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Abstract
The Musical Instrument Digital Interface (MIDI) was readily adopted for auditory sensorimotor synchronization experi-
ments. These experiments typically use MIDI percussion pads to collect responses, a MIDI–USB converter (or MIDI–PCI
interface) to record responses on a PC and manipulate feedback, and an external MIDI sound module to generate auditory
feedback. Previous studies have suggested that auditory feedback latencies can be introduced by these devices. The Schultz
MIDI Benchmarking Toolbox (SMIDIBT) is an open-source, Arduino-based package designed to measure the point-to-
point latencies incurred by several devices used in the generation of response-triggered auditory feedback. Experiment 1
showed that MIDI messages are sent and received within 1 ms (on average) in the absence of any external MIDI device.
Latencies decreased when the baud rate increased above the MIDI protocol default (31,250 bps). Experiment 2
benchmarked the latencies introduced by different MIDI–USB and MIDI–PCI interfaces. MIDI–PCI was superior to
MIDI–USB, primarily because MIDI–USB is subject to USB polling. Experiment 3 tested three MIDI percussion pads.
Both the audio and MIDI message latencies were significantly greater than 1 ms for all devices, and there were significant
differences between percussion pads and instrument patches. Experiment 4 benchmarked four MIDI sound modules. Audio
latencies were significantly greater than 1 ms, and there were significant differences between sound modules and instru-
ment patches. These experiments suggest that millisecond accuracy might not be achievable with MIDI devices. The
SMIDIBT can be used to benchmark a range of MIDI devices, thus allowing researchers to make informed decisions when
choosing testing materials and to arrive at an acceptable latency at their discretion.
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Microcontrollers

The Musical Instrument Digital Interface (MIDI) is a digital
communication protocol for electronic musical instruments,
computers, and audio devices that allows them to communi-
cate between one another to produce music and sound effects
and to record responses. MIDI is, arguably, the most widely
used technical specification for digital musical instruments,
and it was popular even before it was first published
(International MIDI Association, 1983). Besides being used

by performers from Prince to present-day bands like Snarky
Puppy, MIDI instruments have commonly been used in sen-
sorimotor synchronization experiments to measure the timing
of actions and to generate auditory feedback (cf. Repp. 2005;
Repp & Su, 2013). In these experiments, participants aim to
synchronize their responses to an external stimulus (e.g., a
metronome or auditory sequence), and the timing of responses
relative to events (or beats) is recorded. Despite the wide use
and success of MIDI, the temporal latencies of the recorded
response timings and auditory feedback have rarely been
benchmarked (but see Mills, van der Steen, Schultz, &
Keller, 2015; Repp, 2010; Schultz & van Vugt, 2016) and
are rarely specified by the manufacturer. The aim of the pres-
ent study was to describe tools to benchmark the latencies of
several commercially available MIDI devices—namely, the
Schultz MIDI Benchmarking Toolbox (SMIDIBT). The
SMIDIBT affords the opportunity for researchers to measure
the timing error within MIDI devices (and configurations
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thereof), in order to make informed decisions regarding the
choice of experimental apparatus, sample sizes (and statistical
power, given said error), and interpretation of the results (e.g.,
negative mean asynchrony; see Repp, 2005).

Previous sensorimotor synchronization experiments have
used various combinations of MIDI response devices (e.g.,
pianos or percussion pads), MIDI-to-PC conversion interfaces
(e.g., MIDI–USB converters), and external MIDI sound mod-
ules to produce auditory feedback (see Table 1 and Fig. 1a).
Similarly, the computer software used to record responses and
control auditory feedback, such as FTAP (Finney, 2001) or
Max-MSP (Cycling’74, 2014), differs between studies.
Although it would be difficult to benchmark some of these
setups for various reasons (e.g., discontinued stock, financial
expense, custom designs/scripts, PC specifications), it is pos-
sible to provide a benchmarking toolbox so researchers can
test their own experimental setups. Here I present the
SMIDIBT for MIDI devices and test some of the most fre-
quently used devices or the newer (or similar) versions (see
Table 1). Since Schultz and van Vugt (2016) claimed that one
of the advantages of an open-source microcontroller response
device (other than sub-millisecond auditory feedback) is that
it is more affordable than MIDI-based setups, in the present

study I also examined the performance of several affordable
devices—namely, an Alesis PercPad ($199 US), a LogiLink
MIDI–USB cable ($20 US), and a MIDItech Pianobox ($90
US). I start by describing the hardware and software of the
SMIDIBT and exploring the limits of MIDI-based communi-
cation (Exp. 1). I then investigate some of the assumptions
surrounding the use of the MIDI protocols: specifically, USB
polling rates, the asserted 1-ms resolution of MIDI devices
(e.g., Large, Fink, & Kelso, 2002; Ravignani, Delgado, &
Kirby, 2016), and whether MIDI messages and audio output
are synchronous (see Maidhof, Kästner, & Makkonen, 2014).
The present study compared the latencies of the various MIDI
devices to the critical value of 1 ms, since this is the latency
assumed (and, perhaps, desired) in some experiments (e.g.,
Large et al., 2002; Ravignani et al., 2016). The primary aim is
to understand the hardware and software limitations that may
influence latencies when using individual MIDI devices or
chaining several MIDI devices, and show users how to mea-
sure these latencies themselves. To improve accessibility, I
have also included a step-by-step guide in the supplementary
materials (see the SMIDIBT Reference Manual) that contains
less technical descriptions aimed at novices who perform au-
ditory feedback experiments.

Table 1 List of the commercially available devices used in previous experiments and/or tested in the present study (demarcated with a *)

Type Device References

MIDI–USB interface LogiLink MIDI-USB* N/A

M-Audio UNO* Mills et al. (2015)

MIDI Man (MIDI Sport) Collyer et al. (1997); Schultz & van Vugt (2016)

Roland UM-ONE* Rogers et al. (2014)

MIDI–PCI interface Labway Soundboard D66* N/A

Sound Blaster Live PCI* Pecenka & Keller (2011); Pfordresher & Benitez (2007);
Pfordresher & Dalla Bella (2011);
Pfordresher & Kulpa (2011)

TerraTec TT Solo 1-NL* N/A

Percussion pad Alesis PercPad* Sadakata et al. (2008)

Roland Handsonic 20* (Roland Handsonic 10, 15) Hurley, Martens, & Janata (2014); Janata, Tomic, &
Haberman (2012); Mills et al. (2015); Pecenka &
Keller (2011); Schultz & van Vugt (2016)

Roland SPD6* London et al. (2009); Pfordresher & Benitez (2007);
Pfordresher & Dalla Bella (2011); Pfordresher &
Kulpa (2011); Repp (2010); Repp & Knoblich (2007);
Repp, London, & Keller (2005, 2012)

MIDI sound modules MIDItech Pianobox* N/A

Roland Mobile Studio Canvas SD-50*

(Edirol StudioCanvas SD-80)
Pfordresher & Benitez (2007); Pfordresher &

Dalla Bella (2011); Pfordresher & Kulpa (2011)

Yamaha TX81Z Schultz & van Vugt (2016)

MIDI piano sound modules Kawai CL25* N/A

Korg MicroX* N/A

Roland RD-250s Repp (2010); Repp & Marcus (2010)

Yamaha Clavinova CLP-150 Kaiser & Keller (2011); Pecenka & Keller (2011);
Repp & Keller (2010); Repp, London, & Keller (2012)
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MIDI-to-USB conversion and USB polling

The speed at which MIDI messages can be sent and read by
the USB port and other MIDI devices is determined by the
number of bits-per-second (bps), called the baud rate (or serial
transfer rate). For MIDI, this transfer rate is set to 31,250 bps,
and each MIDI message is three bytes. At this rate, Kieley
(1991) suggests that the temporal resolution of the MIDI sys-
tem is approximately 1 ms. Collyer, Boatright-Horowitz, and
Hooper (1997) corroborate this resolution, reporting a mean
MIDI message resolution of 1.04 ms (SD = 0.02 ms).
However, this resolution might be affected when MIDI mes-
sages are sent and received by different MIDI interfaces, such
as MIDI–USB interfaces. USB human interface devices
(HID) poll to receive bytes from external devices (Garney,
1996; Schultz & van Vugt, 2016); every few milliseconds
the serial port is sampled and, if new information is available,
the data in the buffer are read. The default polling rate is about
8 ms between reads on most systems and some devices come
with dedicated drivers to achieve lower polling rates. The
MIDI–USB specification is stated to transfer MIDI messages
using bulk endpoints, whereby the information does not poll,
per se, but is only sent or read when unallocated bandwidth on
the bus is available (Garney, 1996; Universal Serial Bus
Specification, 2000). Bulk transfers are generally used for
time-insensitive communication, because there is no guaran-
tee of a minimum or consistent latency (Peacock, 2010). There
has been some disagreement regarding whether bulk transfer

communication avoids the delays introduced by polling or,
instead, introduces different or more variable delays (Finney,
2016). In Experiment 2 I benchmarked the latency introduced
by MIDI–USB and conventional Peripheral Component
Interconnect (PCI) sound card interfaces, the latter requiring
some basic expertise in computer construction to install a PCI
card inside a computer case. I further tested the hypothesis that
MIDI–USB interfaces poll by comparing three MIDI–USB
devices with three PCI devices that do not rely on MIDI-to-
USB conversion.

MIDI percussion pads

MIDI percussion pads can be benchmarked in twoways. First,
the latency of the audio produced by the device itself can be
measured, as some experiments have presented feedback di-
rectly from the device (e.g., Ravignani et al., 2016). Second,
the latency of the MIDI message can be measured to bench-
mark the delay and variability of the recorded response rela-
tive to the actual response. To the knowledge of the author,
only two studies have benchmarked the performance of MIDI
percussion pads in isolation from MIDI–USB/MIDI–PCI de-
vices and/or MIDI sound modules (but see Repp, 2010, for
end-to-end latencies). Mills et al. (2015) reported a response
delay of approximately 5 ms for a MIDI response from a
Roland Handsonic 10, but the method used to benchmark
the device was not described. Schultz and van Vugt (2016)
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Fig. 1 Layouts of a typical MIDI setup (a) and of the SMIDIBT setups
that can be used to test the latencies of MIDI messages that are sent
through computers and MIDI serial devices (b), the latencies of MIDI
and audio from percussion pads (c), and the latencies of audio generated
by MIDI sound modules (d). Each of the three components that can be

sources of latencies in a typical MIDI setup is represented in panels b
(middle section of a typical MIDI setup), c (first section of a typical MIDI
setup), and d (final section of a typical MIDI setup). The OUT audio and
voltages can be compared in to her measure the veridical timing
between inputs and outputs



found that the Roland Handsonic 15 produced auditory feed-
back with significantly larger latencies than two Arduino-
based setups, but they did not report the latency of the MIDI
message itself. However, only two MIDI percussion pads were
tested in these two experiments, and both belonged to the
Roland Handsonic series. It is possible that other percussion
pads may have different latencies or greater sensitivity to verid-
ical responses. Here, three commercially available MIDI per-
cussion pads were tested: the Alesis Percussion Pad (PercPad),
the Roland Sampling Percussion Drumpad 6 (SPD6), and the
Roland Handsonic Hand Percussion Drumpad 20 (HPD20).
The SMIDIBT measured latencies using a force-sensitive resis-
tor (FSR) placed on the percussion pad. Three latencies were
measured: (1) between the FSR being pressed and the device’s
audio output, (2) between the FSR being pressed and the recep-
tion of theMIDImessage, and (3) between the audio output and
the reception of the MIDI message. The latter was examined to
assess whether the audio onset time is synchronous with the
MIDI message (see Maidhof et al., 2014).

MIDI sound modules

When auditory feedback is presented to participants in motor
experiments that use MIDI, the most common method is to use
a MIDI sound module. MIDI sound modules receive MIDI
messages that trigger audio through the use of MIDI sound
banks or, alternatively, a bank of patches (e.g., audio files of
.wav or .mp3 extensions) associated with an instrument or note.
MIDI sound banks come in several forms: The standard
GeneralMIDI specification (GM), a sound bank of 128musical
instruments (MIDI Manufacturers Association, 1996) and ex-
tended sound banks, such as Roland’s General Standard (GS),
Yamaha’s Extended MIDI (XG), and General MIDI 2 (GM2).
Various models of MIDI sound modules exist, each with their
own sound banks that conform to theMIDI standard. TheMIDI
specification (e.g., GM, GS, XG, or GM2) used in MIDI sound
modules is often specified by the manufacturer but might not
produce similar auditory feedback latencies between devices
that use the same sound module and sound bank. Moreover,
the latencies for audio output once the MIDI message is re-
ceived is not specified by the manufacturer and will vary be-
tween each sound on the basis of the temporal envelope. The
latency of MIDI sound module audio is difficult to test unless
one can accurately measure the time the MIDI message was
sent or can split the MIDI message and compare the arrival of
theMIDI message with the audio onset. The latter solution may
produce additional delays as the splitters might read the MIDI
message and resend the duplicated messages to two MIDI outs
or, alternatively, amplify the MIDI output when splitting the
output. To solve this problem, the SMIDIBT discussed herein
can acquire consistent and reliable MIDI sound module audio
latencies by using an Arduino microcontroller.

For practical reasons, in the present study I tested a selection
of sound modules, including some that have been used in sen-
sorimotor synchronization experiments (see Table 1). Two ded-
icated MIDI sound modules were tested: the one that is most
used in these experiments (Roland Mobile Studio Canvas SD-
50, or similar) and one that is less expensive (MIDItech
Pianobox). It should be noted that some MIDI instruments
contain an internal sound module that can be used to deliver
auditory feedback (see Pecenka & Keller, 2011; Repp, 2010;
Repp & Knoblich, 2007; Repp et al., 2005, 2012; Pfordresher
& Benitez, 2007; Pfordresher & Dalla Bella, 2011;
Pfordresher & Kulpa, 2011). Therefore, two MIDI key-
boards were also tested—namely, a Kawai CL25 and a
Korg MicroX synthesizer. Given that the MIDI protocol
is a consistent standard, latencies were not expected to
differ between devices that used the same (or similarly
named) sound banks within the same specification.

The Schultz MIDI Benchmarking Toolbox

The SMIDIBT contains schematics and code (Arduino IDE
and MATLAB) to facilitate the accurate benchmarking of
MIDI sound modules (and other MIDI devices) using an
Arduino MIDI setup in conjunction with any audio sound
card (i.e., digital mixer), analog input box, or oscilloscope.
These tools are designed to allow experimenters to assess
the audio latencies of their device and sound bank(s) prior to
commencing experiments. Because it is not possible to com-
prehensively test the latencies of every available configura-
tion, the present experiments focused on a selection of de-
vices and sound banks that share similar sound bank names
and, also, the sounds that demonstrate the lowest and
highest latencies for each device. I provide examples of
how the SMIDIBT can be used, and present a subset of
results from my own tests using an informed selection of
devices. Since it is near impossible to test every MIDI de-
vice available, the SMIDIBT and associated scripts used in
this experiment are freely available so that other researchers
can benchmark their own MIDI devices and report the la-
tency of their chosen apparatus and stimuli within their
articles.

The present study examined several different components
of a typical MIDI-based experimental setup. Experiment 1
measured the durations of several steps of MIDI message
transmission including the duration of sending a message,
the duration for a sent message to be received, the duration
of reading a message, and the total duration. Experiment 1
further served to validate the SMIDIBT as a tool to attain
sub-millisecond timestamps for MIDI devices. In
Experiment 2 I benchmarked the latencies introduced by dif-
ferent MIDI interface devices—specifically, threeMIDI–USB
devices and three PCI sound cards. This was conducted using
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the SMIDIBT route test and the FTAP loop test (Finney,
2001). Experiment 3 was designed to benchmark the audio
and MIDI latencies of three MIDI percussion pads using the
SMIDIBT. Finally, in Experiment 4 I assessed the auditory
feedback latency of MIDI sound modules and sound banks
using the SMIDIBT.

Experiment 1: Benchmarking tools

Experiment 1 benchmarked how long it takes an Arduino to
send, receive, and read MIDI messages in the SMIDIBT. I
further explored the possibility that the speed of MIDI mes-
sage processing is bottlenecked by the baud rate, by testing
four different baud rates: the MIDI-specified rate of 31,250
bps, 50% of this rate (15,625 bps), 150% of this rate
(46,875 bps), and 200% of this rate (62,500 bps). Moreover,
I tested two different software-based methods for receiving
MIDI messages to compare how different methods of parsing
MIDI messages may affect the latency. These tests serve as
references for how other MIDI devices might process MIDI
messages depending on different specifications. Because sup-
pliers do not provide details of the hardware or software used
to process MIDI messages, these tests simply show how the
Arduino can be used to send and receive MIDI messages and
approximate the delays for other devices. To approximate dif-
ferences between different printed circuit board (PCB) archi-
tectures and central processing units (CPUs), I also tested two
different Arduinos, namely, the Arduino Mega (16 MHz) and
the Arduino Due (84 MHz).

SMIDIBT hardware and software

The SMIDIBT requires up to two Arduino units, each
performing a different task. The Bsend Arduino^ sends the
MIDI messages (see Fig. 2a), and the Bread Arduino^ re-
ceives MIDI messages (see Fig. 2b). I used the Arduino
Mega and Arduino Due because both of these units have
more than one serial communication port—that is, more than
one pair of transmit (TX) and receive (RX) pins. This allows
USB communication to and from the Arduino that is inde-
pendent from the MIDI communication. The Arduino sent
and received MIDI messages through a five-pin MIDI con-
nector (CUI Inc.) that either sent MIDI messages from pin 14
(TX3; Fig. 2a) or received MIDI messages from pin 15 (RX3;
Fig. 2b). Duty cycle changes were sent from PWM pin 9 via a
separate headphone jack for each Arduino. The code used to
benchmark the send durations and read durations sends ana-
log triggers by changing the duty cycle of a PWM pin at the
beginning and end of the read messages (see Appendix 1).
For sending (send Arduino), the duty cycle changed from low
to high just before the three-byte MIDI message was sent, and
returned to low once the third byte had been sent. For reading

(read Arduino), the duty changed from low to high when the
first byte was identified as a MIDI command (144 = note
onset, 153 = drum onset, 128 = note offset) and returned to
low once the third byte had been read. These duty cycle
changes can then be read by any apparatus that can record
voltages, such as an audio sound card (i.e., digital mixer) or
an oscilloscope. Onsets and offsets (i.e., MIDI triggers) can
then be extracted through signal-processing techniques—in
this case, custom-made MATLAB scripts that are available
at the Basic and Applied NeuroDynamics laboratory website
(https://band-lab.com\smidib_toolbox). Furthermore, these
triggers can be used to measure the temporal delays of
throughput MIDI devices (e.g., MIDI–USB converters; see
Fig. 1b and Exp. 2), response devices (e.g., MIDI
percussion pads; see Fig. 1c and Exp. 3), and auditory feed-
back devices (e.g., MIDI sound modules; see Fig. 1d and
Exp. 4). Experiment 1 tested the latencies of sending and
receiving MIDI messages using the SMIDIBT in the absence
of these devices, to gain a better understanding of the MIDI
protocol and ensure that the SMIDIBT can benchmark with
sub-millisecond precision.
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Fig. 2 Schematic wiring diagrams for the Schultz MIDI Benchmarking
Toolbox setup. The component numbers correspond to (1) Arduino
Mega, (2) Breadboard, (3) MIDI connector, (4) audio jack, and (5) an
optocoupler (6N138). Electric wires are indicated by black (grounds), red
(power), green (MIDI signals), and blue (audio signals) wires. The top
panel (a) shows the Bsend Arduino.^ The green wire is connected to a
220-Ω resistor, and the red wire is connected to a 10-kΩ resistor. If using
an Arduino Due, connect the red wire to the 3.3-V pin instead of the 5-V
pin. The bottom panel (b) shows the Bread Arduino.^ The resistors from
left to right are 10 kΩ, 470 Ω, and 220 Ω. Note the direction of the black
diode (1N4148) on the far right, as it is unidirectional. This wiring
diagram will allow prospective users to precisely reproduce the setup
from the hardware components. This figure was created using fritzing
(Knörig, Wettach, & Cohen, 2009)

https://band-lab.com/smidib_toolbox


Design and hypotheses

The dependent variables were the duration of sending a MIDI
message (sendduration), thedurationbetween themessagebeing
sentandinitiallyreceived(transitduration), thedurationof receiv-
ing and reading a MIDI message (read duration), and the total
duration from the time just prior to sending the message until
the time at which the message has been read (total duration).
The independent variables were the baud rate (four levels:
15,625, 31,250, 46,875, 62,500 bps), PCB (two levels: Mega,
Due), and read method (two levels: single byte, all bytes). For
the read method, the Bsingle byte^ method read each byte as it
arrived, and the Ball bytes^methodwaited for all three bytes of a
MIDImessage before a byte was read (see the code inAppendix
1). I hypothesized that the Bsingle-byte^method would produce
shorter total durations than the Ball-bytes^ method, due to the
waiting time for all three bytes in the latter. I further hypothesized
that all durations would decrease as the baud rate increased.
Finally, I hypothesized that the total durationof sendingand read-
ingMIDImessages would occur within 1ms.

Method

MaterialsAudio data were collected on an Intel Xeon E5-1650
PC (3.5 GHz, 32 GB RAM) running Windows 7. Reaper
audio software recorded duty cycle changes (low, high) from
the two Arduinos of the same model (either Arduino Mega or
Arduino Due), and these signals were recorded by an M-
Audio M-Track mixer at a sampling rate of 44100 Hz,
allowing a resolution of 0.023 ms.

Procedure A Bnote on^ MIDI message was sent every 10 ms,
and a Bnote off^ MIDI message was sent 5 ms after the Bnote
on^ message, thus alternating between Bnote on^ and Bnote
off^ every 5 ms. This alternation was performed 4,002 times
in each trial, for 20 trials per condition. For reading in the
Bsingle-byte^ method, the duty cycle changed from low to
high when the first byte was identified as a MIDI command
(144 = note onset, 153 = drum onset, 128 = note offset) and
returned to low once the third byte had been read. For reading
in the Ball-bytes^method, the duty cycle changed from low to
high once all three bytes were available and the first byte was
identified as a MIDI command, and it returned to low once the
three bytes had been read.

Onset and offset extraction The trigger onsets (changes from
low to high) were estimated by the first moment that the nor-
malized voltage (ranging from – 1 to 1) surpassed a threshold
of 0.2 and then pinpointed by finding the point at which the
previous sample (n – 1) no longer had a lower voltage. The
trigger offsets (changes from high to low) were estimated as
the first moment that the normalized voltage fell below 0.015
and then pinpointed by finding the point at which the previous

sample (n – 1) no longer had a higher voltage. Send durations
were calculated as the difference between the trigger offset
and the trigger onset for the Bsend Arduino.^ Transit durations
were calculated as the difference between the trigger onset of
the Bread Arduino^ and the trigger offset of the Bsend
Arduino.^ Read durations were calculated as the difference
between the trigger offset and trigger onset of the Bread
Arduino.^ Total durations were calculated as the difference
between the trigger offset of the Bread Arduino^ and the trig-
ger onset of the Bsend Arduino.^

Results

Statistical analysis Separate repeated measures analyses of
variance (ANOVAs) were conducted for the dependent vari-
ables send duration, transit duration, read duration, and total
duration. The within-subjects factors were baud rate (15,625,
31,250, 46,875, 62,500 bps), method (single byte, all bytes),
and PCB (Arduino Mega, Arduino Due). ANOVAs were per-
formed using the ezANOVA function of the ez library
(Lawrence, 2015) for the R package of statistical computing
(R Core Team, 2013). F statistics, significance values, and
effect sizes (generalized eta squared; ηG

2) are reported. Pair-
wise contrasts were computed using generalized linear hy-
pothesis testing for Tukey contrasts, using the glht function
in the multcomp library (Hothorn, Bretz, & Westfall, 2008).
Themeans, standard deviations, and value ranges are provided
in Appendix 2.

Duration analyses For send durations, the main effect of de-
vice missed significance [F(1, 19) = 3.32, p = .08, ηG

2 = .01].
No other main or interaction effects reached significance (ps >
.21). These effect sizes were negligible and, as is shown in
Fig. 3a, the differences between devices were small (mean
difference = 0.0008 ms) and fell within the margin of error
of our recording equipment (0.023 ms). Thus, these data were
not subjected to planned comparisons. Overall, these results
indicate that the baud rate and (by design) the read method do
not significantly influence the speed at which MIDI messages
are sent. The PCB of the device sending aMIDI message does
not appear to have a significant influence on send durations.

For transit durations, all main effects were significant
(ps < .001, ηG

2s > .86), all two-way interactions were signif-
icant (ps < .001, ηG

2s > .46), but there was no significant three-
way interaction (p = .17). Pairwise comparisons examining the
significant interaction between device and method revealed
that the Bsingle-byte^ method demonstrated significantly
smaller transit durations than the Ball-bytes^ method for both
devices (ps < .001, mean difference = 0.63 ms). No significant
differences emerged between devices for either the Bsingle-
byte^ method or the Ball-bytes^ method (ps > .99). Planned
comparisons investigating the significant interaction between
baud rate and method revealed that transit durations decreased
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significantly as baud rates increased for both the Bsingle-byte^
(ps < .001) and Ball-bytes^ (ps < .001) methods. Moreover, the
Bsingle-byte^ method had significantly smaller transit dura-
tions than the Ball-bytes^ method overall (ps < .001; see Fig.
3b). Planned comparisons examining the significant interac-
tion between baud rate and device yielded significant differ-
ences between devices for each baud rate (ps < .001), with the
exception of the 15,625 baud rate (p = .10, mean difference =
0.002 ms). For both the Arduino Mega and Due, transit dura-
tions decreased significantly as baud rates increased
(ps < .001), with the exception of the 31,250 to 46,875 baud
rate (ps > .23, mean difference = .21 ms) and 46,875 to 62,500
baud rate (ps > .91, mean difference = .11 ms).

For read durations, I found significant main effects of baud
rate (ηG

2 = .999) and method (ηG
2 = .999), and significant inter-

action effects between baud rate and method (ηG
2 = .999), as

well as between device and method (ηG
2 = .02; Fs > 5.05,

ps < .04). Pairwise comparisons examining the significant inter-
action between device and method revealed that the Bsingle-

byte^ method demonstrated significantly higher read durations
than the Ball-bytes^ method for both devices (ps < .001, mean
difference = 0.63 ms). Note that this is the reverse trend to that
observed for transit durations. There were no significant differ-
ences between devices for the Bsingle-byte^ and Ball-bytes^
methods (ps = 1.00). Planned comparisons examining the signif-
icant interaction between baud rate and method revealed no sig-
nificant differences between baud rates for the Ball-bytes^ meth-
od (ps = 1.00), that read durations significantly decreased as baud
rates increased in the "single-bytes" method (ps < .001), and that
read durations for the Bsingle-byte^methodwere all significantly
longer than those for the Ball-bytes^ method (see Fig. 3c).

For total durations, all main effects were significant
(ps < .001, ηG

2s > .40), all two-way interactions were signif-
icant (ps < .001, ηG

2s > .05), and the three-way interaction was
not significant (p = .81). Pairwise comparisons examining the
significant interaction between device andmethod revealed no
significant differences (ps > .90). Planned comparisons exam-
ining the significant interaction between baud rate and method
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Fig. 3 Mean (lines) and range (shaded regions) for send duration (a),
transit duration (b), read duration (c), and total duration (d) for the
Arduino Mega (blue) and Arduino Due (red) using the Bsingle-byte^

method (solid lines) and the Ball-bytes^method (dashed lines) for all four
baud rates. The baud rate of 31,250 bps is the one used by default
for the MIDI protocol



revealed that all conditions were significantly different
(ps < .001). As is shown in Fig. 3d, the total durations were
longer for the Ball-bytes^ method than for the Bsingle-byte^
method and decreased as the baud rate increased. Planned
comparisons examining the significant interaction between
baud rate and device revealed no significant difference be-
tween devices for the 15,625 (p = 1.00, mean difference =
0.0008 ms) and 3,1250 (p = .25, mean difference = 0.01 ms)
baud rates, but significant differences for the 46,875 (p = .02,
mean difference = 0.018 ms) and 62,500 (p = .04, mean dif-
ference = 0.018 ms) baud rates. Again, total durations de-
creased significantly as baud rates increased for both devices.

To test the hypothesis that the total duration of sending and
readingMIDI messages is within 1 ms, one-sample, two-tailed t
tests against the test value 1 (representing 1 ms) were performed
on the total duration for each condition. At the lowest baud rate
(15,625 bps), total durations were significantly longer than 1 ms
(ps < .001) for both devices. At the default MIDI baud rate
(31,250 bps), the total durations for both devices were signifi-
cantly less than 1 ms for the Bsingle-byte^ method (ps < .001),
but were significantly longer than 1ms for the Ball-bytes^meth-
od (ps < .001). The two highest baud rates (46,875 and 62,500
bps) produced total durations that were significantly less than
1 ms for both devices and methods (ps < .001). Thus, MIDI
messages could only be sent and read within 1 ms for baud rates
of 46,875 bps and higher, or for the default MIDI baud rate
(31,250 bps) when the Bsingle-byte^ method was used.

Discussion

The results here demonstrated that both the transit and read
durations are affected by the read method and baud rate, in
turn affecting the total duration. Contrary to my hypothesis,
the send duration of MIDI messages was relatively unaffected
by differences in device and baud rate. However, the hypoth-
esis that read and transit durations are influenced by read
method and baud rate was supported. When MIDI messages
were read as they were received (instead of waiting for the
entire three-byte message), the transit and total durations im-
proved significantly. Conversely, read durations were larger
for the Bsingle-byte^ method than for the Ball-bytes^ method
because the read duration of the former included the time
waiting for the second and third bytes to be received (i.e., a
portion of the transit duration). The hypothesis that the
Bsingle-byte^ method would produce significantly shorter
transit and total durations than the Ball-bytes^ method was
confirmed. This result suggests that the Bsingle-byte^ method
produces lower latencies for receiving MIDI messages and
could be implemented by devices that read MIDI for superior
performance (if this method is not already implemented).
However, these performance gains were modest relative to
increasing the baud rate. The hypothesis that total durations
would decrease as the baud rate increases (i.e., the higher the

bps) was supported, with total latencies being almost halved
when the baud rate was doubled from the MIDI standard (i.e.,
from 31,250 to 62,500 bps). These results indicate that one of
the bottlenecks for high-speed MIDI communication is the
baud rate. In fact, the total duration for MIDI messages did
not consistently fall below the suggested 1-ms duration
(Finney, 2001; Kierley, 1991) until the baud rate was in-
creased to either 46,875 or 62,500 bps; the native MIDI baud
rate of 31,250 only fell below 1 ms for the Bsingle-byte^
method (although the range of 0.79 to 1.07 ms included 1
ms; see Appendix 2, Table 7). These results indicate that the
transmission duration of MIDI messages could be substantial-
ly improved by implementing adjustable baud rates for MIDI
devices. The average user would probably not be able to make
these changes to MIDI devices themselves, so it is up to the
developers of such devices to make this a built-in option.
Specifically, developers could include the option to select
higher baud rates within the device interface and ensure that
these baud rates are supported for future MIDI devices.

Experiment 2: MIDI–PCI and MIDI–USB
interfaces

Experiment 2 examined the transit duration for MIDI messages
from the time they are sent to the time they are first read when
being directed through a MIDI–PCI or MIDI–USB interface
(see Fig. 1b). The latency and variability of six MIDI interfaces
were tested, three of which wereMIDI–PCI interfaces and three
of whichwereMIDI–USB interfaces to test whetherMIDI–PCI
interfaces produce shorter and less variable latencies than
MIDI–USB interfaces. Finally, I tested whether MIDI–USB
devices poll—that is, is the USB port periodically sampled to
see if new information has arrived at intervals greater than 1ms.

Method

Materials The Bsend^ and Bread^ Arduino triggers (audio data)
were recorded using the same setup as Experiment 1. An Intel
Core i7-2670QM, 2.2 GHz, running Linux Ubuntu v3.2.0-23
was used to perform the FTAP loop test (Finney, 2001).

Procedure Latencies were measured using the SMIDIBT route
test, which sends 4,002 MIDI Bnote on^ and Bnote off^ mes-
sages and compares the sent time with the received time.
Experiment 1 indicated that transit durations were shorter for
the Bsingle-byte^ read method. Accordingly, that method was
used here to record the transit and total durations. As in
Experiment 1, sent and received times are demarcated, respec-
tively, by a change from high to low for the Bsend Arduino^
and by a change from low to high for the Bread Arduino.^ The
difference between these times indicates the transit duration
for the MIDI message. When routed through a MIDI–PCI or
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MIDI–USB, the transit duration indexes the latencies incurred
when a PC receives and sends a MIDI message. The onset and
offset times used to measure transit durations were recorded at
a sampling rate of 44100 Hz, allowing a temporal resolution
of 0.023 ms. The SMIDIBT route test was conducted 20 times
for each device (6) by interval (3) combination. The three
interval rates represented different information loads: 1, 2,
and 3 ms between sends. Moreover, a baseline was calculated
on the basis of the latencies produced when the MIDI mes-
sages were not routed through an interface but were, instead,
directly sent from the Bsend Arduino^ to the Bread Arduino^
(as in Exp. 1). To measure polling, the FTAP loop test was
used, which sends 4,002 MIDI messages through a MIDI
device that connects its own output to its input and records
the latency between the sent and received times (rounded to
the nearest millisecond). I then assessed whether the distribu-
tion of latencies was bimodal or unimodal. A bimodal distri-
bution would be indicative of polling, whereas a unimodal
distribution would indicate either that the data transfers were
not subject to polling or they polled at a rate that was distrib-
uted around one central latency value. The FTAP loop test was
conducted 20 times per device.

Design and hypotheses The dependent variables were the raw
latencies and the standard deviation (SD) of latencies for each
loop test. To better reflect the typical standard deviations
found in sensorimotor synchronization experiments, the SD
of each group of 40 consecutive events was calculated. The
FTAP loop test further included Hartigan’s distribution statis-
tic as a dependent variable for measuring multimodality for
each trial (Hartigan & Hartigan, 1985). The independent var-
iables were the interval (1, 2, 3 ms; SMIDIBT route test only1)
the device model (six levels: LogiLink MIDI–USB, M-Audio
UNO, Roland UM-ONE, Labway Soundboard D66, Sound
Blaster Live, TerraTec TT Solo 1-NL). The former three
models were MIDI–USB interfaces, and the latter three were
PCI devices. Following the suggestions of Finney (2001), I
hypothesized that the three MIDI–PCI cards would produce
lower and less variable latencies than the MIDI–USB inter-
faces. I also hypothesized that the latencies produced by the
threeMIDI–PCI cards would produce a unimodal distribution,
whereas the MIDI–USB devices would produce a multimodal
distribution if they poll (or a unimodal distribution if they do
not poll). I further hypothesized that the MIDI messages
would be read and sent within 1 ms.

Statistical analyses Since there were unequal variances be-
tween devices, the data were analyzed using linear mixed-

effects models (LMEM) with the fixed factors device and
interval and a random effect of repetition (20 levels), and
unequal variances were permitted across the levels of the de-
vice factor. The model was fit using the lme function from the
nlme library (Pinheiro, Bates, DebRoy, Sarkar, & R Core
Team, 2015) for the R package of statistical computing (R
Core Team, 2013), and unequal variances were implemented
using the varIdent model formula term. Pair-wise contrasts
were computed using generalized linear hypothesis testing for
Tukey contrasts, using the glht function in themultcomp library
(Hothorn et al., 2008). The LMEM was used to analyze the
dependent variables latency and variability. Bayes factors were
calculated to test the probability that the null hypothesis could
be accepted (less than 1) or rejected (greater than 1; Rouder,
Speckman, Sun, Morey, & Iverson, 2009). The Bayes factor is
an odds ratio, but I adopt the nomenclature used by Jeffreys
(1961) that values around 1 suggest Bno evidence,^ values
between 1 and 3 suggest Banecdotal evidence,^ those between
3 and 10 suggest Bsubstantial evidence,^ those between 10 and
30 suggest Bstrong evidence,^ those between 30 and 100 sug-
gest Bstrong evidence,^ and those over 100 suggest Bdecisive
evidence.^ Moreover, I represent evidence for the alternative
hypothesis as BFHA, and evidence for the null hypothesis as
BFH0 (i.e., 1/BF). The Bayes factor was computed using the
ttestBF function in the BayesFactor library (Morey, Rouder, &
Jamil, 2009).

Multimodality of latency distributions was assessed using
Hartigan’s dip test for unimodality (Hartigan & Hartigan,
1985), where values lower than .05 indicate unimodality and
values greater than 0.05 indicate multimodality. The FTAP
loop test only measures latencies to the nearest millisecond
and, with the resulting range of 0 to 3 ms, this provided up to
four bins per condition, thus failing to meet the recommended
number of bins 1 + log2(N), or about 13 bins for the 4,002 data
points produced in each loop test (see Sturges, 1926). Since
Hartigan’s dip test could not be performed on the rounded raw
data, a resampling method was employed whereby a uniform
distribution of random numbers between – .49 and .49 were
added to the raw data and any values less than zero were made
positive. This method was chosen because it reflects both the
possible latency values prior to rounding and the mean delay
between output scheduling calls reported by FTAP during the
FTAP loop test (0.49 ms). Moreover, a send/receive delay of
zero is both theoretically and practically impossible given that
MIDI messages require approximately 1 ms to be transmitted
(Kierley, 1991), as demonstrated in Experiment 1. A uniform
distribution was used because a normal distribution would
have favored a multimodal distribution. Thus, the use of a
uniform distribution is more conservative given our hypothe-
sis of multimodality for theMIDI–USB devices. Five different
random distributions were applied to the latencies of the six
devices for each of the 20 repetitions and the Hartigan’s dip
test statistic was calculated for each repetition by random

1 The actual intervals produced by the Arduino between consecutive triggers
are shown in Appendix 3 (Table 8). The mean intervals corresponded with the
intended intervals with 1.03, 2.03, and 3.05ms produced for intervals 1, 2, and
3 ms, respectively.
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distribution combination using the dip.test function in the
diptest library (Maechler, 2015). The resulting distribution
statistics were compared to the critical value of .05 using
one-sample two-tailed t tests.

Results

SMIDIBT route test In the 1-ms condition, the LogiLink device
was unable to complete any trial without an error, and the M-
Audio demonstrated a constant drift, with transit durations
monotonically increasing in each trial. For these reasons,
two LMEM analyses were conducted; one with the 1-ms in-
terval condition removed and another with the LogiLink de-
vice removed. For latencies, both the interactions excluding
the 1-ms interval [F(5, 480240) = 941.97, p < .001, ηG

2 = .99]
and excluding the LogiLink device [F(5, 480240) = 941.97,
p < .001, ηG

2 = .99] were significant (ps < .001), so I
proceeded with pair-wise comparisons. All conditions were
significantly different from each other, with the exception of
the following: The TerracTec and Labway were not signifi-
cantly different for the 2-ms and 3-ms intervals, and there
were no significant differences between the 2-ms and 3-ms
intervals for the LogiLink and Sound Blaster. As is shown in
Fig. 4, the 1-ms interval produced higher latencies than the
2-ms and 3-ms intervals for all devices (ps < .001). The 2-ms
interval only produced significantly larger latencies than the 3-
ms interval for the M-Audio (p < .001) and Roland UM-ONE
(p = .03). For the 1-ms interval (i.e., high information load), the
Sound Blaster had the lowest latency, followed by the Labway,
TerraTec, Roland UM-ONE, and M-Audio (ps < .001). For the
both the 2-ms and 3-ms intervals, the Labway and TerraTec had
the lowest latencies (ps = 1), followed by the Sound Blaster, M-
Audio, LogiLink, and Roland UM-ONE (ps < .001). These
results support the hypothesis that MIDI–PCI interfaces have
significantly lower latencies than MIDI–USB interfaces.
Finally, to test whether 1-ms latencies could be achieved, the
mean baseline value for each interval was subtracted from each
latency within that interval, and one-sample, two-tailed t tests
were performed against the test value 1. For all devices and
intervals, the latencies were significantly greater than 1 ms
(ps < .001, dfs = 19). These results fail to support the hypothesis
that 1-ms performance is achievable for either MIDI–PCI or
MIDI–USB interfaces. For descriptive statistics related to the
route test, see Appendix 3.

For variability, two LMEM analyses were conducted, sep-
arately excluding the 1-ms interval and then excluding the
LogiLink (as was performed for latencies). The LMEM with
the 1-ms interval excluded only showed a significant main
effect of device [F(5, 85) = 3587.47, p < .001, ηG

2 = .988],
whereas the LMEM with the LogiLink excluded demonstrat-
ed significant main effects of device and interval (ps < .001,
ηG

2s > .99), as well as a significant two-way interaction
[F(8, 280) = 19,823, p < .001, ηG

2 = .998]. On the basis of

these results, I proceeded with planned comparisons only be-
tween the 1-ms interval and the 2-ms and 3-ms intervals for
each device and between devices. Only the Labway, TerraTec,
and M-Audio had significantly greater variability for the
1-ms interval compared to the 3-ms interval (ps < .04), and
only the TerraTec and M-Audio had significantly greater var-
iability for the 1-ms interval compared to the 2-ms interval
(ps < .001; all other ps > .99). As is shown in Fig. 4 (bottom
panel), for the 1-ms interval, the PCI interfaces (Sound
Blaster, Labway, and TerraTec) all had the least variability
(ps > .10), followed by the Roland UM-ONE (ps < .001),

Behav Res (2019) 51:204–234 213

Fig. 4 Mean latencies (top panel) and variability (bottom panel) in the
SMIDIBT route test (Exp. 2). Error bars represent standard errors of the
means



whereas the M-Audio was the most variable (ps < .001). For
the 2-ms and 3-ms intervals, the Roland UM-ONE was sig-
nificantly more variable than all other devices (p < .001), and
no other devices demonstrated significant differences
(ps > .99). These results partially support the hypothesis that
PCI–USB interfaces are less variable than MIDI–USB inter-
faces; PCI–USB interfaces are only less variable than MIDI–
USB interfaces when under high information load—that is,
the 1-ms interval condition.

FTAP loop test For FTAP loop test latencies, there was a sig-
nificant main effect of device [F(5, 480240) = 941.97,
p < .001, ηG

2 = .99]. Pair-wise comparisons yielded significant
differences between devices (ps < .001), with the exceptions
of between the M-Audio UNO and the three MIDI–PCI de-
vices (ps > .83) and between the three PCI devices (ps > .86).
As is shown in Table 2, the three PCI devices and the M-
Audio UNO were significantly faster, followed by the
Roland UM-ONE, and the LogiLink MIDI–USB was the
slowest. Bayes factor t tests between the M-Audio UNO and
PCI devices suggested substantial evidence for the null hy-
pothesis for the Sound Blaster Live card (BFH0 = 8.12), and
extreme evidence for the null hypothesis for the TerraTec TT
and Labway Soundboard (BFH0s > 245.5). Bayes factor t tests
between the three PCI devices revealed strong evidence for the
null hypothesis between the Labway and Sound Blaster Live
(BFH0 = 17.54) and between the Sound Blaster Live and
TerraTec (BFH0 = 20.61), and extreme evidence for the null
hypothesis between the Labway and TerraTec (BFH0 = 249.83).

For variability, I observed a significant main effect of de-
vice [F(5, 120) = 7,865.6, p < .001, ηG

2 = .99]. Pair-wise
comparisons yielded significant differences between devices
(ps < .001), with the exception of the three PCI devices
(ps > .71). As is shown in Table 2, the Sound Blaster Live
card was the least variable, then the Labway and TerraTec,
then the M-Audio UNO and the Roland UM-ONE, and the
LogiLink was the most variable. Bayes factor t tests between
the three PCI devices revealed anecdotal evidence for the null
hypothesis between the devices (BFH0s < 2.65).

Regarding unimodality, all three PCI cards demonstrated
Hartigan’s distribution statistics that were significantly less
than the critical value for multimodality (.05) [ts < – 397.4,
ps < .001], indicating a unimodal distribution (see Fig. 5).
Conversely, all MIDI–USB devices showed Hartigan’s distri-
bution statistics that were significantly greater than the critical
value for multimodality (.05) [ts > 31.9, ps < .001], indicating
multimodal distributions. Note that none of the resampling
methods produced values approaching .05 for the PCI de-
vices, and that all of the resamples were greater than .05 for
the MIDI–USB devices (see Fig. 5).

Discussion

The results of Experiment 2 indicated that the three MIDI–
PCI cards have lower latencies than the MIDI–USB inter-
faces (except for the M-Audio UNO in the FTAP loop test).
Moreover, the MIDI–PCI cards were less variable than the
MIDI–USB interfaces but only when placed under high

Table 2 Descriptive statistics for FTAP loop latency, variability, and Hartigan’s D statistic

Dependent Variable Interface Device Mean SD Min Max

Latency (ms) USB LogiLink MIDI–USB 1.223 1.271 0 4

M-Audio UNO 0.964 0.989 0 3

Roland UM-ONE 1.001 1.023 0 4

PCI Labway Soundboard D66 0.963 0.799 0 2

Sound Blaster Live 0.958 0.795 0 2

TerraTec TT Solo 1-NL 0.964 0.799 0 2

Variability (ms) USB LogiLink MIDI–USB 1.271 0.001 1.269 1.273

M-Audio UNO 0.989 0.001 0.987 0.991

Roland UM-ONE 1.023 0.022 1.001 1.049

PCI Labway Soundboard D66 0.799 0.002 0.796 0.803

Sound Blaster Live 0.795 0.010 0.779 0.810

TerraTec TT Solo 1-NL 0.799 0.003 0.793 0.805

Hartigan’s D stat. USB LogiLink MIDI–USB 0.083 0.000 0.082 0.083

M-Audio UNO 0.100 0.001 0.099 0.103

Roland UM-ONE 0.107 0.018 0.086 0.126

PCI Labway Soundboard D66 0.005 0.001 0.003 0.008

Sound Blaster Live 0.005 0.001 0.003 0.009

TerraTec TT Solo 1-NL 0.005 0.001 0.003 0.010
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information load (i.e., the 1-ms interval of the SMIDIBT
route test and in the FTAP loop test). I also found support
for the hypothesis that the MIDI–USB interfaces poll as
suggested by the multimodal distributions given by the
latencies these devices and further corroborated by the
lack of polling for the PCI cards. These results support
the statements of Finney (2001) that suggested that
MIDI–PCI cards produce smaller latencies than alternative
options. Polling of the MIDI–USB devices could be a driv-
ing factor of the poorer performance of these devices as
compared to MIDI–PCI devices. In the SMIDIBT route
test, latencies were significantly above the 1-ms resolution
reported by Finney (2001), regardless of the interval or
interface type. In the FTAP loop test, the average sub–mil-
lisecond latencies reported by Finney were replicated here
for the MIDI–PCI cards, and also for the M-Audio UNO.
However, the latency values for the MIDI–PCI cards
ranged from 0 to 2 ms, the lower limit being theoretically
impossible, given that serial MIDI messages are not instan-
taneous (Kierley, 1991), and the upper limit remaining
above the within-1-ms resolution that is sometimes as-
sumed for MIDI interfaces. Thus, even using nonpolling
MIDI–PCI devices does not consistently produce sub-
millisecond latencies when recording responses, and

MIDI–PCI interfaces are only significantly less variable
than MIDI–USB interfaces under high information load.

The present study only involved FTAP software because it
had been found to produce lower and less variable latencies
than Max/MSP in a previous experiment (Schultz & van
Vugt, 2016). Other programs are available (e.g., Max/MSP,
Python) with which one could make custom scripts for parsing
MIDI messages. Since there are no standard scripts for parsing
MIDI messages using these programs, there could be variations
in the latencies produced by the different scripts. Future studies
could use the SMIDIBT to examine differences between cus-
tom scripts and various software packages used to parse MIDI
messages. Moreover, the effect of different computer operating
systems on MIDI latencies could be benchmarked using cross-
platform software, such as Max/MSP (available for Windows
or Macintosh OS) or Python (available for Windows,
Macintosh, or Linux OS).

Experiment 3: MIDI percussion pads

In Experiment 3 I investigated the audio and MIDI laten-
cies that occur when a MIDI percussion pad is struck by a
finger (see Fig. 1c). To establish the veridical onset times of
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responses and auditory feedback in each setup, I recorded
finger onset times using a force-sensitive resistor (FSR)
attached to the drum pad (as in Schultz & van Vugt,
2016). Response onsets (i.e., FSR voltage changes), per-
cussion pad audio onsets, and MIDI trigger onsets from
the Bread Arduino^ were recorded simultaneously in a syn-
chronized manner using an external audio sound card. The
sound card recorded voltage readings from the FSR, on
which participants tapped. Auditory feedback and MIDI
messages from the various MIDI percussion pad devices
were also captured by the sound card. Because Schultz
and van Vugt (2016) demonstrated that harder taps resulted
in significantly lower latencies and less variability of the
auditory feedback asynchrony for the MIDI percussion
pad, all taps were performed with a hard force. Note that
the aim of Experiment 3 was to show that the SMIDIBT can
be used to benchmark the audio and MIDI latencies of
percussion pads; missed and duplicate responses for these
devices and the results of different tapping forces were
beyond the scope of this study.

Design and hypotheses

The dependent variables were the asynchronies between (1)
the response onset and the audio onset, (2) the response onset
and the Bread Arduino^ onset (i.e., the MIDI message recep-
tion time, excluding the read time), and (3) the audio onset and
the Bread Arduino^ onset. The independent variable was de-
vice, consisting of the three MIDI percussion pads—namely,
the Alesis Percussion Pad (PercPad), the Roland Sampling
Percussion Drumpad 6 (SPD6), and the Roland Handsonic
Hand Percussion Drumpad 20 (HPD20). These devices were
chosen because the former represents a less expensive percus-
sion pad (US $199), and the latter two devices represent the
percussion pads used in previous sensorimotor synchroniza-
tion experiments (see Table 1) but are considerably more ex-
pensive; the SPD6 has been discontinued, but the SPD-SX has
a manufacturer’s suggested retail price of US $1,000, and the
HPD20 has a recommended retail price of US $1,049. On the
basis of the previous performance of percussion pads (Mills
et al., 2015; Schultz & van Vugt, 2016), I hypothesized that
both the audio andMIDI latencies would be significantly larg-
er than 1 ms and that the audio and MIDI onsets would occur
asynchronously. Regarding percussion pad devices, it was hy-
pothesized that some devices might be more reliable than
others (i.e., lower latencies, less variability), due to differences
in hardware and software configurations that are unspecified
by the manufacturer.

Method

Materials Experiment 3 used the same equipment as the
previous two experiments, with the exception that a

Focusrite Scarlett 18i8 mixer was used to synchronize
and record the responses, audio, and Bread Arduino^ sig-
nals.2 Response onsets were recorded using an Interlink
square FSR (3.81cm) powered by an Arduino UNO R3
with the direct voltages sent to an audio jack (see Schultz
& van Vugt, 2016; van Vugt & Schultz, 2015). Although
Experiment 1 had shown no significant differences be-
tween the Arduino Mega and Due, the Bread Arduino^ of
the SMIDIBT was an Arduino Due (see Fig. 2), which has
a faster clock speed (84 MHz). The FSR was placed on the
center of the bottom right (i.e., one of the largest drum
surfaces) of each percussion pad. The MIDI onsets of the
percussion pads were delivered from the MIDI OUT port
of the percussion pad to the MIDI IN of the Bread
Arduino,^ and the percussion pad audio was sent from
the mono audio out port. The FSR voltages, Bread
Arduino^ triggers, and auditory signals were measured by
the Focusrite mixer at a sampling rate of 44100 Hz. The
voltage changes produced by applying pressure to the FSR
were simultaneously recorded by the mixer in order to syn-
chronize responses with the auditory feedback.

Auditory stimuli Each percussion pad comes with a range of
audio patches. For this reason, I tested several patches for
each percussion pad, excluding those that were sound effects,
symbols, or instruments with no clear onset or offset (e.g.,
rain sticks, wind chimes, vibraslap). Moreover, because the
HPD20 contains about 850 patches, only a selection of dis-
similar patches were tested, and duplicate sounds (i.e., vari-
ations of the same instrument) and most Brim hits^ were
excluded. For tonal percussion instruments, only those with
the highest pitch were chosen. As I stated earlier, the aim of
Experiment 3 was not to exhaustively test all MIDI instru-
ment patches, but was instead to measure MIDI latencies and
introduce the SMIDIBT so that researchers can test the audio
and MIDI latencies in their own devices. To optimize re-
sponse detection by the percussion pad and make audio onset
detection easier, the devices were configured such that all
effects and reverb were turned off, sensitivity levels were
set to maximum, and threshold levels were set to minimum.
The HPD20 and SPD6 also contained options for controlling
the audio output that were implemented; the velocity curve
was set to BLoud2^ and BLoud^ (high volume from the out-
set for every response) for the HPD20 and SPD6,

2 The Focusrite mixer was used because it had aMIDI IN port, and originally I
planned to record MIDI onsets using the MIDI IN of the mixer. However, I
discovered that MIDI signals were recorded with different latencies between
two different audio mixers and also between different brands of recording
software. Thus, I decided only to report the data for the MIDI onsets obtained
by the Bread Arduino^ of the SMIDIBT. A full test of audio mixers and audio
recording software would be a valuable contribution to research that records
MIDI signals using such hardware and software, but it is outside the scope of
the present study. There is, however, no a priori reason to expect that audio
mixers would differ in their ability to synchronize auditory signals.
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respectively. For the HPD20, the trigger mode was set to
BShot^ (short duration), and muffling (i.e., reducing the
sound envelope tail) was set to maximum (100).

Results

Onset extraction Voltage changes from the FSR and audio
onsets were extracted using a custom-made MATLAB script
(available from https://band-lab.com/smidi_toolbox). An
FSR onset was measured as the time for which the
normalized amplitude (range – 1 to 1) exceeded .02 and
another onset was not detected until 60 ms after the
amplitude had descended below – .02 (indicating FSR
depression). For each FSR onset, the corresponding audio
onset was the first sample at which the absolute normalized
amplitude exceeded 0.1. To further aid in audio onset
extraction, the data were smoothed such that each sample of
the audio signal contained the maximum value of the
preceding 44 samples (approximately 1 ms), except for the
first 44 samples of each recording, in which no onsets
occurred.3 MIDI onset times were measured using the
SMIDIBT Bread Arduino^ method, as in Experiment 1.
Any responses that produced no auditory signal or MIDI
note onset within 20 ms after the FSR onset were discarded.
Data collection continued until at least 200 audio onsets had
been extracted for each audio patch tested.

Statistical analysis Due to the large number of audio patches
tested and the fact that these patches likely varied between
instruments, I do not present all individual pairwise compari-
sons between these instruments. Instead, the means, standard
deviations, ranges, standard errors of the means, and 95% con-
fidence intervals are provided in the files associated with
Supplementary Materials 2, 3 and 4, and I only examine the
audio that provided the lowest and highest latencies for each
device. To deal with the problem of unequal data points and
variances, a LMEM was fit to the data, with the fixed factors
latency group (two levels: lowest latency, highest latency) and
device (three levels: PercPad, HPD20, SPD6), and the random
factor response (approximately 200 levels). I allowed unequal
variances across the levels of device and latency group, which
was decided on the basis of visual observation that the residuals
were highly nonhomogeneous for the various devices and in-
struments. Themodel was fit using the lme function of the nlme
library (Pinheiro et al., 2015) for the R package of statistical
computing (R Core Team, 2013), and unequal variances were

implemented using the varIdent model formula term. The
LMEM was used to analyze all dependent variables.

FSR-to-audio latencies Figure 6a shows histograms of the
FSR-to-audio latencies for all instruments and devices. For
the PercPad, the instruments with the lowest and highest la-
tencies were the BE Snare Hex^ and BTabla High,^ respec-
tively. For the HPD20, the instruments with the lowest and
highest latencies were BClap 1^ and BBendir Harm,^ respec-
tively. For the SPD620, the instruments with the lowest and
highest latencies were the B808 Kick 1^ and B808 High Tom
1,^ respectively. I found significant main effects of device
[F(2, 1510) = 5,308.32, p < .001, ηG

2 = .81] and latency
group [F(1, 1510) = 4,691.26, p < .001, ηG

2 = .74], as well
as a significant interaction between device and latency group
[F(2, 1510) = 1,196.59, p < .001, ηG

2 = .50]. Pair-wise com-
parisons revealed significant differences between all devices
and latency groups (ps < .001), with the exception of the
lowest-latency instrument of the HPD20 and the highest-
latency instrument of the SPD6 (p = .15). As is shown in
Fig. 6d, the SPD6 demonstrated the lowest latencies overall,
followed by the HPD20, then the PercPad. Similarly, the
difference between the lowest- and highest-latency instru-
ments was smallest for the SPD6, followed by the HPD20,
and then the PercPad. One-sample, two-tailed t tests against a
test value of 1 (representing 1 ms) revealed that all latencies
were significantly greater than 1 ms (ps < .001, dfs = 200).
Thus, the hypothesis that the latency of auditory feedback
after a response would be greater than 1 ms was supported.

FSR-to-MIDI latencies Figure 6b shows histograms of the
FSR-to-MIDI latencies for all devices and instruments.
There was a significant main effect of device [F(2, 55854)
= 24,728.90, p < .001, ηG

2 = .97]. Pair-wise comparisons
revealed significant differences between all devices
(ps < .001). As is shown in Fig. 6e, FSR-to-MIDI latencies
were shortest for the SPD6, followed by the HPD20, and the
PercPad produced the highest latencies. The results indicate
that devices differ in the speed at which MIDI messages are
sent following a response. To test the hypothesis that MIDI
messages would be sent within 1 ms of a response, one-
sample, two-tailed t tests were performed against the test
value of 1. All devices demonstrated FSR-to-MIDI latencies
that were significantly greater than 1 ms (ps < .001). Thus,
the hypothesis that MIDI messages would be sent more than
1 ms after a response was supported.

MIDI-to-audio latencies Figure 6c shows histograms of the
MIDI-to-audio latencies for all devices and instruments.
Regarding the instruments with the lowest and highest laten-
cies for each device, significant main effects emerged for de-
vice [F(2, 1479) = 27,943.58, p < .001, ηG

2 = .60] and latency
group [F(1, 1479) = 127.81, p < .001, ηG

2 = .62], as well as a

3 Because several methods for onset detection exist, the raw data are available
upon request. Here I measured the best approximation of the audio onsets,
based on the voltages of the auditory signal. However, the subjectively per-
ceived temporal loci of the onset—that is, the perceptual center (Marcus,
1981)—would likely differ between the audio patches. This avenue of research
was beyond the scope of the present experiment.
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significant interaction between device and latency group [F(2,
1479) = 4,057.97, p < .001, ηG

2 = .55]. Pair-wise comparisons
revealed significant differences between all devices and laten-
cy groups (ps < .001). As is shown in Fig. 6f, all devices and
instruments showed positive latencies, with the exception of
the lowest-latency instrument for the HPD20. This indicates
that, for the SPD6 and PercPad, the MIDI message was sent
(and received) prior to the production of audio. As is shown in
Fig. 6c, the HPD20 tended to produce the audio before the
MIDI message was sent (and received), and the highest-
latency instrument for this device is not representative of the
general performance for the instrument of the HPD20.
Interestingly, the SPD6 demonstrated an opposite trend from

all other devices, so that the audio for the instrument with the
lowest latency was more synchronous with the MIDI signal
than that for the instrument with the highest audio latency.
This result indicates that the MIDI signal latency might also
be affected by the MIDI instrument playing on the actual
device.4 Overall, these results indicate that the audio onset is

4 The descriptive and inferential statistics for FSR-to-MIDI latencies in
Supplementary Material 2 further support this proposition, with large differ-
ences between the ranges for the various instruments within devices. However,
it would be impossible to know the precise source of these differences without
first examining the software and code operating within each device.
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Fig. 6 Left column: Histograms of the latency between the FSR and
audio (a; audio onset minus the FSR onset), the FSR and MIDI
received trigger (b; MIDI trigger onset minus the FSR onset), and the
audio and MIDI trigger (c; audio onset minus the MIDI trigger onset).
Right column: Latencies for instruments with the lowest and highest

latencies for all drum pad devices. (d) Latencies between the FSR and
audio (audio onset minus the FSR onset). (e) Latencies between the FSR
andMIDI trigger (MIDI trigger onset minus the FSR onset). (f) Latencies
between the audio and MIDI trigger (audio onset minus the MIDI trigger
onset). Error bars represent standard errors of the mean



asynchronous with the MIDI onset and that devices differ in
how they prioritize the audio and MIDI signals.

Discussion

In Experiment 3 I examined three MIDI percussion pads.
In line with my hypothesis (based on previous experi-
ments that had tested MIDI percussion pads), none of
the MIDI percussion pads produced MIDI signals or au-
dio consistently within 1 ms of a response. The SPD6
produced the lowest MIDI latencies but still had a mean
latency of 3.35 ms. The PercPad produced the highest
latencies, and since it was the least expensive of the de-
vices by several hundred US dollars, this suggests that
the more expensive commercially available MIDI percus-
sion pads tested here provide superior performance.
Overall, these results indicate that millisecond resolution
may not be achievable when collecting responses with
MIDI percussion pads. The SMIDIBT could be used to
determine whether such a device exists and can be used
to benchmark any MIDI percussion pad or other MIDI
device that provides a MIDI Bout^ port. Future research
could investigate the reliability of MIDI percussion pads
for accurately recording responses without missing re-
sponses or recording duplicate responses, and also exam-
ine the effects of different tapping forces (see Schultz &
van Vugt, 2016).

Experiment 4: MIDI sound modules

Another possible source of delay for presenting response-
triggered auditory feedback using MIDI is the sound
module that receives the MIDI message and generates
the feedback (see Fig. 1d). In Experiment 4 I investigat-
ed the audio latencies of several MIDI sound modules
and a subset of available instruments—specifically, the
instruments that produced the lowest and highest laten-
cies, and two instruments that shared a common label
between all devices.

Design and hypotheses

The dependent variable was the asynchrony between the
Bsend Arduino^ MIDI trigger offset and the audio onset.
The independent variables were the device and latency
group. Statistical analyses were not performed on all of
the data due to the large number of instruments within
each device, and the fact that these sounds might not be
equivalent between devices. Instead, these data are re-
ported in full in the file associated with Supplementary

Material 5; as well as the lowest and highest latencies
were analyzed, and the only two instruments that were
common for all sound modules and assumed to be the
original GM standard. I hypothesized that devices would
differ in the auditory feedback latencies for both the
lowest- and highest-latency instruments. I further hy-
pothesized, on the basis of the assumption that the
two MIDI instruments should be of the GM standard,
that devices would produce similar latencies (i.e., the
null hypothesis) for each of the GM instruments tested
(harpsichord and vibraphone).

Method

Materials The materials were identical to those used in
Experiment 3. The MIDI sound modules that were test-
ed were two independent sound modules, the Roland
Mobile Studio Canvas SD-50 (R-SD50) and the MIDI-
Tech Pianobox (MT-PB). These two devices were cho-
sen because the former represents what previous senso-
rimotor synchronization experiments have used (see
Table 1), and the latter represents a less expensive op-
tion (approximately US $90 for the same model, but
renamed the BMIDIPlus S-Engine^). The R-SD50 uses
the Roland GS MIDI, and the MT-PB uses the standard
GM. Since some researchers have used the sound mod-
ule integrated into piano keyboards (see Table 1), I also
examined two keyboards—namely, the Korg Micro X
synthesizer (K-MX) and a Kawai CL25 Digital Piano
(K-CL25), both of which contain GM sound banks that
were examined here.

Procedure For each instrument of each device, 201 repeti-
tions were performed and the first onset was excluded
(some devices produced the previous instrument on the
first onset after a device change). Each sound had a 20-
ms duration, but due to differences in sound modules,
some sounds continued beyond the designated offset, de-
spite the fact that reverb effects were turned off. As such,
a delay of 3,607 ms was used between onsets, to ensure
that the previous sound had ended before the next onset
commenced. Any instrument that continued to play at the
start of the next instrument was removed from the analy-
sis. The same audio onset extraction method was used as
in Experiment 3. It should be noted that the MT-PB pro-
duced a consistent buzz, and for all devices, some instru-
ments were too quiet to accurately allow for detecting
onsets above the baseline noise. For this reason, instru-
ments for which the onset detection algorithm failed (on
the basis of visual observations of the plotted data) were
excluded from further analysis. The Bsend Arduino^ MIDI
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trigger offsets were extracted in the same way as in
Experiments 1 and 2.

Results

Statistical analysis As in Experiment 3, I do not present
analyses on all of the instruments, and instead the means,
standard deviations, ranges, standard errors of the means,
and 95% confidence intervals are provided in a .csv file,
referenced in Supplementary Material 5. Two analyses
were performed: In the first, I only examined the audio
that provided the lowest and highest latencies for each
device. In the second, I only analyzed the two instruments
that shared an identical name between all devices—name-
ly, the harpsichord and vibraphone (but see the
Supplementary Material 5 file for descriptive statistics
for other instruments with similar names). For the first
analysis, an LMEM was fit to the data, with the fixed
factors latency group (two levels: lowest latency, highest
latency) and device (four levels: K-CL25, K-MX, MT-PB,
R-SD50), and the random factor trigger (200 levels). The
same LMEM was fit in the second analysis, but replacing
the fixed factor latency group with instrument (two levels:
harpsichord, vibraphone). I allowed unequal variances
across the levels of device on the basis of the visual ob-
servation that the residuals were nonhomogeneous for the
four devices.

MIDI-to-audio latencies The instruments identified as hav-
ing the lowest and highest mean latency for each device
are shown in Table 3. Descriptive and inferential statistics
for all devices and instruments are provided in the
Supplementary Material 5 file. There were significant
main effects of device [F(3, 1393) = 49,055.0, p < .001,
ηG

2 = .61] and latency group [F(1, 1393) = 61,537.0,
p < .001, ηG

2 = .97], as well as a significant interaction

between device and latency group [F(3, 1393) = 62,230.0,
p < .001, ηG

2 = .73]. Pair-wise comparisons revealed
significant differences between all combinations of de-
vice and latency group (ps < .001). The interaction be-
tween device and latency group reflected that the differ-
ence between the lowest and highest latencies was
smallest for the K-CL25, followed by the MT-PB and
then the K-MX, and the largest difference was shown
by the R-SD50. As is shown in Fig. 7a, the K-MX
produced the lowest latency, followed by the R-SD50,
then the K-CL25, and finally the MT-PB. One-sample
two-tailed t tests against the test values 1 (representing
1 ms) revealed that the audio latencies for all devices
and latency groups were significantly greater than 1 ms
(ps < .001). This result fails to support the hypothesis
that auditory feedback can be delivered by MIDI sound
modules within 1 ms.

The latencies demonstrated by the harpsichord and vi-
braphone for each device are shown in Fig. 7b. Significant
main effects of device [F(3, 1393) = 63340.0, p < .001, ηG

2

= .94] and instrument [F(1, 1393) = 39,555.0, p < .001, ηG
2

= .87] emerged, along with a significant interaction be-
tween device and latency group [F(3, 1393) = 62,302.0, p
< .001, ηG

2 = .94]. Pair-wise comparisons revealed signif-
icant differences between devices for the xylophone (ps <
.001), but the vibraphone only showed significant differ-
ences between the MT-PB and all other devices (ps < .001);
no significant differences were evident between the K-
CL25 and K-MX (p = .98), the K-CL25 and R-SD50 (p =
.82), or the K-MX and R-SD50 (p = .22). Bayes factor t
tests indicated extreme evidence for the null hypothesis for
comparisons between the K-CL25 and K-MX (BFH0 = 98
± 1.1%) and the K-CL25 and R-SD50 (BFH0 = 98 ± 1.3%).
These results show partial support for the hypothesis that
devices playing the vibraphone patch would have similar
latencies. For the comparison between the K-MX and R-

Table 3 Instruments with the lowest and highest latencies for each device

Type Device Latency Group Instrument Mean SD Min. Max.

Sound module MT-PB Lowest Xylophone 3.92 0.79 2.52 5.67

Highest ChoirAahs 13.61 2.82 1.95 19.27

R-SD50 Lowest RegHTom 2.54 0.04 2.47 2.65

Highest Reed organ 19.31 0.05 19.23 19.46

Keyboard K-CL25 Lowest Electric piano 3.04 0.21 2.61 3.76

Highest Harpsichord 11.23 0.18 10.91 11.90

K-MX Lowest Tabla-tin 1.79 0.07 1.68 1.97

Highest Maracas-push 16.75 0.83 15.56 17.66

220 Behav Res (2019) 51:204–234



SD50, Bayes factor indicated extreme evidence for the
alternative hypothesis (BFHA > 1,000 ± 1.3%); in other
words, there was no evidence that the null result could
be accepted. This result contradicts the hypothesis that
the devices playing the vibraphone patch would have
similar latencies. The harpsichord produced significantly
higher latencies than the vibraphone for three of the
devices (MT-PB, R-SD50, K-CL25; ps < .001), but the
reverse trend was found for the K-MX (p < .001). This
result is interesting because it means that there are la-
tency differences not only between devices, but also
within devices, in how they generate MIDI audio. This
point is further demonstrated by the larger disparity be-
tween the two instruments for the K-CL25 than for the
other devices, including the MT-PB, which also uses
GM. Overall, these results do not support the hypothesis
that devices playing the same GM instrument would
have similar latencies.

Discussion

The results of Experiment 4 indicate that the latency of
audio in response to a MIDI message varies not only

between devices but also within devices. Moreover, none
of the devices or instruments that were tested produced
auditory feedback within 1 ms. It is also worth noting that
the dedicated sound modules did not all produce lower
latencies than the sound modules integrated into piano
keyboards. In fact, the K-MX keyboard produced the low-
est mean latency, then the R-SD50 sound module, then
the K-CL25 keyboard, and finally the MT-PB sound mod-
ule. This alternation indicates that integrated sound mod-
ules do not produce significantly higher latencies than
dedicated sound modules and, in some cases (e.g., K-
MX), produced lower latencies than dedicated sound
modules. Regarding the GM standard, I observed evi-
dence that different devices produce different latencies
for the same instrument. Therefore, it is likely that the
implementation of MIDI instruments varies from device
to device, even under the GM standard.

General discussion

In four experiments, I demonstrated how the SMIDIBT
can be implemented to benchmark several types of MIDI
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Fig. 7 Latencies between the send MIDI offset and audio onsets for the
MIDI sound modules. The left panel (a) shows the lowest and highest
latencies for each sound module. The right panel (b) shows the latencies

for the harpsichord and vibraphone for each sound module. Error bars
represent standard errors of the mean



devices that are used in each step of a response-to-
feedback chain that uses MIDI. In testing these devices,
each of the steps added latencies that were significantly
greater than 1 ms and this was without adding the laten-
cies of all devices within the chain to estimate the total
latency that would be incurred. Therefore, the devices
tested here indicate that 1 ms latencies are not achievable
using commercially available MIDI setups. Of all the de-
vices in the chain, it appeared that the percussion pad and/
or sound module would add the largest proportion of the
latency, depending on the device, sound module, and in-
strument. Sensorimotor synchronization studies that re-
quire low-latency and reliable timing for response collec-
tion and auditory feedback may need to employ other
methods, such as analog signals running through digital
acquisition cards (see Elliott, Welchman, & Wing, 2009)
or options using microcontrollers (e.g., Tap Arduino;
Schultz & van Vugt, 2016; see also Schubert, D’Ausilio,
& Canto, 2013).

Regarding millisecond timing resolution, some have
argued that temporal delays close to the order of 1.5
to 5 ms are perceivable and can be controlled by per-
formers when producing music (Iyer, Bilmes, Wright, &
Wessel, 1997; Moore, 1988). Earlier perceptual studies
have provided evidence that humans can discriminate
changes in temporal intervals of 1 ms (Lunney, 1974;
Michon, 1964; Nordmark, 1968; but see Friberg &
Sundberg, 1995, for a study that f inds higher
perceptual thresholds when using MIDI). Sensorimotor
synchronization studies with period and phase perturba-
tions have shown that interval changes of 10 ms can
influence synchronization (e.g., Thaut, Miller, &
Schauer, 1998), but the lower behavioral limit is un-
known. Similarly, delayed auditory feedback research
has shown that the negative mean asynchrony (i.e., the
tendency for responses to precede the onsets of an iso-
chronous pacing signal) increased as the delay increased,
but again, the lower limit for delayed feedback to influ-
ence performance is unknown (50 ms was the smallest
delay tested by Aschersleben & Prinz, 1997). It is an
empirical question as to whether millisecond delays are
perceived or affect performance; the acceptable levels of
latency and variability for response collection and feed-
back generation are at the experimenter’s discretion. The
SMIDIBT aims to help inform such decisions.

In the present study I used the SMIDIBT to bench-
mark several different MIDI devices and instruments but
did not test all instruments exhaustively or comprehen-
sively benchmark every MIDI device that has been
used. This toolbox is provided so that experimenters
can test their own latencies during the stimulus selection

phase. Researchers with other MIDI devices who choose
to adopt the SMIDIBT could make their latency mea-
surements publicly available so that other researchers
can also make an informed decision regarding which
devices and instruments best suits their needs.
Moreover, knowing these latencies could aid researchers
in interpreting the results of sensorimotor synchroniza-
tion experiments, particularly in the case of statistically
nonsignificant results that might have arisen due to un-
wanted latencies or variability of response measurement
and/or auditory feedback. Such data could be stored on
the SMIDIBT website (https://band-lab.com/smidi_
toolbox).

Another MIDI device that was not examined here is
the MIDI piano keyboard used as a response recording
device (e.g., Maidhof et al., 2014; Zamm et al., 2017). It
is a methodological challenge to measure keyboard on-
sets because keys may have different travel times before
they are triggered, so the FSR option used in the present
study might not be suitable for keyboards. Moreover, in
terms of ecological validity for nondigital pianos, the
temporal delay between a key being struck to initiate
the hammer hitting the string and the sound being re-
ceived is unknown and would likely vary between dif-
ferent pianos and types of piano (e.g., grand, upright).
Future experiments could use the SMIDIBT to bench-
mark piano keyboards using and FSR or other sensors,
in order to measure key responses and the consequent
MIDI and audio outputs.

Conclusion

The schematics, scripts, and data from this study are available
online to download for free (https://band-lab.com/smidib_
toolbox), and any data submitted by other researchers will
also be made available. The SMIDIBT is a means to
benchmark MIDI devices so that experimenters can know
whether or not undesired latencies and/or variability are intro-
duced by these tools. It is then up to the experimenters to
decide whether or not the latency and variability are accept-
able for their purposes.

Author note The author thanks Peter Pfordresher for do-
nating the Sound Blaster Live PCI card and Roland
SPD6 for this research, Sebastian Hertl for his aid with
data collection, and Michael Schwartze and Rachel
Brown for their comments on previous drafts of the man-
uscript. This research was funded by the author, who has
no affiliation with any of the companies that developed
the devices tested herein.
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Send Arduino Code

/*Benchmark MIDI Send Times

By Benjamin G. Schultz

July 2017

Sends a digital trigger (LOW/HIGH) to test the sending and sent time of MIDI messages.

Connect the device that receives the digital trigger via pin 9 (we used a sound card).

Connect the MIDI cable via pin 14 (TX3).

See Schultz (2018) for more details, or contact benjamin.g.schultz@gmail.com

References:

Schultz, B. G. (2018). The Schultz MIDI benchmarking toolbox for MIDI interfaces, 

percussion pads, and sound cards. Behav. Res. Meth. 

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version.

*/

//  SET VARIABLES

// variables for MIDI

int note = 84; // defines the frequency (i.e., pitch) of the tone (in Hz)

int engage = 144; //10010000 in binary, MIDI on signal

//int engage = 153; //10011001 in binary, on signal for drums

int cease = 128; // 10000000 in binary, MIDI off signal

int vel = 127;

int off_vel = 0;

unsigned long time_tol = 0; // preset the exact time from which it is ok to make another sound

int tone_dur = 20; // defines the duration of the tone

unsigned long tone_tol = 0; // presets the tone offset time

// variables for pwm

int pwmPin = 9;

int pwm_val = LOW;

// variables for benchmark

unsigned long delay_interval = 5; // Interval between sends

unsigned long num_repetitions = 4002; // Number of on and off signals sent
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// SETUP

void setup() {

Serial.begin(9600); // slow speed debugging

Serial3.begin(31250); // MIDI default

//Serial3.begin(62500); // Double Speed

//Serial3.begin(46875); // 150% Speed

//Serial3.begin(15625); // Half Speed

pinMode(pwmPin, OUTPUT);

digitalWrite(pwmPin, LOW);

}

// MAIN LOOP

void loop(void) {

//Wait for user input

while (Serial.available() == 0) {           

// only start when something is sent via Serial Monitor

}

// Flush the queue

Serial.read();

Serial.flush();

// Let the user know the benchmark is about to begin

Serial.println("Starting MIDI Benchmark");

// Wait 50 milliseconds before beginning

time_tol = millis()+50;

for (unsigned long i = 0; i < num_repetitions + 1; i++) {

//// DEBUGGING

//Serial.println(i);

//Serial.print("Note: ");

//Serial.print(note);

//// END DEBUGGING

while (millis() < time_tol) {

// wait until delay time

}

time_tol = millis() + delay_interval;

digitalWrite(pwmPin, HIGH); // change PWM output to ON
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noteOn(engage, note, vel); // Send note

digitalWrite(pwmPin, LOW); // change PWM output to OFF

while (millis() < time_tol) {

// wait until delay time

}

time_tol = millis() + delay_interval;

digitalWrite(pwmPin, HIGH); // change PWM output to ON    

noteOn(engage, note, off_vel); // turn note off

digitalWrite(pwmPin, LOW); // change PWM output to ON

}

// Tell user that benchmark is complete

Serial.println("MIDI Benchmark Complete!");

}

// FUNCTIONS

//  Plays a MIDI note (or drum) of given pitch and velocity.  

void noteOn(int cmd, int pitch, int velocity) {

Serial3.write(cmd);

Serial3.write(pitch);

Serial3.write(velocity);

}
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Read Arduino Single Byte

/*Benchmark MIDI Read Times

By Benjamin G. Schultz

July 2017

Sends a digital trigger (LOW/HIGH) to test the received and read time of MIDI messages.

Connect the device that receives the digital trigger via pin 9 (we used a sound card).

Connect the MIDI cable via pin 15 (RX3). Each byte is read as it arrives in the serial buffer.

See Schultz (2018) for more details, or contact benjamin.g.schultz@gmail.com

References:

Schultz, B. G. (2018). The Schultz MIDI Benchmarking toolbox for MIDI interfaces, percussion 

pads, and sound cards. Behav. Res. Meth. 

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version.

*/

//  SET VARIABLES

// Variables for MIDI

byte commandByte;

byte noteByte;

byte velocityByte;

byte noteOn = 144;

byte drumOn = 153;

byte noteOff = 128;

// variables for pwm

int pwmPin = 9;

int pwm_val = LOW;

// SETUP

void setup() {

Serial.begin(9600); // slow speed debugging

Serial3.begin(31250); // MIDI default

//Serial3.begin(62500); // Double Speed

//Serial3.begin(46875); // 150% Speed

//Serial3.begin(15625); // Half Speed

pinMode(pwmPin, OUTPUT);

digitalWrite(pwmPin, pwm_val);

}
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// FUNCTIONS

// Checks for MIDI message and sends trigger (single byte method)

void checkMIDI() {

if (Serial3.available()) {

commandByte = Serial3.read();//read first byte

//// DEBUGGING    

//Serial.print("Command: ");

//Serial.println(commandByte);

//// END DEBUGGING

if (commandByte == noteOn || commandByte == noteOff || commandByte == drumOn) {

// trigger PWM

digitalWrite(pwmPin, HIGH);

while (Serial3.available() == 0) {};

noteByte = Serial3.read();//read next byte

while (Serial3.available() == 0) {};

velocityByte = Serial3.read();//read next byte

// turn off PWM

digitalWrite(pwmPin, LOW);

//// DEBUGGING    

//Serial.print("Midi note: ");

//Serial.println(noteByte);

//Serial.print("Velocity: ");

//Serial.println(velocityByte);

//// END DEBUGGING

}

}

}

// MAIN LOOP

void loop() {

checkMIDI();

}
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Read Arduino 3-Bytes

/*Benchmark Midi Read Times

By Benjamin G. Schultz

July 2017

Sends a digital trigger (LOW/HIGH) to test the received and read time of MIDI messages.

Connect the device that receives the digital trigger via pin 9 (we used a sound card).

Connect the MIDI cable via pin 15 (RX3). Bytes are read when a full 3-byte MIDI message 

is in the serial buffer.

See Schultz (2017) for more details, or contact benjamin.g.schultz@gmail.com

References:

Schultz, B. G. (2018). The Schultz MIDI Benchmarking toolbox for MIDI interfaces, 

percussion  pads, and sound cards. Behav. Res. Meth. 

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version.

*/

//  SET VARIABLES

// Variables for MIDI

byte commandByte;

byte noteByte;

byte velocityByte;

byte noteOn = 144;

byte drumOn = 153;

byte noteOff = 128;

// variables for pwm

int pwmPin = 9;

int pwm_val = LOW;

// SETUP

void setup() {

Serial.begin(9600); // slow speed debugging

Serial3.begin(31250); // MIDI default

//Serial3.begin(62500); // Double Speed

//Serial3.begin(46875); // 150% Speed



Behav Res (2019) 51:204–234 229

//Serial3.begin(15625); // Half Speed

pinMode(pwmPin, OUTPUT);

digitalWrite(pwmPin, pwm_val);

}

// FUNCTIONS

// Checks for MIDI message and sends trigger (all bytes method)

void checkMIDI() {

if (Serial3.available()>2) {

commandByte = Serial3.read();//read first byte

//// DEBUGGING    

//Serial.print("Command: ");

//Serial.println(commandByte);

//// END DEBUGGING

if (commandByte == noteOn || commandByte == noteOff || commandByte == drumOn) {

// trigger PWM

digitalWrite(pwmPin, HIGH);

noteByte = Serial3.read();//read next byte      

velocityByte = Serial3.read();//read next byte

// turn off PWM    

digitalWrite(pwmPin, LOW);

//// DEBUGGING    

//Serial.print("Midi note: ");

//Serial.println(noteByte);

//Serial.print("Velocity: ");

//Serial.println(velocityByte);

//// END DEBUGGING

}  

}

}

// MAIN LOOP

void loop() {

checkMIDI();

}



Table 4 Send durations for the Arduino MIDI benchmark

Duration Device Method Baud Rate Mean SD Min Max

Send Due Single byte 15,625 0.045 0.021 0.023 0.068

31,250 0.045 0.021 0.023 0.068

46,875 0.045 0.021 0.023 0.068

62,500 0.045 0.021 0.023 0.068

All bytes 15,625 0.045 0.021 0.023 0.068

31,250 0.045 0.021 0.023 0.068

46,875 0.045 0.021 0.023 0.068

62,500 0.045 0.021 0.023 0.068

Mega Single byte 15,625 0.044 0.023 0.023 0.068

31,250 0.046 0.023 0.023 0.068

46,875 0.045 0.023 0.023 0.068

62,500 0.047 0.023 0.023 0.068

All bytes 15,625 0.047 0.023 0.023 0.068

31,250 0.047 0.023 0.023 0.068

46,875 0.047 0.023 0.023 0.068

62,500 0.047 0.023 0.023 0.068

Table 5 Transit durations for the Arduino MIDI benchmark

Duration Device Method Baud Rate Mean SD Min Max

Transit Due Single byte 15,625 0.605 0.042 0.499 0.680

31,250 0.271 0.037 0.181 0.340

46,875 0.165 0.034 0.091 0.227

62,500 0.108 0.028 0.045 0.181

All bytes 15,625 1.886 0.037 1.769 1.950

31,250 0.919 0.032 0.816 0.975

46,875 0.601 0.034 0.522 0.635

62,500 0.439 0.033 0.363 0.476

Mega Single byte 15,625 0.603 0.032 0.567 0.658

31,250 0.281 0.029 0.249 0.340

46,875 0.176 0.028 0.136 0.249

62,500 0.122 0.030 0.091 0.181

All bytes 15,625 1.893 0.025 1.837 1.927

31,250 0.938 0.024 0.884 0.975

46,875 0.625 0.026 0.567 0.658

62,500 0.462 0.023 0.408 0.499
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Table 6 Read durations for the Arduino MIDI benchmark

Duration Device Method Baud Rate Mean SD Min Max

Read Due Single byte 15,625 1.288 0.062 1.202 1.361

31,250 0.663 0.047 0.544 0.726

46,875 0.455 0.041 0.408 0.499

62,500 0.352 0.037 0.249 0.408

All bytes 15,625 0.059 0.025 0.023 0.091

31,250 0.059 0.025 0.023 0.091

46,875 0.060 0.025 0.023 0.091

62,500 0.060 0.025 0.023 0.091

Mega Single byte 15,625 1.287 0.059 1.202 1.361

31,250 0.663 0.054 0.522 0.726

46,875 0.460 0.039 0.295 0.522

62,500 0.352 0.040 0.204 0.408

All bytes 15,625 0.056 0.025 0.023 0.091

31,250 0.056 0.025 0.023 0.091

46,875 0.056 0.025 0.023 0.091

62,500 0.056 0.025 0.023 0.091

Table 7 Total durations for the Arduino MIDI benchmark

Duration Device Method Baud Rate Mean SD Min Max

Total Due Single byte 15,625 1.939 0.047 1.837 2.041

31,250 0.980 0.042 0.794 1.066

46,875 0.666 0.048 0.590 0.726

62,500 0.506 0.047 0.408 0.567

All bytes 15,625 1.990 0.034 1.927 2.064

31,250 1.024 0.029 0.975 1.088

46,875 0.707 0.029 0.658 0.748

62,500 0.544 0.029 0.499 0.590

Mega Single byte 15,625 1.934 0.055 1.859 2.018

31,250 0.990 0.059 0.816 1.066

46,875 0.681 0.037 0.544 0.748

62,500 0.521 0.057 0.385 0.590

All bytes 15,625 1.996 0.026 1.950 2.041

31,250 1.041 0.028 0.998 1.088

46,875 0.729 0.025 0.680 0.771

62,500 0.565 0.028 0.522 0.612
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Table 8 Descriptive statistics for intervals produced in the SMIDIBT
route test in Experiment 2 for the baseline condition

Trigger Interval Mean Interval (ms) SD Min Max

Send 1 ms 1.03 0.04 0.98 1.09

2 ms 2.03 0.14 0.98 2.11

3 ms 3.05 0.16 2.00 3.13

Sent 1 ms 1.03 0.01 1.02 1.04

2 ms 2.03 0.13 1.02 2.06

3 ms 3.05 0.16 2.04 3.08

Received 1 ms 1.03 0.05 0.95 1.11

2 ms 2.03 0.14 0.95 2.13

3 ms 3.05 0.16 1.97 3.15

Read 1 ms 1.03 0.04 0.91 1.11

2 ms 2.03 0.14 0.93 2.18

3 ms 3.05 0.16 1.97 3.15

Table 9 Descriptive statistics for latencies in the SMIDIBT route test in Experiment 2

Interval Interface Device Mean SD Min Max

1 ms Baseline None 0.288 0.040 0.227 0.317

USB LogiLink MIDI–USB N/A N/A N/A N/A

M-Audio UNO 8.834 4.017 1.406 16.122

Roland UM-ONE 2.358 0.324 1.519 3.401

PCI Labway Soundboard D66 1.639 0.380 1.179 3.084

Sound Blaster Live 1.578 0.149 1.225 2.177

TerraTec TT Solo 1-NL 1.783 0.481 1.179 3.107

2 ms Baseline None 0.269 0.036 0.227 0.317

USB LogiLink MIDI–USB 1.823 0.156 1.451 3.039

M-Audio UNO 1.682 0.152 1.338 2.358

Roland UM-ONE 2.337 0.325 1.519 3.424

PCI Labway Soundboard D66 1.475 0.146 1.202 2.086

Sound Blaster Live 1.551 0.146 1.247 2.154

TerraTec TT Solo 1-NL 1.475 0.146 1.202 2.086

3 ms Baseline None 0.264 0.032 0.227 0.317

USB LogiLink MIDI–USB 1.815 0.161 1.429 5.125

M-Audio UNO 1.656 0.152 1.338 2.336

Roland UM-ONE 2.324 0.325 1.519 3.333

PCI Labway Soundboard D66 1.469 0.145 1.202 2.086

Sound Blaster Live 1.545 0.146 1.247 2.154

TerraTec TT Solo 1-NL 1.469 0.145 1.202 2.086
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