participant

received an extensive examination to determine coronary

calcification, ventricular mass and function, flow-mediated endo-

thelial vasodilation, carotid intimal-medial wall thickness and

presence of atherosclerotic plaque, lower extremity vascular

insufficiency, arterial wave forms, electrocardiographic (ECG)

measures, standard coronary risk factors, sociodemographic

factors, lifestyle factors, and psychosocial factors. Written consents

were obtained from all participants.

CAC was measured with electron-beam computed tomography

(EBT) at three field centers or multidetector computed tomogra-

phy (MDCT) at the other three field centers. Each participant was

scanned twice consecutively, and the results from the two scans

were averaged to provide a more accurate estimation. The amount

of calcium was quantified with the Agatston scoring method [3].

Calcium scores were adjusted with a standard calcium phantom

that was scanned along with the participant. This phantom makes

it possible to calibrate the degree of brightness between sites

and participants. Rescan agreement was found to be high with

both EBT and MDCT scanners. Interobserver agreement and

Figure 1. Histogram of log(1+CAC).
doi:10.1371/journal.pone.0012036.g001
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intraobserver agreement were found to be satisfactory (k = 0.93

and 0.90, respectively) [9].

The MESA study has been approved by the Human Subjects

Research Review Committee at University of Washington and all

six sites. Detailed information is available at the MESA website

http://www.mesa-nhlbi.org. Study presented in this article has

been approved by the Human Subjects Research Review

Committee at Yale University.

Two-part CAC Models
The distribution of CAC is highly skewed. We make the

logarithm transformation and study Y~ log (1zCAC). Figure 1

shows that, with probability ,0.5, Y~0. For Yw0, Y has a

continuous distribution. Denote X~(X1,:::,XK ) as the K covar-

iates of interest.

Consider two-part models, where in the first part, we model the

occurrence of a nonzero CAC value. More specifically, consider

Q{1( Pr (Yw0DX ))~h(X ),

where Q is the link function, Q{1 is the inverse of Q, and h(X ) is the

covariate effect. In the second part, consider

for Yw0, Y DX~h�(X )ze,

where h�(X ) is the covariate effect, and e is the random error.

We determine the link function Q using the techniques described

in [10] and find that the logistic link function, which has been

suggested in [11,12], is proper. We determine the distribution of

random error using the approaches described in [13] and find that

the normal distribution is proper. This is intuitively reasonable by

‘‘eyeballing’’ Figure 1. There are multiple possibilities for the

covariate effects, including:

(i) Parametric, proportional covariate effects:

h(X )~b0zb’X ; h�(X )~a0zt|b’X ,

where b0,a0 are the unknown intercepts, b is the unknown

length-K regression coefficients, and t is the unknown scale

parameter;

(ii) Parametric, nonproportional covariate effects:

h(X )~b0zb’X ; h�(X )~a0za’X ,

where b0,a0 are the unknown intercepts, b,a are the

unknown length-K regression coefficients, and there is no

proportionality constraint on b and a;

(iii) Semiparametric, proportional covariate effects:

h(X )~c0z
Xm

i~1

ciXiz
XK

i~mz1

hi(Xi);

h�(X )~a0zt|(
Xm

i~1

ciXiz
XK

i~mz1

hi(Xi)),

where c0,a0 are the unknown intercepts, c~(c1:::cm) is the

length-m unknown regression coefficients, hmz1:::hK are

the K-m unknown nonparametric covariate effects, and t is

the unknown scale parameter;

(iv) Semiparametric, nonproportional covariate effects:

h(X )~c0z
Xm

i~1

ciXiz
XK

i~mz1

hi(Xi);

h�(X )~a0z
Xm

i~1

~cciXiz
XK

i~mz1

~hhi(Xi),

where c0,a0 are the unknown intercepts, c~(c1:::cm) and
~cc~(~cc1:::~ccm) are the length-m unknown regression coefficients,

hmz1:::hK , ~hhmz1:::~hhK are the unknown nonparametric

covariate effects, and there is no proportionality constraint

on
Pm

i~1

ciXiz
PK

i~mz1

hi(Xi) and
Pm

i~1

~cciXiz
PK

i~mz1

~hhi(Xi).

Remarks: Parametric and semiparametric models. Models

(i) and (ii) are parametric, whereas models (iii) and (iv) are

semiparametric. There is a rich literature on the advantages and

disadvantages of parametric and semiparametric models [14].

Parametric models assume linear relationships between covariates (or

their transformations) and response variables. They are usually easy to

interpret, with the regression coefficients measuring the increase rates

of response variables with changes of covariates. In addition, they can

be easily estimated using many existing software and the estimates

usually have the desired root-n convergence rate. Statistical inference

can be easily conducted using likelihood-based methods. On the

negative side, the assumption of linear relationships can be limited and

subject to model misspecification. Semiparametric models, on the other

hand, allow nonlinear relationships between covariates and response

variables. Thus, they are able to describe more subtle data structure.

The tradeoff is that semiparametric models can be hard to estimate and

interpret. In addition, the estimates of nonparametric functions may

not have the desired root-n convergence rate. Moreover, inference with

semiparametric models may not be straightforward. Computationally

intensive methods, such as the bootstrap or jackknife, may be needed.

Of note, most existing studies assume parametric two-part models. In

this study, to comprehensively describe CAC, both parametric and

semiparametric models are considered.

Remarks: Proportional and nonproportional models.

Most existing two-part models share a similar spirit with models

(ii) and (iv) in that there is no constraint on the covariate effects

h(X ) and h�(X ). Unlike those models, models (i) and (iii) have a

proportionality constraint. That is, other than the intercepts, the

covariate effects h(X ) and h�(X ) differ only by a scale parameter.

Compared with nonproportional models, proportional models

have fewer unknown parameters and thus can be more accurately

estimated. This improved accuracy has been rigorously proved

and observed in numerical studies [11]. In addition, in

proportional models, covariates contribute to h(X ) and h�(X ) in

the same manner. Thus, it is reasonable to hypothesize that, when

the proportionality holds, the same biological process determines

whether the CAC is zero as well as its actual value if nonzero. This

may provide insights into the biological mechanisms underlying

CAC development. Moreover, under proportionality, the same

index h(X ) can be used to predict the whole range of CAC – from

zero to nonzero as well as progression of nonzero values. This may

simplify practice involving predicting the CAC values.

Remarks: Estimation and prediction. With a statistical

model, we are interested in its two closely related but distinct

properties. The first is the estimation property, where the goal is to

fully describe the relationship between covariates and response

variable. The second is the prediction property, where the goal is

to accurately predict values of the response variable for subjects

Modeling CAC in MESA
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that are not used in model building. Theoretically speaking, there

exists a true data generating model. This model not only provides

the best description of the relationship between covariates and

response but also has the best prediction performance. However,

in practice with finite sample data, the true model is not known,

and the models most suitable for estimation and prediction may

differ.

With a simple linear regression model (M1): Y~b1X1zb2X2ze,

we consider scenarios under which the models most suitable for

estimation and prediction are different and possible causes of the

difference. It is expected that similar arguments hold for more

complicated models. We have conducted a small scale simulation,

where we fix the values of X1 and b1. With the simulated data, we are

able to increase the magnitudes of b2 and X2, but keep b̂b1 (the estimate

of b1) statistically significant with p-value,0.05 (more details available

upon request).

We also consider the alternative model (M2): Y~b2X2ze. For

estimation, since the goal is to fully describe the relationship

between the covariates and response variable, model (M1) is

needed, while model (M2) is misspecified and improper. For

prediction, the goal is to minimize the squared error SE = (predicted

value - observed value)2 for subjects not used in model building. This

quantity can be decomposed into two components. The first is a

bias component, and the second is a variance component. Model

(M2) is misspecified, so it may have the bias component larger

than that of (M1). However, model (M2) has fewer unknown

parameters and can be more accurately estimated. So the variance

component for (M2) may be smaller than that for (M1). Thus,

because of the bias-variance tradeoff, the misspecified (M2) can be

more suitable for prediction. In studies of statistical models for

CAC, the two aspects of model fitting have not been well

distinguished, and the best estimation models have been used for

prediction without rigorous justification, or vice versa. Our study

shows that, for CAC in MESA, the models most suitable for

estimation and prediction are in fact different.

Estimation and inference methods
With a normally distributed random error, up to a constant, the

log-likelihood function for a single observation is

l~I(Y~0) log (1{w(h(X )))zI(Y=0) log (w(h(X ))){

I(Y=0)
(Y{h�(X ))2

2s2
:

Assume n iid observations. Denote Pn as the empirical measure.

With models (i) and (ii), we consider the maximum likelihood

estimates (MLE), which are defined as the maximizers of Pnl.
Under regularity conditions, the MLEs are n1=2 consistent and

asymptotically normally distributed. This result can be established

using the standard M-estimation theories.

With model (iii), we further assume that his are smooth

functions (or more specifically, spline functions). This assumption

has been motivated by the observation that the change of covariate

values affects CAC development in a continuous manner.

Following [15], we consider the penalized maximum likelihood

estimate (PMLE) defined as the maximizer of Pnl{l2
n

P
i J(hi):

Here, ln is the data-dependent tuning parameter and can be

selected using the approach described in [12,16]. h
(2)
i is the

second-order derivative of hi, and J(hi)~
Ð

(h
(2)
i (Xi))

2dXi is the

penalty on smoothness [15]. We assume that, (A1) X belongs to a

compact subset of RK ; c0, a0 and c are bounded; (A2) The

asymptotic variance matrix of the parametric parameters is non-

singular and component-wise bounded; and (A3) ln~O(n{2=5).

Under (A1)–(A3), the PMLEs of his are n2=5 consistent, and the

PMLEs of the parametric parameters are n1=2 consistent and

asymptotically normally distributed. This result can be proved

using the empirical processes techniques described in [17].

With model (iv), we adopt a similar estimation strategy

and consider the PMLE defined as the maximizer of

Pnl{l2
n

P
i J(hi){l2

n

P
i J(~hhi). Under conditions similar to

(A1)–(A3), the PMLEs of the nonparametric parameters are n2=5

consistent, and the PMLEs of the parametric parameters are n1=2

consistent and asymptotically normally distributed.

With parametric models (i) and (ii), inference can be based on

the asymptotic normality result and the Fisher information matrix.

However, with semiparametric models (iii) and (iv), such an

approach involves smoothed estimation and is very difficult to

employ. We propose the following bootstrap approach for

inference of all parameters in all models: (a) Fit the model and

compute the MLEs (PMLEs); (b) With the observed covariate

values, generate random errors from the normal distribution with

mean zero and variance ŝs2; (c) Generate the binary indicators

I(Y=0) using the logistic model. For those with Y=0, generate

the continuous Y values; (d) With the generated responses, re-

estimate the model; (e) Repeat steps (a)–(d) B (for example 500)

times. We estimate the variances of the MLEs (PMLEs) using the

variances of estimates generated using the bootstrap samples.

Results

Estimation Properties
We collect measurements on the following covariates, which

have been suggested as possibly associated with CAC in various

publications: gender (female is used as the reference group), race/

ethnicity (Caucasian, Chinese, African-American, and Hispanic;

Caucasian is used as the reference group), former smoker (binary

indicator), current smoker (binary indicator), diabetes (binary

indicator), SBP (systolic blood pressure), DBP (diastolic blood

pressure), age, BMI (body mass index), LDL cholesterol, and HDL

cholesterol. We consider the following parametric models: (i.1)

model (i) with linear effects for all covariates; (i.2) model (i) with

linear effects for all covariates plus quadratic effects for LDL and

HDL; (ii.1) model (ii) with linear effects for all covariates; and (ii.2)

model (ii) with linear effects for all covariates plus quadratic effects

for LDL and HDL. Models (i.1) and (ii.1) are more commonly

adopted in practice, whereas models (i.2) and (ii.2) have been

motivated by the nonproportional semiparametric model, i.e, the

‘‘biggest model’’, and suggested by a reviewer. In semiparametric

models (iii) and (iv), among the 13 covariates, 7 are binary, which

naturally have parametric effects. Our preliminary analysis also

suggests parametric covariate effects for SBP and DBP. Thus,

there are 9 parametric covariate effects and 4 nonparametric ones.

There are a total of six models considered.

For X1:::X9, covariates with parametric effects in all models, we

show the MLEs (PMLEs) in Table 1. For all covariates, their

estimates under different models have almost the same signs. Thus

the biological conclusions on whether they are positively or

negatively associated with CAC are the same in all models.

However, the magnitudes of the estimates may be considerably

different. For example, the estimates of the regression coefficients

for X2 in the linear parts are 20.151, 20.144, 20.291, 20.273,

20.141, and 20.285, respectively. For X10:::X13, covariates with

nonparametric effects in models (iii) and (iv), we show the estimates

and point-wise 95% confidence intervals in Figures 2–7. We note

that the lines intercept at the mean of X-axis since every fitted line

has been mean-centered for identifiability. In addition, estimates

under models (i) and (ii) are straight lines (i.e, parametric).

Modeling CAC in MESA
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Figures 2–7 show that, the estimates of the Age and BMI effects

under different models are reasonably close. It is interesting that

under models (iii) and (iv), the nonparametric estimates of the Age

and BMI effects are close to linear functions. However, the

estimates of the HDL and LDL effects under different models are

significantly different, with the HDL effect in models (i.2), (ii.2), (iii)

and (iv) and the LDL effect in models (i.2), (ii.2) and (iv)

significantly deviating from straight lines.

Among the six models, models (i.1)-(iii) are special cases of

model (iv). Table 1 and Figures 2–7 show that, the estimates under

model (iv) are considerably different from their counterparts under

models (i)–(iii). To further quantify whether the differences

between the estimates under model (iv) and those under the other

five models are significant, we consider the following bootstrap-

based likelihood ratio tests [16]. Consider, for example, the test

H0: model (iv) can be simplified as (i.1) versus H1: model (iv) cannot be

simplified.

We consider the likelihood ratio test statistic TML~

supH0
Pnl=supH0|H1

Pnl. Hypothesis testing using the bootstrap

approach consists of the following steps: (a) Fit the Null model; (b)

With the observed covariates, generate the random errors and Y
values; (c) With the generated responses, estimate the model.

Compute the test statistic TML; (d) Repeat steps (a)–(c) B (for example

500) times. An empirical p-value can be computed. We can see that,

this procedure is a byproduct of the inference procedure and does

not incur any additional computational cost. We conduct hypothesis

testing and find that all the five comparisons are significant with the

Bonferroni adjustment for multiple comparisons.

Based on the above results, we conclude that, to fully describe the

relationship between CAC and risk factors, the semiparametric nonproportional

model (iv) is needed. Figure 7 shows that, (a) the nonparametric age and

BMI effects are close to their counterparts under the alternative

models and may be simplified to parametric effects; (b) In both the

logistic and the linear parts of the model, the HDL effects are highly

nonlinear and have a ‘‘U’’ shape. When the values of the other

covariates are fixed, a moderate value of HDL corresponds to the

smallest probability of nonzero CAC as well as the smallest value of

CAC if nonzero. This study is among the first to identify such an

interesting relationship between HDL and CAC. The biological

implications of this finding are not clear and need further investi-

gation; and (c) The LDL effects also deviate significantly from linear

in both parts of the model. More specifically, it also has a ‘‘U’’ shape

in the linear part. However, the magnitude is very small. The LDL

effect is monotone, increasing in the logistic part, suggesting that a

higher level of LDL is associated with a higher probability of nonzero

CAC. This finding is consistent with the literature.

Prediction Properties
To evaluate the prediction performance, ideally, two indepen-

dent datasets (one training set and one testing set) from studies with

comparable designs are needed. We are not able to find a study fully

comparable to MESA. As an alternative, we consider the following

Monte Carlo-based approach. (a) Randomly split the data in to a

training set and a testing set with equal sizes; (b) Estimate the

unknown parameters using the training set only; (c) Make

predictions for subjects in the testing set. Specifically, for a subject,

first predict the probability of a nonzero CAC using the logistic

regression model. Dichotomize the predicted probability at 0.5 and

create the binary CAC status (zero or nonzero). If a nonzero CAC

status is obtained, predict its actual value using the linear regression

model; and (d) To avoid bias caused by an extreme split, repeat

Steps (a)–(c) 500 times. Compute summary statistics.

In Step 1, we use random partition to generate independent

training and testing sets. To avoid an extreme partition, multiple

partitions are carried out. In the prediction evaluation, we are

interested in the probability of correctly predicting the binary

CAC status (zero or nonzero) as well as the overall mean squared

error (MSE), which measures the ability to predict the actual CAC

values. Under the six models, the mean error rates for predicting

zero versus nonzero CAC are

0:2815 0:0063ð Þ, 0:2813 0:0067ð Þ, 0:2822 0:0063ð Þ,

0:2820 0:0062ð Þ, 0:2817 0:0065ð Þ, and 0:2823 0:0059ð Þ,

Table 1. Estimated regression coefficients (standard errors) for covariates with parametric effects in all models.

Covariate Model (i.1) Model (i.2) Model (ii.1) Model (ii.2) Model (iii) Model (iv)

Logistic Linear Logistic Linear Logistic Linear Logistic Linear Logistic Linear Logistic Linear

Gender:
Male(X1)

0.988
(0.063)

0.659
(0.042)

0.971
(0.063)

0.646
(0.047)

0.966
(0.072)

0.688
(0.085)

0.951
(0.073)

0.675
(0.075)

0.969
(0.062)

0.647
(0.047)

0.945
(0.074)

0.681
(0.073)

Race:
Chinese (X2)

20.227
(0.078)

20.151
(0.047)

20.217
(0.078)

20.144
(0.052)

20.140
(0.092)

20.291
(0.074)

20.134
(0.092)

20.273
(0.099)

20.211
(0.079)

20.141
(0.053)

20.119
(0.092)

20.285
(0.099)

Race: African
American (X3)

20.736
(0.065)

20.491
(0.052)

20.756
(0.065)

20.503
(0.046)

20.794
(0.070)

20.384
(0.100)

20.810
(0.071)

20.406
(0.080)

20.731
(0.066)

20.488
(0.047)

20.787
(0.070)

20.398
(0.081)

Race:
Hispanic (X4)

20.593
(0.065)

20.396
(0.046)

20.604
(0.064)

20.402
(0.042)

20.626
(0.073)

20.348
(0.081)

20.636
(0.074)

20.354
(0.084)

20.596
(0.067)

20.398
(0.044)

20.628
(0.071)

20.358
(0.085)

Former smoker
(X5)

0.352
(0.059)

0.234
(0.038)

0.354
(0.059)

0.235
(0.038)

0.368
(0.069)

0.211
(0.069)

0.366
(0.069)

0.218
(0.069)

0.354
(0.060)

0.236
(0.039)

0.370
(0.072)

0.213
(0.071)

Current smoker
(X6)

0.580
(0.080)

0.387
(0.054)

0.579
(0.080)

0.385
(0.054)

0.620
(0.091)

0.329
(0.101)

0.617
(0.091)

0.328
(0.101)

0.573
(0.083)

0.382
(0.056)

0.609
(0.094)

0.328
(0.096)

Diabetes (X7) 0.309
(0.058)

0.206
(0.041)

0.308
(0.057)

0.205
(0.041)

0.255
(0.071)

0.281
(0.066)

0.253
(0.070)

0.281
(0.066)

0.300
(0.057)

0.201
(0.041)

0.243
(0.070)

0.275
(0.068)

SBP (X8) 0.008
(0.002)

0.005
(0.001)

0.008
(0.002)

0.005
(0.001)

0.009
(0.002)

0.004
(0.002)

0.009
(0.002)

0.004
(0.002)

0.008
(0.002)

0.005
(0.001)

0.009
(0.002)

0.004
(0.002)

DBP (X9) 20.0009
(0.004)

20.0006
(0.002)

20.001
(0.004)

20.0006
(0.002)

20.003
(0.004)

0.003
(0.004)

20.003
(0.004)

0.002
(0.004)

20.001
(0.004)

20.0007
(0.002)

20.0034
(0.004)

0.0032
(0.004)

doi:10.1371/journal.pone.0012036.t001
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where numbers in the ‘‘()’’ are the standard deviations. The overall

MSEs are

5:8714 0:1277ð Þ, 5:8711 0:1339ð Þ, 5:9019 0:1291ð Þ,

5:9001 0:1247ð Þ, 5:8790 0:1299ð Þ and 5:9030 0:1235ð Þ:

The above results suggest that, despite their significantly

different estimation results, all models have similar prediction

performance. It is interesting to note that model (i.2), which

has parametric proportional covariate effects, has prediction

performance better than all of the other models (although the

differences are small). As model (i.2) is a submodel of model (iv),

this finding may seem counterintuitive. However, as discussed

Figure 2. Model (i.1): estimated covariate effects for age, BMI, HDL, and LDL. The solid line is the estimate. The dash-dotted lines are the
point-wise 95% confidence intervals. The y-axis is the value of the function.
doi:10.1371/journal.pone.0012036.g002

Modeling CAC in MESA

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e12036



above, it can be explained by the bias-variance tradeoff. Although

the prediction performance of model (i.2) is only slightly better

than that of the other models, it has fewer unknown parameters

than four of the alternative models and is easy to estimate. Thus,

we conclude that model (i.2) is the most suitable for the purpose

of prediction.

Discussion

In the above sections, interesting findings include the nonlinear

relationships found in model (iv) and the discrepancy between the

models most suitable for estimation and prediction. Examination

of Table 1 and Figures 3 and 7 suggests that, the estimates of the

Figure 3. Model (i.2): estimated covariate effects for age, BMI, HDL, and LDL. The solid line is the estimate. The dash-dotted lines are the
point-wise 95% confidence intervals. The y-axis is the value of the function.
doi:10.1371/journal.pone.0012036.g003
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following covariate effects differ considerably between models (i.2)

and (iv): Race:Chinese, DBP, HDL, and LDL. Among them, the

Race:Chinese and DBP effects are parametric. Under the two

models, the magnitudes of their estimates differ. However, the

signs are almost the same, suggesting similar qualitative conclu-

sions. The HDL and LDL effects are nonparametric, and even the

qualitative conclusions are different in the two models. For

example, in the logistic parts, the right end of HDL has a larger

effect in model (i.2), whereas the left end has a larger effect in

model (iv).

As discussed in Introduction, in the asymptotic sense when the

sample size goes to infinity, one single model should be the most

suitable for estimation and prediction. That is, the discrepancy we

observe should disappear. However, any practical data has a finite

Figure 4. Model (ii.1): estimated covariate effects for age, BMI, HDL, and LDL. The solid line is the estimate. The dash-dotted lines are the
point-wise 95% confidence intervals. The y-axis is the value of the function.
doi:10.1371/journal.pone.0012036.g004
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sample size. The MESA has a sample size of 6814, which is larger

than that of many studies. Thus, it may be reasonable to expect

similar discrepancy in other studies.

Models (i) and (iii) assume that the two covariate effects are

perfectly proportional, whereas models (ii) and (iv) assume no

proportionality. There are intermediate, partially proportional

models with some covariate effects being proportional and the

others not. Such models are as difficult to interpret and estimate as

nonproportional models and hence not pursued. Figure 7 suggests

that it may be possible to model the Age and BMI effects using

parametric functions. However, such simplification cannot change

the semiparametric, nonproportional nature of model (iv) and is

not pursued. Another possible prediction accuracy measurement

is the mean squared error for the positive CAC values only.

Figure 5. Model (ii.2): estimated covariate effects for age, BMI, HDL, and LDL. The solid line is the estimate. The dash-dotted lines are the
point-wise 95% confidence intervals. The y-axis is the value of the function.
doi:10.1371/journal.pone.0012036.g005
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However, the set of subjects with predicted positive CAC values is

different from the set observed. The MSE for positive CAC values

has ambiguity in its definition and is not pursued.

Our conclusions on the CAC models are based on the analysis

of MESA. There are a few other studies examining similar

cardiovascular problems, including the CHICAGO study [18], the

UIC database [19], the CARDIA study [20], and others. It is of

interest to analyze those datasets and examine if the results

obtained in this study hold in general. Such an endeavor will

require access to several non-public databases. In MESA, CAC is

measured with the Agatston score, which may not provide a full

description of coronary calcification. To comprehensively under-

stand coronary calcification, other measurements may need to be

considered.

Figure 6. Model (iii): estimated covariate effects for age, BMI, HDL, and LDL. The solid line is the estimate. The dash-dotted lines are the
point-wise 95% confidence intervals. The y-axis is the value of the function.
doi:10.1371/journal.pone.0012036.g006
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Coronary artery calcification is an important predictor of

cardiovascular disease events. Our literature review suggests

certain limitations of existing CAC modeling studies. In this

article, we analyze the MESA data and systematically investigate

various CAC models. Building on existing studies including [8,11],

we focus on two-part models, which are able to describe data with

a mixture distribution while being intuitive and easy to implement.

With the link function and distribution of random error

determined using existing techniques, we focus on the covariate

effects. Particularly, for both parametric and semiparametric, both

proportional and nonproportional models, we investigate the

estimation and prediction properties. We find that, to fully

describe the relationship between CAC and risk factors, model (iv)

is the most suitable. However, for predicting the response variable

Figure 7. Model (iv): estimated covariate effects for age, BMI, HDL, and LDL. The solid line is the estimate. The dash-dotted lines are the
point-wise 95% confidence intervals. The y-axis is the value of the function.
doi:10.1371/journal.pone.0012036.g007
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for subjects not used in estimation, model (i.2) is the most suitable.

The discrepancy between estimation and prediction models has

not been well discussed in the CAC literature. This study may be

the first step in understanding that. Although we focus on the CAC

models in MESA, the proposed models and analysis methodolo-

gies may have broader applications. In addition, we conjecture

that the conclusion may also hold for other cardiovascular disease

measurements and other datasets.
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