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Abstract: Myelin ensheathes selected axonal segments within the nervous system, resulting primarily
in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and
peripheral nervous systems, various proteins that contribute to the formation and stability of myelin
are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins
have common attributes, including small size, hydrophobic segments, multifunctionality, longevity,
and regions of intrinsic disorder. With recent advances in protein biophysical characterization and
bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant
in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin
IDPs, their conservation, molecular characteristics and functions, and their disease relevance,
along with open questions and speculations. We place emphasis on classifying the molecular details
of IDPs in myelin, and we correlate these with their various functions, including susceptibility to
post-translational modifications, function in protein–protein and protein–membrane interactions,
as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs
and which molecular factors are potentially involved.

Keywords: myelin; intrinsically disordered protein; multiple sclerosis; peripheral neuropathies;
myelination; protein folding; protein–membrane interaction; protein–protein interaction

1. Introduction

The vertebrate nervous system has evolved to serve a vast diversity of animals, including humans.
The brain and the spinal cord form the central nervous system (CNS), which orchestrates information
storage and processing, as well as reads sensory output. On the other hand, the peripheral nervous
system (PNS) acts as a vital link between the CNS and peripheral organs. While the nervous system is
well-organized in terms of nerve tracts, neurons lack sufficient action potential propagation efficiency
due to their relatively small diameter (usually 0.1–20 µm) compared to their length (up to ~1 m) [1–3].
Another limitation is the availability of metabolic energy, as sustained nerve impulse firing is an active
process that requires ATP—much of which is obtained through mitochondrial activity [4]. The giant
squid has solved the efficiency problem through the evolution of giant axons—some up to 1 mm in
diameter [5]—but in vertebrates, another solution allows the acceleration of nerve impulses up to
100-fold: axon insulation by myelin.

Myelin is a specialized plasma membrane produced by myelinating glia: oligodendrocytes in
the CNS and Schwann cells in the PNS. The myelin membrane is wrapped around axons tens of
times and compacted in a process driven by actin disassembly and membrane stacking via abundant
adhesion proteins [6,7]. The outcome is a lipid-rich sheath with low water content, separating the
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axonal surface from the extracellular milieu. In the CNS, oligodendrocytes grow long processes that
form single myelin units; however, a single oligodendrocyte can myelinate several axons. In the
PNS, each Schwann cell wraps around an axon and forms one myelin unit (Figure 1). Individual
myelin units along the axon are separated by nodes of Ranvier, where the axonal membrane is rich in
voltage-gated ion channels. Electrical insulation and the arrangement of ion channel clusters form the
basis of saltatory conduction [8].
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Figure 1. The anatomy of oligodendrocytic and Schwann cell myelin sheaths in the central nervous 
system (CNS) and peripheral nervous system (PNS), respectively. The arrangement of multiple 
myelin units along an axon is illustrated, as well as unwrapped myelin units and cross sections. 
Compact myelin and non-compact myelin are colored blue and gray, respectively. Abbreviations: Ab, 
abaxonal layer; Ad, adaxonal layer; BL, basal lamina; IM, inner mesaxon; IPL, intraperiod line; LIs, 
longitudinal incisures; MDL, major dense line; OM, outer mesaxon; PAS, periaxonal space; PNC, 
paranodal collar; RCs, radial components; SLI, Schmidt–Lanterman incisures. 

The overall morphology of myelin is similar in the CNS and PNS, but there are notable 
ultrastructural differences. Most of the myelin sheath is compact myelin—tightly stacked proteolipid 
membrane multilayers with low water content. This promotes the insulative character of myelin. 
Non-compact myelin lines the outer- and innermost layers of myelin, known as the abaxonal and 
adaxonal layers, respectively. Additionally, it forms paranodal loops—structures at the ends of the 
myelin unit that anchor it to the axon. Cytoplasmic channels that traverse through compact myelin 
in the PNS and CNS are known as Schmidt–Lanterman incisures and longitudinal incisures, 
respectively. Water is abundant in non-compact myelin, which contains cytoskeletal elements and 
serves as a maintenance compartment in the myelin sheath (Figure 1) [4,9]. 

In the PNS, the myelin sheath is surrounded by a carbohydrate-rich basal lamina; such a 
structure is not present in CNS myelin [10]. Additionally, the abaxonal space of Schwann cells is 
partially compacted to so-called membrane appositions, which line veins of cytoplasm known as 
Cajal bands. Membrane appositions and Cajal bands are required for the correct function of PNS 
myelin, but the role of membrane appositions is poorly understood [11–13]. The space that separates 
the adaxonal membrane from the axonal membrane is the periaxonal space, in which axoglial 
signaling and adhesion take place [14]. 

The narrow extracellular space between the periodic compact myelin membranes is called the 
intramyelinic compartment. The lipid-rich myelin membrane carries a high content of cholesterol, 
which is essential for myelination [15,16]. The myelin membrane is asymmetric: the 
extracellular/intramyelinic monolayer is rich in glycolipids, whereas the cytoplasmic leaflet is 
predominantly formed of phospholipids and harbors a net negative charge [17]. This charge is one of 

Figure 1. The anatomy of oligodendrocytic and Schwann cell myelin sheaths in the central nervous
system (CNS) and peripheral nervous system (PNS), respectively. The arrangement of multiple myelin
units along an axon is illustrated, as well as unwrapped myelin units and cross sections. Compact
myelin and non-compact myelin are colored blue and gray, respectively. Abbreviations: Ab, abaxonal
layer; Ad, adaxonal layer; BL, basal lamina; IM, inner mesaxon; IPL, intraperiod line; LIs, longitudinal
incisures; MDL, major dense line; OM, outer mesaxon; PAS, periaxonal space; PNC, paranodal collar;
RCs, radial components; SLI, Schmidt–Lanterman incisures.

The overall morphology of myelin is similar in the CNS and PNS, but there are notable
ultrastructural differences. Most of the myelin sheath is compact myelin—tightly stacked proteolipid
membrane multilayers with low water content. This promotes the insulative character of myelin.
Non-compact myelin lines the outer- and innermost layers of myelin, known as the abaxonal and
adaxonal layers, respectively. Additionally, it forms paranodal loops—structures at the ends of the
myelin unit that anchor it to the axon. Cytoplasmic channels that traverse through compact myelin in
the PNS and CNS are known as Schmidt–Lanterman incisures and longitudinal incisures, respectively.
Water is abundant in non-compact myelin, which contains cytoskeletal elements and serves as a
maintenance compartment in the myelin sheath (Figure 1) [4,9].

In the PNS, the myelin sheath is surrounded by a carbohydrate-rich basal lamina; such a structure is
not present in CNS myelin [10]. Additionally, the abaxonal space of Schwann cells is partially compacted
to so-called membrane appositions, which line veins of cytoplasm known as Cajal bands. Membrane
appositions and Cajal bands are required for the correct function of PNS myelin, but the role of membrane
appositions is poorly understood [11–13]. The space that separates the adaxonal membrane from the
axonal membrane is the periaxonal space, in which axoglial signaling and adhesion take place [14].

The narrow extracellular space between the periodic compact myelin membranes is called the
intramyelinic compartment. The lipid-rich myelin membrane carries a high content of cholesterol, which is
essential for myelination [15,16]. The myelin membrane is asymmetric: the extracellular/intramyelinic
monolayer is rich in glycolipids, whereas the cytoplasmic leaflet is predominantly formed of phospholipids
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and harbors a net negative charge [17]. This charge is one of the main driving factors of protein–lipid
interactions in myelin [18–24]. In compact myelin, several proteins contribute to the stacking of lipid
bilayers, which form a highly periodic arrangement that can be characterized using X-ray and neutron
scattering [25,26]. The nearly fused cytoplasmic leaflets of compact myelin were visible already in early
electron micrographs as repetitive electron-dense features, and they were thus named the major dense
lines (MDL). The alternating intramyelinic compartment was named the intraperiod line (IPL) [27–29].

The packing of compact myelin is so tight that it excludes the presence of most proteins [30].
The proteins of myelin are often specific to the myelin sheath and multifunctional. They are related
to the development of myelin diseases, such as multiple sclerosis (MS) and peripheral neuropathies.
The lipid-rich nature of myelin and its narrow compartments make it a particularly challenging system
to study, which is the main reason why myelin proteins and their role in disease are undercharacterized.
However, giant leaps in myelin protein research have been taken in recent years, especially in the study
of myelin intrinsically disordered proteins (IDPs), which are the main focus of this review.

2. Intrinsically Disordered Proteins of Myelin

2.1. General Attributes of Myelin-Specific Proteins

Proteins in myelin come in many shapes and forms, but not sizes. While non-compact myelin
contains both “typical” soluble and membrane proteins, compact myelin contains a mere handful
of proteins, some specific to CNS or PNS, which are capped by one attribute over others: molecular
weight. Most compact myelin proteins are smaller than 30 kDa in size [31,32]. Given the very narrow
cytoplasmic and intramyelinic spacing in compact myelin [33,34], it comes as no surprise that only
small proteins are present. A physical size barrier that limits the diffusion of large soluble domains has
been proven to exist [30]. However, the small but abundant myelin proteins, such as protein zero (P0),
have been described to undergo multimerization, although the details of these structural arrangements
are currently unknown [35–39]. The myelin protein multimers are likely to involve interactions in the
membrane plane, as well as between proteins present on apposing membranes, resulting in ordered
3D organization of myelin proteins and lipid bilayers.

The myelin sheath contains relatively few different proteins (Figure 2). The major myelin proteins
present certain characteristics, such as extreme longevity [40], multifunctionality [41–44], full, partial,
or transient binding to membranes, as well as strict localization to either compact or non-compact
myelin, and further sub-localization to different ultrastructural compartments [45]. Despite decades of
research, the functions and structure-function relationships of several myelin proteins have emerged
only in recent years, and many open questions remain.

Illustrated in Figure 2 are proteins considered myelin-specific, categorized by their localization
to the CNS or PNS, as well as to compact or non-compact myelin. The functions and structures of
several myelin proteins have been discussed earlier [45–50], and here, we will focus on the IDPs of
myelin. Some borderline cases of disorder do exist in the myelin proteome that will not be covered.
These include the intra- and extracellular loops of various tetraspan membrane proteins, which are
often predicted to be disordered [23]. However, these structures are very close to the myelin membrane
and therefore likely to be folded, as experimentally shown for the loops of proteolipid protein [23].
Another example is the C-terminal extension of P0 (P0ct), which is disordered in the absence of lipids,
but not under membrane-like conditions [19,51–54]. In vivo, the lipidated P0ct directly follows the
transmembrane helix of P0 in the cytoplasmic compartment of PNS compact myelin, permanently
anchoring it to the phospholipid membrane, whereby it folds and is thus unlikely to function as a
canonical IDP [55].
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Figure 2. Myelin proteins and their compartmentalization. Some proteins are shared between CNS 
and PNS myelin, but their expression levels can vary drastically between the two, like in the case of 
CNPase, which is predominantly a CNS enzyme. The intracellular compartment is colored blue and 
gray for compact and non-compact myelin, respectively. The extracellular and intramyelinic 
compartments are colored white and yellow, respectively. Note that cytoskeletal elements, other 
common proteins, and cell organelles are not included for clarity. Abbreviations: AJs, adherens 
junctions; CNPase, 2′,3′-cyclic nucleotide 3′-phosphodiesterase; Cxs, connexins; EC, epithelial 
cadherin; GJs, gap junctions; Ig-like, immunoglobulin-like; Jux, juxtanodin; LIs, longitudal incisures; 
MAG, myelin-associated glycoprotein; MBP, myelin basic protein; MOBP, myelin-associated 
oligodendrocytic basic protein; MOG, myelin/oligodendrocyte glycoprotein; OSP, oligodendrocyte-
specific protein/claudin 11; P0, myelin protein zero; P0ct, the cytoplasmic domain of P0; P2, peripheral 
myelin protein 2; PLP, proteolipid protein; PLs, paranodal loops; PMP22, peripheral myelin protein 
22; PRX, periaxin; RC, radial component; S2, sirtuin 2; SLIs, Schmidt–Lanterman incisures. In MAG 
and PRX, the L- and S- prefixes indicate long and short isoforms, respectively. 
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Figure 2. Myelin proteins and their compartmentalization. Some proteins are shared between CNS and
PNS myelin, but their expression levels can vary drastically between the two, like in the case of CNPase,
which is predominantly a CNS enzyme. The intracellular compartment is colored blue and gray for
compact and non-compact myelin, respectively. The extracellular and intramyelinic compartments
are colored white and yellow, respectively. Note that cytoskeletal elements, other common proteins,
and cell organelles are not included for clarity. Abbreviations: AJs, adherens junctions; CNPase,
2′,3′-cyclic nucleotide 3′-phosphodiesterase; Cxs, connexins; EC, epithelial cadherin; GJs, gap junctions;
Ig-like, immunoglobulin-like; Jux, juxtanodin; LIs, longitudal incisures; MAG, myelin-associated
glycoprotein; MBP, myelin basic protein; MOBP, myelin-associated oligodendrocytic basic protein;
MOG, myelin/oligodendrocyte glycoprotein; OSP, oligodendrocyte-specific protein/claudin 11; P0,
myelin protein zero; P0ct, the cytoplasmic domain of P0; P2, peripheral myelin protein 2; PLP,
proteolipid protein; PLs, paranodal loops; PMP22, peripheral myelin protein 22; PRX, periaxin; RC,
radial component; S2, sirtuin 2; SLIs, Schmidt–Lanterman incisures. In MAG and PRX, the L- and S-
prefixes indicate long and short isoforms, respectively.

General IDP categorization guidelines have been exhaustively discussed [56], which will serve as
a fundamental basis in this review. When applicable, IDPs and disordered regions will be classified
based on functional features into short linear motifs, molecular recognition features (MoRFs), and
disordered domains. Sequence features and overall sequence composition will be used to understand
and predict the functions of IDPs in myelin.

2.2. Myelin Basic Protein

Myelin basic protein (MBP) is an archetypal IDP and one of the best-characterized proteins of the
myelin sheath. For decades, the functional and structural aspects of MBP have been unraveled together
with its possible involvement in MS, and an impressive amount of literature exists (see [41,45,57–65],
for example). MBP is a multifunctional protein involved in a plethora of processes, from cytoskeletal
interactions to the stacking of membrane multilayers in compact myelin (Figure 3a) [65].
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Figure 3. The multifunctionality, conformations, and conservation of MBP. (a) Schematic of the
multifunctionality (solid arrows) of MBP, which arises through its disordered nature. Various PTMs,
especially citrullination and phosphorylation, regulate the known functions of MBP (dashed arrows).
The panel was inspired by Vassall et al. [65]. (b) Sequence alignment of 18.5-kDa MBP from vertebrates
generated using ESPript [66]. MBP is highly conserved, especially all helically folding, lipid-interacting
segments (black arrows; α1-α3), one of which overlaps with the immunogenic region (blue outlines).
A noteworthy feature is the conservation of Arg residues, most of which are targets for citrullination.
Black asterisks denote double-Phe motifs that are required for the phase transition of MBP upon lipid
binding. Residue numbering corresponds to human MBP. (c) Conformational ensemble of 18.5-kDa
MBP as determined using SAXS [24] (left) in comparison to a model of lipid-bound MBP [67] (right).
Each colored chain in the ensemble represents a single conformational subpopulation in the pool of
disordered MBP.

MBP manifests itself as several isoforms that arise through alternative splicing [68,69]. These are
divided into classical isoforms that are mostly present in the cytosol [70], and Golli isoforms that
undergo nuclear localization and influence intracellular Ca2+ levels [71,72]. Especially the classical
isoforms exist as a heterogeneous mixture in myelin and myelinating cells, although the 18.5-kDa
isoform is predominant [31,32,59]. All MBPs are basic due to a high number of positively charged
residues (Figure 3b), which translates to a high isoelectric point (pI) and a high positive net charge
under physiological pH.

MBP is translated in the cytoplasm, especially during myelin compaction, where its translation
occurs locally, when it is needed [64,73,74]. Some classical MBP isoforms, as well as non-classical
Golli isoforms, localize to the nucleus, potentially harboring a role in oligodendrocytic differentiation.
Interaction partners that would bind to nuclear MBPs are yet to be described [75–77].

MBP takes part in several protein–protein interactions, and thus acts as an effector. MBP interacts
with Fyn kinase [78–80], cytoskeletal elements [78,81], and calmodulin, the latter interaction being
dependent on Ca2+ [21,82–84]. The interaction with Fyn kinase is mediated via the SH3 domain,
which MBP binds through a conserved PXXP motif. The interaction has a potential impact on
oligodendrocytic differentiation, as Fyn signaling is important during myelin development [79,80].
Oligodendrocyte process growth is thought to be modulated by the interaction of MBP with the
cytoskeleton [78,81], which in turn is affected by the interaction between MBP and calmodulin [21,85].
These interactions suggest, combined with potential effects of nuclear MBP, that MBP harbors a
role in oligodendrocyte differentiation through several mechanisms. In addition to protein–protein
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interactions, MBP binds nucleotides and divalent cations [21,86–88]. The divalent cations Ca2+ and
Zn2+ contribute to the membrane stacking of myelin [53,86,87,89,90] (see below).

MBP is an excellent example of an IDP that displays several sites for post-translational modifications
(PTMs; Figure 3a) [91]. Ser/Thr phosphorylation and Arg deimination (citrullination) are the most
abundant charge-modifying PTMs [60,92–100], the latter being irreversible. MBP citrullination is
carried out in the cytoplasm by peptidyl–arginine deiminases [101]. This results in the eight charge
isomers of MBP, C1–C8, that display an increasing degree of citrullination. C1 is uncitrullinated and
the most basic isomer (+19 charge in physiological conditions), while C8 is the least basic isomer [59].
The significance of the several charge isomers is not entirely understood, although MBP deimination
levels appear to follow myelin developmental stages [62]. The least basic C8 isomer has been shown
to be unable to maintain the integrity of compact myelin [102], and to localize to the IPL in the
CNS, whereas less modified MBP is predominantly present in the MDL [103]. Additionally, the actin
interactions of C8 are subtly reduced, with its ability to connect actin with the myelin membrane
being most affected [104]. In contrast to the C1 isomer, C8 lacks the ability to induce phospholipase C
activity [105]. The functions and localization of different MBP charge isoforms are subject to future
studies, especially in Schwann cells.

Phosphorylation regulates some functions of MBP, such as binding to Fyn tyrosine kinase [79,97].
MBP is highly conserved in vertebrates (Figure 3b). Notable conserved sites include the independently
folding helical segments (see below), one of which contains an autoantigenic epitope [106,107]. MBP is
rich in Arg residues, most of which are conserved in vertebrates, especially in mammals. Most Arg
residues in the 18.5-kDa MBP are citrullination targets [60,92,93].

The best-characterized function of MBP is its ability to produce stable membrane stacks
upon the formation of compact myelin (Figure 3a) [20,30,108]. The stacking is dependent on
negatively charged lipids, especially phosphatidylinositol phosphates [90,109], other lipids (cholesterol,
sphingomyelin, and phosphatidylethanolamines) [110–112], as well as ionic strength [18,53], divalent
cations [53,86,87,89,90], the PTM state of MBP [21,113], and its interactions [21,104]. The negative net
charge of the phospholipid membrane attracts MBP [24], which binds and partially folds in the process.
A pre-stack intermediate state is formed, which displays elongated MBP as a surface that can adhere to an
apposing membrane [24]. The final membrane stack forms through MBP undergoing a phase transition
into a molecular glue [114], which has an amorphous structure in electron microscopy (EM) [24]. The MBP
phase transition depends on two conserved double-Phe motifs (Figure 3b) [114]. Membrane-bound MBP
has been found to segregate phosphatidylinositol phosphates and divalent cations [90,109]. Based on
circular dichroism (CD) spectroscopy and small-angle X-ray scattering (SAXS) experiments, MBP in
solution behaves like a random coil with distinct conformational subpopulations [24]. Upon lipid
binding, MBP has been shown to fold into a C-shaped molecule based on EM, SAXS, and molecular
modeling (Figure 3c) [67,115,116]. While the atomic-resolution details of MBP folding are not known,
nuclear magnetic resonance (NMR) spectroscopy has revealed three segments in MBP that can fold
into amphipathic α-helices under membrane-mimicking conditions (Figure 3a) [107,117,118]. In the
formation of cytoplasmic channels in myelin, MBP-mediated membrane stacking works antagonistically
against the binding of actin to membrane-associated 2′,3′-cyclic nucleotide 3′-phosphodiesterase
(CNPase) [119,120].

2.3. Myelin-Associated Oligodendrocytic Basic Protein

Myelin-associated oligodendrocytic basic protein (MOBP) is a poorly characterized but notably
abundant protein in CNS myelin [121]. Like MBP, MOBP is rich in cationic amino acids and exists
as an array of splice isoforms [121,122]. Its function, however, is elusive [123]. MOBP was initially
suggested to stack membranes like MBP, but it has since been shown to be involved in the formation of
the radial component, a series of tight membrane junctions in CNS compact myelin [124–126].

Human MOBP has some interesting features that distinguish it from being an MBP-like basic
protein. Firstly, it contains an N-terminal Cys-rich region predicted to be a FYVE-like zinc-finger
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domain, which most likely penetrates into a membrane after folding and Zn2+ binding [48]. Myelin has
a rather high abundance of Zn2+, as well as other divalent cations [127,128], and Zn2+ has been linked to
myelin pathophysiology (see below) [129,130]. Zn2+ might not be crucial for MOBP membrane binding,
as peptides from the N-terminal domain fold in the presence of phospholipids [23]. Secondly, MOBP
contains a C-terminal Pro-rich region that spans half of the 183-residue major isoform. This region
partially consists of 10-residue tandem repeats with the sequence PRSPPRSERQ.

MOBP is highly conserved in mammals. However, the tandem repeat region differs in the
amount of repeats between species (Figure 4a), is predicted to be very flexible (Figure 4b), does not
fold in the presence of detergents or 30% TFE [55], and is unlikely to be folded under physiological
conditions (Pro spacing suggests an entropic chain). With an abundance of Arg and Lys over Asp and
Glu, MOBP is classified as a basic polyelectrolyte similarly to MBP. Therefore, it might interact with
phospholipids in the narrow cytoplasmic compartment of the MDL, despite remaining unfolded in
membrane-mimicking conditions [55]. Interestingly, the PTMs described for rat MOBP only include
the phosphorylation of Ser85, Ser98, and Ser107 [131]. This apparently low number of PTMs might be
explained by rapid confinement of MOBP into the MDL of mature myelin, whereas MBP can display its
PTM sites as an unfolded chain, before it associates with membranes or carries out its other functions.
More experimental evidence is needed to confirm MOBP-membrane interactions in myelin, as well as
to map the full spectrum of PTMs in MOBP.Cells 2020, 9, 470 8 of 34 
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Figure 4. The conservation and predicted flexibility of MOBP isoform 1. (a) Sequence alignment of 
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predicted [48] to interact with Zn2+ in the putative FYVE domain have been indicated with blue 
asterisks. The tandem repeats within the Pro-rich region are indicated with green outlines. (b) 
DynaMine [132] (top) and PONDR [133] (bottom) predict human MOBP to be mostly disordered, with 
a folded N-terminal FYVE domain. The various compositional regions have been indicated. The 
structure in the PONDR inset represents the Phyre2 [134] prediction of the FYVE domain. 
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alone constructs that lack any or all tandem repeats in vitro. A recent study on the Fyn kinase-
regulated translation of MOBP concluded that the N-terminal region of MOBP is involved in 
oligodendrocyte differentiation, while removal of the Pro-rich region has minimal impact on this 
[135]. The 81-residue splicing isoform of MOBP, which lacks the entire Pro-rich region and only has 
the FYVE domain, displays a prominent expression pattern in the early stages of myelin development 
[122]. Thus, the N- and C-terminal halves of MOBP may have different roles in myelin formation. 

2.4. 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase 

CNPase is a well-characterized enzyme of non-compact CNS myelin, where it makes up 4% of 
total myelin protein [32,44,136]. It is also present in minor amounts in the PNS [137]. The majority of 
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Figure 4. The conservation and predicted flexibility of MOBP isoform 1. (a) Sequence alignment of
mammalian MOBPs generated using ESPript [66]. MOBP is highly conserved throughout mammals and
especially within primates. Residue numbering corresponds to human MOBP. The residues predicted [48]
to interact with Zn2+ in the putative FYVE domain have been indicated with blue asterisks. The tandem
repeats within the Pro-rich region are indicated with green outlines. (b) DynaMine [132] (top) and
PONDR [133] (bottom) predict human MOBP to be mostly disordered, with a folded N-terminal FYVE
domain. The various compositional regions have been indicated. The structure in the PONDR inset
represents the Phyre2 [134] prediction of the FYVE domain.

The tandem repeats are highly conserved, although the number of repeat units may vary between
species (Figure 4a). All mammalian MOBPs accessible through BLAST that correspond to the canonical
183-residue human MOBP splice isoform have at least one of these regions, implying importance of
this sequence. To date, no published structural data on full-length MOBP exist, let alone constructs
that lack any or all tandem repeats in vitro. A recent study on the Fyn kinase-regulated translation of
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MOBP concluded that the N-terminal region of MOBP is involved in oligodendrocyte differentiation,
while removal of the Pro-rich region has minimal impact on this [135]. The 81-residue splicing isoform
of MOBP, which lacks the entire Pro-rich region and only has the FYVE domain, displays a prominent
expression pattern in the early stages of myelin development [122]. Thus, the N- and C-terminal halves
of MOBP may have different roles in myelin formation.

2.4. 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase

CNPase is a well-characterized enzyme of non-compact CNS myelin, where it makes up 4% of
total myelin protein [32,44,136]. It is also present in minor amounts in the PNS [137]. The majority of
CNPase localizes to the cytosol (isoform 1), but a small fraction is transported to mitochondria through
an N-terminal targeting sequence (isoform 2) [138–140].

Mammalian CNPase has two structured domains followed by a disordered 20-residue C-terminal
tail (Figure 5) [141]. The N-terminal polynucleotide kinase (PNK)-like domain is folded, and it possibly
mediates CNPase homodimerization [142], interacts with calmodulin [143], and is able to bind and
hydrolyze nucleoside triphosphates [144]. The 2H domain is the best-characterized region of CNPase,
being responsible for its phosphodiesterase activity [145]. Its structure has been resolved at atomic
resolution [146–150]. The enzymatic activity has been extensively characterized [142,145,146,148–151],
and a potential pathway that gives CNPase a physiological role has been proposed [152–154]. In
addition to catalytic activity, the folded domains of CNPase have other functions, including RNA [155],
microtubule [156,157], and actin binding [120,158]. The latter enables CNPase to regulate the formation
of cytoplasmic cavities in compact myelin together with MBP [120]. In mitochondria, CNPase has
been linked to the opening of the transition pore complex, a proapoptotic mechanism resulting in Ca2+

release to the cytoplasm [159–161].
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Figure 5. The domain structure of CNPase. (a) CNPase consists of two folded domains and a C-terminal
20-residue disordered tail, which mediates membrane interactions via the lipidated residue Cys418.
Isoform 2 contains an additional N-terminal mitochondrial targeting sequence (MTS). The C-terminal
tail tethers CNPase to the membrane, while it carries out its various functions [44,141]. (b) The
C-terminal tail is conserved within several vertebrates, but is lost e.g. in fishes [141]. The lipidated Cys
residue is indicated with an asterisk. Residue numbering corresponds to human CNPase. Orca, killer
whale; Devil, Tasmanian devil; Xenopus, African clawed frog.

The C-terminal tail of CNPase has been experimentally characterized to be disordered using CD
and SAXS [55,142,148,149,162], and it mediates membrane binding through a lipidated Cys residue [162].
When anchored to the oligodendrocyte plasma membrane, CNPase can bridge cytoskeletal elements to
the membrane (Figure 5a) [156]. CD experiments demonstrate that the tail is mostly unfolded under
membrane-mimicking conditions [55], which implies that the tail is likely to remain disordered when
membrane-bound. On the other hand, the tail may turn towards the folded domains of CNPase [149],



Cells 2020, 9, 470 9 of 33

and it might play a role in modulating catalysis. The tail may allow CNPase to assume a specific
orientation with respect to the myelin membrane and to act as a spacer between actin and microtubules
when bound to a membrane.

2.5. Juxtanodin

Juxtanodin (Jux; also called ermin) is a monomeric 280-residue oligodendrocytic IDP localized to
the juxtaparanodes of adaxonal non-compact myelin [163–165]. Jux is involved in the morphological
regulation of oligodendrocytes, more specifically in the formation of arborizations [164–166]. Lowered
Jux expression levels have been detected in epileptic patients [166].

Jux associates with the cytoskeleton, and the association is negatively regulated through
phosphorylation [167]. The interaction involves filamentous actin, and it has been shown to be solely
dependent on the C-terminal ezrin/radixin/moesin (ERM)-type F-actin-binding domain, which is the
only region of Jux to share any homology with other proteins [163,167]. This domain is comprised of
30 amino acids, being the most conserved region in Jux (Figure 6); the last 14 residues are crucial for
the actin interaction [163,167]. Data on the folding of this short segment are lacking, but disorder and
secondary structure predictions suggest helical folding [163]. The phosphorylation target that regulates
actin binding resides in this region as well [167]. Notably, Jux apparently does not affect the organization
of actin filaments and only weakly inhibits their growth [163], which suggests that other factors are likely
to be involved in vivo that allow Jux to regulate oligodendrocytic arborization. The inhibition is abolished
by removal of the ERM domain, or by removal of the N-terminal half of Jux [163]. A prominent effect of
Jux was recently observed in Jux-transfected retinal pigment epithelial cells, whereby the expression of
Jux reorganized the actin cytoskeleton in a manner that affected cell morphology and size [168].
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binding domain (black). Residue numbering corresponds to human Jux.

At the sequence level, Jux is not as conserved as MBP or MOBP, as e.g. human and rodent Jux
share only ~60% identity (Figure 6). Nevertheless, in addition to the actin-binding domain, some
conserved stretches are present. Of the ~280-residue sequence, just over 100 residues are charged, with
60% being acidic and 40% basic. An acidic region (residues 176-200 in human Jux) divides Jux into
two halves: the N-terminal half is acidic, whereas the C-terminal half is basic. The significance of the
central acidic region is unknown, as is the function of the N-terminal half. The C-terminal half of the
sequence is more conserved between species, probably relating to its microfilament-binding function.

SAXS analysis revealed that Jux has several conformational populations in solution, which could
be an indication of dynamic transient folding [163]. The entire intact protein was required for the
conformational sampling, which implies long-range intramolecular interactions [163], possibly through
the opposite net charges of the N- and C-terminal halves. Regions that associate with each other and
(partially) fold in the process could therefore exist in Jux. This kind of conformational sampling is
known to occur in some MoRFs, dubbed pre-formed structural elements [169], and could indicate
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binding sites for other interaction partners, hypothetically making Jux a cytoskeletal assembler protein.
The only known binding partner for Jux is the actin filament, although Jux has been shown to co-localize
with CNPase and to affect its trafficking [136,165]. Jux could be a bridging unit of cytoskeletal elements,
as CNPase is known to bind microtubules and to anchor them to the plasma membrane [156,157,163].
Future studies include mapping of the interactome of Jux, in addition to structural studies on Jux
bound to microfilaments.

2.6. Myelin-Associated Glycoprotein

Myelin-associated glycoprotein (MAG [170]) is a protein expressed in both the CNS and PNS at 1%
and 0.3% of total protein, respectively [31,171]. MAG is produced as two alternatively spliced isoforms, L-
and S-MAG. Both isoforms are type I transmembrane proteins with five glycosylated extracellular Ig-like
domains, followed by a single transmembrane domain and a cytoplasmic extension. The cytoplasmic
tails have 37 residues in common, ending in an isoform-specific C terminus (Figure 7) [172]. In the
CNS, S-MAG and L-MAG can be detected at different stages of myelin development, L-MAG being
present already during oligodendrocyte differentiation and myelination [173,174], whereas S-MAG
mostly appears after myelin has formed [175]. The amounts of L- and S-MAG are roughly equal in mature
CNS myelin [173]. In the PNS, S-MAG dominates in quantity, and the deletion of L-MAG in mice does
not result in PNS demyelination [172,176]. In the CNS, S-MAG localizes mainly into the paranodal region
of myelin, but in the PNS, it localizes much more diversely into the SLIs, paranodal loops, the adaxonal
membrane, as well as ring-like accumulations around the myelin sheath in the abaxonal and adaxonal
membranes [177]. L-MAG is practically absent in the adult PNS, but in the CNS, it is abundant and
localizes mostly to the adaxonal layer along the internode and at the paranodes [177,178].
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Figure 7. The roles of S- and L-MAG on both sides of the adaxonal layer. MAG is able to dimerize
through Ig-domains 4 and 5, which determines the dimensions of MAG and thus the intermembrane
distance within the periaxonal space [179]. MAG interacts with gangliosides on the axonal membrane
and mediates bidirectional axoglial signaling [180], maintaining the width of the periaxonal space.
In the cytosol beneath the adaxonal membrane, S-MAG interacts with microtubules and L-MAG with
DYNLL1 [178,181].
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The five extracellular Ig-like domains of MAG span the periaxonal space and adhere to the
axonal membrane via ganglioside interactions [179,180]. The Ig-like domains have been structurally
characterized, and are thought to be rigid, defining the width of the periaxonal space [179]. MAG
is involved in bidirectional axoglial signaling that regulates the thickness of axons as well as the
expression and phosphorylation of axonal cytoskeletal proteins [180,182,183]. Ig-domains 4 and 5
mediate MAG dimerization (Figure 7) [179].

Both cytoplasmic extensions of MAG interact with Fyn tyrosine kinase, which is absolutely needed
for the initiation of normal myelination [180]. The cytoplasmic domain of S-MAG is intrinsically
disordered and interacts with Zn2+ and microtubules, indicating a structural role in non-compact
myelin (Figure 7) [181,184]. The presence of the cytoplasmic extension of L-MAG is a prerequisite for
CNS myelination [176]. Related to intracellular signaling, L-MAG has been shown to interact with
cytosolic S100β and phospholipase Cγ [185,186]. The L-MAG cytoplasmic extension is intrinsically
disordered and contains a β-MoRF that forms a complex with dynein light chain 1 (DYNLL1) in a
2:2 heterotetrameric assembly (Figure 7) [178]. DYNLL1 is known to dimerize disordered interaction
partners [187], and L-MAG cytoplasmic domain dimerization induced by DYNLL1 may be mediated
to the extracellular side of the membrane, affecting cell adhesion. The interaction site is non-canonical,
lacking the consensus sequence found in other disordered DYNLL1-interacting proteins [178,188],
and the binding site in L-MAG is conserved in mammals and reptiles [178]. A conserved Tyr in the direct
vicinity of the binding site might have a regulatory role via phosphorylation [178,185]. Isoform-specific,
DYNLL1-mediated dimerization of L-MAG could lead to different conformations or oligomeric states
of the MAG extracellular domain and affect its affinity/avidity towards neuronal ligands.

2.7. Periaxin

Periaxin (PRX) is the most abundant non-compact myelin protein of the PNS, making up 16%
of total protein mass [31]. PRX has two experimentally verified alternatively spliced isoforms: short
(S-PRX) and long (L-PRX) [189]. The PRX isoforms share an N-terminal PDZ (PSD95/DLG1/ZO-1 [190])
domain of ~100 residues, which forms a structurally unique intertwined dimer [191]. The structure of
the PDZ domain distinguishes PRX from all known PDZ domain-containing proteins [191,192], except
the giant AHNAK2 nucleoprotein – the only protein with any sequence homology to PRX [191].

The PDZ domain mediates both hetero- and homodimerization of S- and L-PRX [191,193].
In addition to the PDZ domain, S-PRX contains a C-terminal ~50-amino-acid tail of unknown function.
For L-PRX, the C-terminal tail is >1300 amino acids [189]. This entire segment is predicted to be
disordered [45], and based on its amino acid composition, the tail can be divided into five disordered
regions: a strongly basic region (spanning amino acids 100–200 in human L-PRX), a hydrophobic
region (201–430), a PEVK-rich region (431–783), a mildly basic region that shares homology with
AHNAK2 (784–1097), and an acidic C-terminal region (1098–1461). The domain structure of an S- and
L-PRX heterodimer is illustrated in Figure 8a. Refer to Supplementary Table S1 for a sequence analysis
of L-PRX [194].
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Figure 8. The structure and interactions of periaxin. (a) A schematic of a PRX heterodimer, with S-PRX
in gray and L-PRX colored based on region, with the PDZ domain in red. L-PRX, apart from the
PDZ-like domain, is predicted to be disordered [45], and can be divided into separate regions based
on sequence composition. Peripheral neuropathy mutations are indicated alongside L-PRX. Dashed
boxes and lines denote protein–protein interactions. L-PRX contains a predicted AnxA2 and S100A10
binding region, as reported earlier for AHNAK [195,196]. See Table 1 for mutation details. (b) L-PRX is
an assembler within abaxonal non-compact myelin, linking dystroglycans and integrins together in
membrane appositions, forming the periaxinosome. These interaction partners connect the Schwann
cell basal lamina to the Schwann cell cytoplasm. S-PRX forms heterodimers with L-PRX, which might
allow regulation of the cytoplasmic assembly as well as the nuclear export of L-PRX. Ezrin in complex
with hetero- or homodimeric L-PRX might have relevance in such regulations, especially considering
its phosphoregulated membrane-binding activity [197]. The function of the S-PRX homodimer is
unknown. The significance of the putative L-PRX/AnxA2/Sl00A10 ternary complex could involve
linking the entire assembly via AnxA2 and Ca2+ to the underlying membrane, possibly forming a
structural basis for membrane appositions that line Cajal bands in myelinating Schwann cells.
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The basic region following the PDZ domain consists of a 100-residue Arg and Lys-rich polyelectrolytic
sequence (Figure 8a,b). A tripartite nuclear localization signal (denoted NLS1, NLS2, and NLS3)
resides at the N-terminal third of this region [198]. While this region marks L-PRX for nuclear
trafficking [199], the same region mediates the interaction between L-PRX and the dystrophin-related
protein 2 (DRP2)/dystroglycan complex [13]. The DRP2/dystroglycan complex is a major transmembrane
assembly in-volved in the formation and stability of membrane appositions and Cajal bands in the
Schwann cell abaxonal layer [13,200,201], and it is strictly found in appositions, whereas most of L-PRX
is present in Cajal bands [13]. The interaction is thought to be mainly mediated by the DRP2 spectrin
repeat domain, with possible involvement of the adjacent WW domain and NLS2/NLS3 in L-PRX
(Figure 8b) [13,200]. Another recent discovery was the binding of the NLS3 region to the N-terminal
FERM domain of ezrin, a member of the ERM-family of proteins that link cytoskeletal elements to
membranes [197].

The basic region is followed by a hydrophobic region of unknown significance. This region is
abundant in Ala, Leu, Pro, and Val, and the regional grand average of hydropathicity (GRAVY [202]:
+0.202) is high compared to other regions in L-PRX (GRAVY values between −0.456 and −0.227).

The polyampholytic PEVK-rich region follows the hydrophobic region and is rich in Pro, Glu, Val,
and Lys (Figure 8b). Such an amino acid composition is present in the giant elastic protein titin, where
PEVK repeats form an extended entropic chain that contributes to the re-extension of the sarcomere
after contraction, forming the basis of muscle relaxation [203]. In fact, the PEVK-rich region can be
considered to be spanned by consecutive repeats of the pentapeptide motif [AGLMV]-[CEPQRS]-
[DEKL]-[AILMPV]-[AEHKPQR] with very few gaps. A simpler curated motif of [KR][AGLV]P[DE]X
(X = any residue) is very abundant. While no experimental evidence exists, the sequence composition
of the L-PRX PEVK-rich region suggests at least partial extension/disorder that remains non-foldable
under most conditions. A curious observation based on the mapping of PTMs in rat and mouse L-PRX
reveals that the PEVK-rich region is devoid of phosphorylation sites, whereas other regions of L-PRX
are subject to phosphorylation [131,204]. This might indicate the need to keep the region permanently
extended, rather than the extension being regulated post-translationally over time. The relatively high
content of evenly spaced Pro residues also suggests a potential hub for protein–protein interactions
e.g., with SH3 domains.

The AHNAK2 homology region is polyampholytic, and basic residues slightly dominate over
acidic ones (Figure 8b). Due to the presence of hydrophobic residues, the region should not be classified
as a polar tract. The function of this region is currently unknown, but it shares a short region in
common with AHNAK that has a potential binding partner. This region in AHNAK is an ι-MoRF that
forms a ternary complex with the heterotetrameric assembly of annexin A2 (AnxA2) and S100A10 (also
known as P11) in a 1:2:2 stoichiometry (Figure 9) [195,196]. The S100A10 dimer binds AHNAK and two
acetylated N termini of AnxA2, and the structure suggests that the Ca2+-regulated AnxA2 can carry
out its functions as part of the complex e.g. in membrane association [205]. AnxA2 is abundant in the
PNS, where it mostly localizes to the cytosol of various cell types, including the non-compact myelin of
Schwann cells [206]. S100A10 is also present in Schwann cells, where it interacts with AHNAK [207].



Cells 2020, 9, 470 14 of 33Cells 2020, 9, 470 15 of 34 

Cells 2020, 9, x; doi: www.mdpi.com/journal/cells 

 
Figure 9. Ternary complex between AHNAK peptide (sticks), S100A10 (blue ribbon), and the 
acetylated N terminus of AnxA2 (black ribbon) in a 1:2:2 stoichiometry (PDB ID 4ftg [196]; top). 
Sequence alignment of the binding motif of AHNAK with L-PRX predicts a similar binding site in L-
PRX (bottom). Coloring of the bound AHNAK peptide corresponds to residue conservation between 
AHNAK and L-PRX as evident from the sequence alignment. 

The C-terminal acidic region is rich in Glu, which is believed to be the basis of the interaction 
with NLS2 and NLS3 of the basic region (Figure 8b). The collective negative charge is likely to play a 
profound role in the association, although one specific point mutation, E1259K, had a significant 
inhibitory effect [203]. While L-PRX is predicted to be almost fully disordered, the acidic region is the 
only segment of L-PRX experimentally shown to be disordered: SAXS and CD experiments on a 
protein construct corresponding to the acidic region of rat L-PRX revealed that the protein is highly 
flexible in solution. In the same study, an interaction between the acidic region and the 3rd fibronectin 
type III (FNIII-3) of integrin β4 was described (Figure 8a-b) [210]. The complex formation specifically 
involves integrin β4 and not integrin α6. Nevertheless, the accurate binding site within L-PRX 
remains elusive; while the integrin β4 FNIII-3 domain in isolation forms a stable complex with the 
acidic region, L-PRX-derived peptides corresponding to various conserved linear stretches within the 
acidic region did not bind to FNIII-3 [210]. The binding could be mediated by several weakly binding 
short linear motifs that together result in a stable complex, rather than the binding involving a single 
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Figure 9. Ternary complex between AHNAK peptide (sticks), S100A10 (blue ribbon), and the acetylated
N terminus of AnxA2 (black ribbon) in a 1:2:2 stoichiometry (PDB ID 4ftg [196]; top). Sequence
alignment of the binding motif of AHNAK with L-PRX predicts a similar binding site in L-PRX (bottom).
Coloring of the bound AHNAK peptide corresponds to residue conservation between AHNAK and
L-PRX as evident from the sequence alignment.

While L-PRX is predicted to be almost fully disordered, the acidic region is the only segment
of L-PRX experimentally shown to be disordered: SAXS and CD experiments on a protein construct
corresponding to the acidic region of rat L-PRX revealed that the protein is highly flexible in solution.
In the same study, an interaction between the acidic region and the 3rd fibronectin type III (FNIII-3) of
integrin β4 was described (Figure 8a–b) [208]. The complex formation specifically involves integrin β4
and not integrin α6. Nevertheless, the accurate binding site within L-PRX remains elusive; while the
integrin β4 FNIII-3 domain in isolation forms a stable complex with the acidic region, L-PRX-derived
peptides corresponding to various conserved linear stretches within the acidic region did not bind
to FNIII-3 [208]. The binding could be mediated by several weakly binding short linear motifs that
together result in a stable complex, rather than the binding involving a single MoRF. It is possible that
the PRX acidic region forms a fuzzy complex with FNIII-3. Observing the structure of FNIII-3, it is
plausible that L-PRX binds through a β-MoRF that is stabilized by adjacent β-strands in FNIII-3. In the
C-terminal end of the acidic domain, another ezrin binding site has been reported. While the basic
domain interacts with the FERM domain of ezrin, the acidic domain binds to the ezrin C-terminal
domain. Both domain interactions occur simultaneously, and interestingly, the binding of ezrin to the
acidic domain can occur synergistically with integrin β4 binding [197].

The different regions of L-PRX most likely function together to achieve its function. L-PRX
mainly populates the outermost cytosolic compartment of myelinating Schwann cells, the abaxonal
layer, where it contributes to the formation of membrane appositions and the stability of Cajal
bands [13,200,201]. The localization of PRX depends on O-linked N-acetylglucosamination [209].
When correctly localized, L-PRX assembles abundant structural membrane protein complexes together,
bridging the extracellular basal lamina with Schwann cell cytoplasmic components [13,201,208]. We call
this continuous, macroscopic protein meshwork the periaxinosome. In its homodimeric state, L-PRX
can potentially form large supramolecular complexes, in which the laminin-bound DRP2-dystroglycan
complex and the integrin α6β4 complex are adjoined and correctly spaced by the PEVK-rich domain.
These two complexes are crucial for achieving correctly matured PNS myelin [210–212]. If the
L-PRX/AnxA2/S100A10 complex exists, the periaxinosome assembly could be Ca2+-bridged via AnxA2
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to the abaxonal membrane or even an apposing membrane underneath, which could be speculated to
form a molecular basis for membrane appositions in Schwann cells (Figure 8b). Another possibility for
forming membrane appositions would be the association of phosphorylated ezrin with an apposing
membrane via its FERM domain. In this scenario, ezrin should still be able to remain bound to L-PRX
via its C-terminal domain, although L-PRX-ezrin complexes were suggested to partake in regulating
the assembly of the periaxinosome rather than being structural parts of it (see below) [197].

As a potential regulatory mechanism, heterodimerization between S- and L-PRX has been proposed
to dissociate large clustered complexes when needed, and as a regulatory mechanism of the nuclear
export of L-PRX (Figure 8b) [193]. Indeed, as S-PRX lacks all NLS motifs, it is predominantly found in
the cytoplasm, although it localizes near the outer rim of the nucleus in mouse cerebral endothelial
cells [213]. Such localization in Schwann cells remains to be verified.

3. Selected Examples of IDPs in Demyelination

Demyelination arises from the destruction of the myelin sheath, which slows down rapid saltatory
conduction and in some cases results in axonal degeneration. Demyelination can arise from mutations in
myelin protein genes [214], from mitochondrial abnormalities [215], from the induction of the unfolded
protein response [216], or from environmental factors, such as viral infections or medication [217,218].
In this chapter, we will specifically focus on the involvement of MBP in MS, as well as the role of PRX
in peripheral neuropathies.

3.1. Basic Proteins and Multiple Sclerosis

MS is the best-known and most common demyelinating condition of the CNS [219]. In MS, myelin
is destroyed in an autoimmune attack either by activated T-cells that have crossed the blood brain
barrier [220,221], or by microglia, the immune cells of the CNS [222]. Various antigens are linked to MS,
many of which originate from myelin proteins, such as CNPase [223], MAG [224], MBP [93,225,226],
MOBP [227,228], or PLP [229], or from peptides of viral origin [225,230,231].

The antigenic epitopes of MBP and MOBP are known [93,225–228], and both reside in highly
conserved regions (see Figure 3; Figure 4). In the case of MBP, the antigenic region has been structurally
characterized in complex with a major histocompatibility complex class 2 protein, and it assumes an
extended conformation in the bound state [106,232–235]. Molecular mimicry has been proposed as a
mechanism for MBP-borne MS: the release of the antigenic epitope in the form of (auto)proteolytic
peptides that resemble viral peptides can be detected by the immune system, which results in an
attack against myelin and subsequent demyelination [23,225,230,236–238]. While free disordered
MBP is likely to be susceptible to degradation [226,239–241], the recently described intermediate
state in MBP-mediated membrane stacking could equally well be a target for proteolysis, especially
since membrane stacking is dependent on the concentration of available MBP [24]. The presence of
acidic lipids has been shown to accelerate the digestion of MBP by cathepsin D [242]. In addition,
the proteolytic susceptibility of deiminated MBP is higher [226,239].

In MS, the lipid composition and ion content of myelin are altered, affecting the membrane-stacking
activity of MBP [243,244]. Ca2+ is a major divalent cation in myelin and has numerous roles in
oligodendrocyte differentiation and myelination [128,245–249]. Ca2+ has been shown to affect the
production of MBP [250], and more notably, its membrane binding [53,90,244]. On the other hand, MBP
affects the amount of Ca2+ in oligodendrocytes [72,251]. Additionally, Zn2+ is an abundant trace element
in myelin and has been found to interact with MBP and boost its ability to bridge membranes in compact
myelin [86–89,252,253]. Zn2+ has also been connected to demyelination, notably MS [129,130]. Taking
into account all these factors, one can speculate that pro-pathological changes in the myelin environment,
as well as changes in PTMs in the MBP pool, could influence the membrane-stacking activity of MBP,
increasing proteolytic susceptibility. This is a plausible pathway that involves molecular mimicry and,
combined with the subsequent loss of MBP and decreased myelination [254], a pathological mechanism
that could contribute to MS (Figure 10).
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Figure 10. The fate of the MDL formation is governed by the concentration of active MBP (red), which
normally would associate with membranes, form a pre-stack state, and continue to accumulate until
stable membrane stacks form. MS is linked to an autoimmune response and loss of myelin, which could
stem from molecular mimicry. The immune system recognizes antigenic MBP peptides formed via
proteolysis of free or membrane-bound MBP. Changes in membrane lipid composition or concentration
of intracellular ions could pre-expose to this process [53,90]. Changes in the PTMs of MBP have
additionally been shown to play a role [60,226,239], as might lowered MBP expression levels [24].

3.2. Periaxin and Peripheral Neuropathies

Peripheral neuropathies are a diverse group of conditions of the peripheral nervous system, all
of which share in common a significant deceleration of nerve impulse conduction. They arise from
either demyelination or axonal degeneration. The most common peripheral neuropathy is Charcot–
Marie–Tooth disease (CMT), with all its subtypes collectively affecting 2.8 million people worldwide.
The symptomatic spectrum of CMT is broad, including tingling sensation and numbness of the limbs,
weakness, fatigue, pain, muscle spasms, loss of muscle mass, and the very common hallmark feature
of the disease: arched feet. The onset of CMT is generally broad, ranging from early childhood to
~40 years [255].

Mutations in PRX result in CMT type 4F (CMT4F) and Dejerine–Sottas syndrome (DSS), which
are severe demyelinating forms of CMT with morphological changes in Schwann cells (Figure 8a,
Table 1). For example, Cajal bands are abolished and the abaxonal layer appears uniform with the
R1070stop mutation, which removes the entire acidic region [208]. Similarly, deletion mutations in
DRP2 that abolish the interaction with L-PRX are detrimental to myelin and result in disease [201,256].
The effects of mutations that introduce a premature stop codon or a frameshift are easily explained
by loss of function, due to large truncations in L-PRX. Unfortunately, most point mutations in L-PRX
remain uncharacterized at the protein level. The regions with the most missense mutations could be
involved in as-of-yet undiscovered interactions. On the other hand, mutations could induce folding
of disordered regions, protein aggregation, or problems with protein synthesis. Some mutations can
be linked to potential abolishment of protein–protein interactions, such as K1062N, which lies in the
middle of the predicted AnxA2/S100A10 binding site in the AHNAK2 homology region [257].
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Table 1. PRX mutations, related neuropathies and potential molecular mechanisms.

Mutation 1 Neuropathy (Potential) Molecular Impact Reference(s)

R82fs DSS Tail loss; loss of interactions [258]
L132fs CMT4F Tail loss; loss of interactions [259]

R196stop CMT4F [260]
S259fs CMT4F Loss of hydrophobic, PEVK-rich, AHNAK2 homology and

acidic regions; loss of interactions
[261]

R364stop CMT4F Loss of PEVK-rich, AHNAK2 homology and acidic
regions; loss of interactions

[262]

R368stop DSS Loss of PEVK-rich, AHNAK2 homology and acidic
regions; loss of interactions

[263]

R392stop DSS Loss of PEVK-rich, AHNAK2 homology and acidic
regions; loss of interactions

[264]

S399fs CMT4F Loss of PEVK-rich, AHNAK2 homology and acidic
regions; loss of interactions

[265]

A406T DSS [263]
E495Q DSS [263]
V525A CMT4F [260,266]

Q547stop CMT4F Loss of PEVK-rich (partial), AHNAK2 homology and
acidic regions; loss of interactions

[261]

D651N CMT4F [267]
R679stop DSS Loss of PEVK-rich (partial), AHNAK2 homology and

acidic regions; loss of interactions
[264]

E682stop CMT4F Loss of PEVK-rich (partial), AHNAK2 homology and
acidic regions; loss of interactions

[261]

A700fs CMT4F [268]
C715stop DSS Loss of PEVK-rich (partial), AHNAK2 homology and

acidic regions; loss of interactions
[258]

V763fs DSS Loss of PEVK-rich (partial), AHNAK2 homology and
acidic regions; loss of interactions

[263]

K808fs CMT4F Loss of AHNAK2 homology and acidic regions; loss of
interactions

[261]

V882A DSS [263,269]
I921M DSS [263]
S929fs DSS Loss of AHNAK2 homology and acidic regions; loss of

interactions
[263]

K935E DSS [263]
K935stop DSS Loss of acidic domain; loss of integrin interaction [263]
K1062N CMT4F (Loss of predicted AnxA2/S100A10 interaction?) [257]

R1070stop CMT4F Loss of acidic domain; loss of integrin interaction [208,259,267,
270–272]

P1083R DSS [265]
E1085fs CMT4F Loss of acidic domain; loss of integrin interaction [273]
K1095fs CMT4F Loss of acidic domain; loss of integrin interaction [274]
G1132R DSS [263]
E1259K DSS [263]

R1335Q 2 CMT [266]
E1359del DSS [263]
R1411C DSS [263]
1 fs denotes frame shift mutation, stop denotes nonsense mutation. 2 Found together with V525A in a complex
neuropathy associated with dysarthria, hypermobile joints, and cerebellar symptoms.

4. Future Research Directions

Despite large efforts to uncover the mysteries of IDPs in myelin, the work is not over yet. MBP is
an example of how decades of work have allowed us to understand how the multifunctionality of
an IDP is linked to disorder-to-order transitions [65]. Still, new results may generate more questions
than answers. The discovery of the pre-stack state in MBP-driven myelin compaction raises new ideas
regarding MS etiology. Is it possible that a disordered protein brush undergoes degradation, and could
this release autoantigenic epitopes? The involvement of various splice isoforms of MBP, PTMs, divalent
cations, and specific lipid species should be re-addressed. Additionally, structural aspects of MBP
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functions apart from membrane stacking are subjects of future research: disorder-to-order transitions
in cytoskeletal interactions, for instance, would not only help us understand the effects of PTMs and the
isoform composition of the heterogeneous MBP pool, but also to use MBP as a prototype to elucidate
general attributes of IDPs in other systems.

Biophysical methodologies will continue to be highly important in the study of MBP and IDPs
in general. CD and NMR spectroscopy are powerful tools in directly probing disorder [275,276].
Small-angle scattering methods are sensitive to aggregation, but useful in probing conformational
sampling in solution [277], complementing for example Förster resonance energy transfer experiments
and computational methods [278,279]. Techniques that require isotope labeling, such as neutron methods
and NMR spectroscopy, face their own challenges during protein production. However, folding experiments
involving partially labeled proteins could prove to be highly useful. As demonstrated using reflectometry
and neutron scattering, the conformations of proteins in solution can be probed under membrane-mimicking
conditions [24], and introducing a second level of contrast with partially labeled proteins could allow
further dissection of molecular binding modes. The individually folding segments of MBP have been
studied with NMR spectroscopy, but for instance intein coupling could enable specific labeling of segments
of interest in full-length MBP for NMR and neutron studies [280,281]. This would allow mapping of,
for example, the segment of MBP inserting first into membranes, when the pre-stack state forms.

What is the relevance of MOBP in myelin and MS? Is Zn2+ important for its membrane binding?
These are two fundamental questions that need to be addressed in the future. The high conservation
of MOBP suggests an important role in myelin. At the same time, Zn2+ is abundant in myelin [127],
and while it can contribute to bridging membranes together by itself or through protein–cation
interactions [89,184,252,282], it most likely populates binding sites in zinc fingers [283], like the one
predicted in MOBP [48].

Jux binds actin filaments, but the molecular details are poorly understood [163]. Jux is not as
conserved as other IDPs in myelin, but small conserved segments are present that could be involved
in other functions (Figure 6). An important future goal is to understand the entire interactome of
Jux. Systematic approaches towards uncovering binding partners would help in placing Jux into a
functional context.

The potential regulatory role of S- and L-PRX heterodimerization needs to be characterized
at the molecular level, in order to shed light on PRX nuclear trafficking and the formation of the
periaxinosome. Are PNS myelin membrane appositions driven by high local concentrations of DRP2
that recruit PRX, or does PRX recruit DRP2 and cluster it to form appositions? Could ezrin be similarly
involved in the recruitment of L-PRX for integrin β4 binding, as hinted by their synergistic interaction?
The involvement of AnxA2 and S100A10 is speculative, and the putative formation of a ternary complex
with L-PRX should be studied. The role of the PEVK-rich domain as a molecular spacer is intriguing.
In membrane appositions, the bridge between the abaxonal membrane and the membrane underneath
is currently not known, but L-PRX could fill in this spot.

5. Conclusions

A clear divide exists between the IDPs of compact and non-compact myelin. Compact myelin
IDPs are highly basic and conserved, implying functional importance of membrane binding and
eventual stacking with concurrent partial folding of the IDP. In non-compact myelin, disorder is
relevant for protein–protein interactions and the formation of large protein complexes that may link
the myelinating cell cytoskeleton to extracellular components. Both myelin compartments are likely to
involve IDP-related molecular phase separation and the formation of membraneless organelles. While
the mysteries of myelin protein structure–function relationships are slowly unraveling, we are still a
long way from understanding the basic molecular essence of myelin, which is one of the most unique
biological compartments in vertebrates. Multidisciplinary approaches coupled with hybrid structural
biology methodologies will enable a deeper insight into the molecular interplay in myelination and
related neurological disease.
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