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Current application and future directions of 
photobiomodulation in central nervous diseases

Muyue Yang1, #, Zhen Yang2, #, Pu Wang3, *, Zhihui Sun4, *

Abstract  
Photobiomodulation using light in the red or near-infrared region is an innovative 
treatment strategy for a wide range of neurological and psychological conditions. 
Photobiomodulation can promote neurogenesis and elicit anti-apoptotic, anti-
inflammatory and antioxidative responses. Its therapeutic effects have been demonstrated 
in studies on neurological diseases, peripheral nerve injuries, pain relief and wound 
healing. We conducted a comprehensive literature review of the application of 
photobiomodulation in patients with central nervous system diseases in February 2019. 
The NCBI PubMed database, EMBASE database, Cochrane Library and ScienceDirect 
database were searched. We reviewed 95 papers and analyzed. Photobiomodulation has 
wide applicability in the treatment of stroke, traumatic brain injury, Parkinson’s disease, 
Alzheimer’s disease, major depressive disorder, and other diseases. Our analysis provides 
preliminary evidence that PBM is an effective therapeutic tool for the treatment of central 
nervous system diseases. However, additional studies with adequate sample size are 
needed to optimize treatment parameters.
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Introduction 
Photobiomodulation (PBM), an innovative therapeutical 
approach, utilizes light in the red (with wavelengths usually in 
the range of 600 to 700 nm) or near-infrared region (780 to 1100 
nm), at a relatively low power density to minimize tissue damage 
(McGuff et al., 1965; Hennessy and Hamblin, 2017; Gordon and 
Johnstone, 2019). The photons can cause chemical changes 
within the cells and provoke various reactions, including the 
triggering of neuroprotective responses, improving blood flow, 
inducing metabolic changes and neurogenesis (Mitrofanis and 
Henderson, 2020). In 1967, Dr. Endre Mester first proposed the 
medical benefits of low-level laser therapy. Numerous studies 
thereafter investigated the medical application of low-level laser 
therapy and PBM. The therapeutic effects of PBM have been 
demonstrated in many studies on neurological diseases (McGuff 
et al., 1965), peripheral nerve injuries, pain relief (De Freitas and 
Hamblin, 2016) and wound healing (Houreld, 2014).

While the mechanisms underlying the therapeutic effects of 
PBM remain unclear, it has been thought that the photons 
induce the production of reactive oxygen species, increase 
electron transport, and trigger a series of downstream 
reactions. The resulting products, including nitric oxide (NO), 
reactive oxygen species, cyclic AMP and Ca2+, are second 
messengers that can activate transcription factors and 
impact the expression of genes related to cell proliferation 
and migration, inflammation and apoptosis (Avci et al. 2013; 
De Freitas and Hamblin, 2016). PBM can increase cerebral 
blood flow (CBF), enhance cellular metabolism, and prevent 
neurodegeneration (Rojas et al., 2012; Salehpour et al., 2018).
Transcranial PBM refers to near-infrared light (NIR) applied 

to the head to treat neurological diseases. Research on 
transcranial PBM is still in infancy, but the limited studies 
in humans have shown encouraging outcomes in the 
treatment of stroke, traumatic brain injury (TBI), Parkinson’s 
disease (PD), Alzheimer’s disease (AD) and major depressive 
disorder (MDD). However, its clinical application still remains 
controversial. Overall, the results are not yet consistent as 
parameters has been continuously tested and optimized. 
Therefore, to assess the therapeutic potential of PBM, we 
conducted this review to summarize existing studies on PBM 
in the central nervous system (CNS) diseases.

Literature Search 
To evaluate the current application of PBM in CNS diseases, 
we conducted a literature review of all published original 
research studies involving PBM in subjects with CNS diseases. 
Articles involving treatment for stroke, TBI, PD, AD and MDD 
were included.

The literature search was conducted up to January 2019 using 
the NCBI PubMed database, EMBASE database, Cochrane 
Library and ScienceDirect database using the following 
search terms: (“transcranial photobiomodulation”) OR 
((photobiomodulation OR “low level laser therapy”) AND 
brain) OR ((photobiomodulation OR “low level laser therapy”) 
AND (brain injury OR stroke OR cerebrovascular disease 
OR depressive disorder OR neurodegenerative disease)). 
Only English language articles published in peer-reviewed 
journals were included. The details of the included studies are 
presented in Tables 1–6. In total, we identified 95 published 
papers relating to stroke, TBI, PD, AD and MDD.

Review

1Shanghai Jiao Tong University, Shanghai, China; 2Core Facility of West China Hospital, Chengdu, Sichuan Province, China; 3Department of Rehabilitation 
Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China; 4Department of Psychosomatic Medicine, The 
People’s Hospital of Suzhou New District, Suzhou, Jiangsu Province, China 
*Correspondence to: Pu Wang, PhD, wangpu183@163.com; Zhihui Sun, PhD, 999dna@163.com. 
https://orcid.org/0000-0001-8048-6773 (Pu Wang)
#These authors contributed equally to this paper. 

How to cite this article: Yang M, Yang Z, Wang P, Sun Z (2021) Current application and future directions of photobiomodulation in central nervous diseases. 
Neural Regen Res 16(6):1177-1185. 



1178  ｜NEURAL REGENERATION RESEARCH｜Vol 16｜No.6｜June 2021

Photobiomodulation for Stroke 
As summarized in Table 1, PBM has been evaluated in 
stroke animal models and patients. Lapchak et al. (2004) 
investigated the efficacy of laser therapy for stroke in a 
rabbit small clot embolic stroke model (RSCEM). They found 
that PBM improved behavioral performance and had long-
term benefits. They also compared the effects of continuous 

wave (CW) or pulse wave (PW) PBM, and concluded that PW 
provides better outcome (Lapchak et al., 2007). In another 
study, 169 rats were irradiated ipsilaterally, contralaterally 
and on both sides, and all treated groups showed significant 
improvement (DeTaboada et al., 2006). The significant 
functional improvement provided by PBM may be associated 
with the induction of neurogenesis (Oron, 2006). Studies 

Review
Table 1 ｜ Photobiomodulation for stroke in animal and clinical studies

Animal studies Animals Modeling method
Wavelength 
(nm)

Irradiation 
parameters Power density/energy density

Lapchak et al. 
(2004)

14 Male New Zealand 
white rabbits

Microclots were prepared from 
blood drawn from a donor rabbit 
and allowed to clot at 37°C

808 CW 7 mW/cm2 for 2 min (0.84 J/cm2) or 
25 mW/cm2 for 10 min (15 J/cm2)

Lapchak et al. 
(2007)

Male New Zealand white 
rabbits 

Injection of clot particle 
suspension

808 PW at 100 Hz or 
1000 Hz, or CW

7.5 mW/cm2, 0.9–1.2 J

DeTaboada et al. 
(2006)

169 Atherothrombotic 
model rats

/ 808 / 7.5 mW/cm2 at brain tissue level, 
0.9 J/cm2 per site (in total 2 sites)

Oron et al. (2006) 43 Adult male Sprague-
Dawley rats; 18 male 
Wistar rats

(1) Permanent occlusion of the 
middle cerebral artery through a 
craniotomy or (2) insertion of a 
filament

808 PW at 70 Hz or CW 7.5 mW/cm2 at brain tissue level, 
0.9 J/cm2 per site (in total 2 sites)

Yang et al. (2018) Male Sprague-Dawley rats / 808±3.0 25 mW/cm2 at cerebral cortex tissue 
level, 350 mW/cm2 on the scalp

Leung et al. 
(2002)

Male adult Sprague-Dawley 
rats

Unilateral occlusion of middle 
cerebral artery 

660 PW at 10 Hz 8.8 mW, 2.64, 13.2, or 26.4 J/cm2

Lapchak et al. 
(2008) 

89 Male New Zealand 
white rabbits 

Injection of emboli 808 CW 10 mW/cm2

Lapchak and De 
Taboada (2010) 

24 Male New Zealand 
white rabbits 

Injection of emboli 808 PW at 100 Hz or CW 7.5, 37.5, or 262.5 mW/cm2; 0.9, 4.5, or 
31.5 J/cm2 

Yip et al. (2011) 12 Male Sprague-Dawley 
rats

Occlusion of right middle cerebral 
artery for 1 h

606 PW at 10 Hz 8.8 mW, 2.64, 13.20, or 26.40 J/cm2

Choi et al. (2012) Male Wistar rats Occlusion of the right middle 
cerebral artery 

710 CW 0.042 mW/cm2, 1.796 J/cm2

Huisa et al. (2013) Male New Zealand white 
rabbits 

Injection of microemboli 808.5 CW 7.5, 10.8, or 20 mW/cm2

Fukuzaki et al. 
(2015) 

Adult FVB mice Occlusion of bilateral common 
carotid artery

532 CW 845 mW/cm2, 30.4 × 102 J/cm2

Lapchak and 
Boitano (2016)

60 Male New Zealand 
white rabbits 

Injection of emboli 808 CW 7.5 mW/cm2, 0.9 J/cm2

Lee et al. (2016) Male mice (C57BL/6J) Photothrombosis of the cortical 
microvessels

610 CW 1.7 mW/cm2, 2 J/cm2

Meyer et al. 
(2016)

One male New Zealand 
white rabbits 

Injection of emboli 808.5 CW or PW at 10 or 
100 Hz

7.5–333 mW/cm2

Lee et al. (2017a) Mouse photothrombotic 
cerebral focal ischemia 
model

/ 610 CW 1.7 mW/cm2, 2 J/cm2

Lee et al. (2017b) 17 Male C57BL/6J wild-
type and eNOS mice 

Occlusion of the right middle 
cerebral artery 

610 CW 1.7 mW/cm2, 2 J/cm2

Yun et al. (2017) 24 Male Sprague-Dawley 
rats 

Occlusion of the left middle 
cerebral artery

650 PW at 100 Hz 30 mW

Argibay et al. 
(2019)

Male Sprague-Dawley rats Occlusion of the middle cerebral 
artery

830 CW 0.28 J / cm2

Clinical studies  Subjects Wavelength (nm)
Irradiation 
parameters Power density/energy density

Lampl et al. 
(2007)

120 Patients 808 CW 10 mW/cm2, 1.2 J/cm2

Zivin et al. (2009) 660 Patients 808 CW 10 mW/cm2, 1.2 J/cm2

Zivin et al. (2014) 630,316 Patients were 
allocated to treatment 
group versus 314 allocated 
to controls

808 CW 10 mW/cm2, 1.2 J/cm2

Boonswang et al. 
(2012)

A 29-year-old woman with 
brainstem stroke

660 and 850 CW 1400 mW, 2.95 J/cm2

das Neves et al. 
(2016)

15 Subjects (6 males 
and 9 females) with 
cerebrovascular accident 
and spastic hemiparesis

808 CW 3.18 W/cm2, 127.39 J/cm2

Jan et al. (2017) 38 Patients; LASER 
group (20 patients) and 
interferential current group 
(18 patients).

905 CW 400 mW, 6 J/cm2

CW: Continuous wave; eNOS: endothelial nitric oxide synthase; PW: pulsed wave.
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on C17.2 immortalized mouse neural progenitor cell lines 
show that PBM significantly increases cellular proliferation 
(Argibay et al., 2019). Yang et al. (2018) investigated the effect 
of PBM on neurogenesis. PBM promoted the proliferation 
and differentiation of neural progenitor cells in the peri-
infarct zone and the switch from an M1 microglial phenotype 
to an anti-inflammatory M2 phenotype, thereby improving 
microenvironment and mitochondrial function.

Despite the encouraging results in animal stroke studies, laser 
therapy has limited success in humans. Early studies were not 
successful. A series of three clinical trials termed “NeuroThera 
Effectiveness and Safety Trials” (NEST-1 (Lampl, 2007), NEST-
2 (Zivin, 2009), and NEST-3 (Zivin et al., 2014)) have evaluated 
the efficacy of PBM in stroke patients. Lampl et al. (2007)
recruited 120 ischemic stroke patients, with 79 patients in the 
experimental group and 41 in the control group. More patients 
(70%) in the experimental group had favorable outcomes than 
controls (51%), as assessed with the National Institutes of 
Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS). 
In NEST-2 with 660 patients, the group given transcranial laser 
therapy showed slightly, but not significantly better outcome 

than the control group. There were no significant differences 
in mortality rates or serious adverse events in term of safety 
data (Zivin, 2009). NEST-3 was prematurely terminated for 
futility (an expected lack of statistical significance) (Zivin et 
al., 2014). Researchers tend to attribute this failure to the 
violation of RIGOR guidelines (Lapchak and Boitano, 2016). In 
a case study, a 29-year-old woman who suffered a brainstem 
stroke showed improvement in both cognitive state and motor 
recovery after 8 weeks of PBM (Boonswang et al., 2012). The 
accelerated recovery in motor functions was also observed in 
a study of 15 patients with post-stroke spasticity (das Neves et 
al., 2016). After three consecutive phases, the group treated 
with PBM showed significant reduction in pain intensity. PBM 
was also effective in ameliorating post-stroke shoulder pain 
(Jan et al., 2017).

Photobiomodulation for Traumatic Brain Injury 
We identified 21 papers reporting on PBM for TBI, including 
15 animal studies and 6 clinical studies (Table 2). Oron et al. 
(2007) investigated the therapeutic effectiveness of PBM in 
mice with traumatic brain injury (TBI). They evaluated the 

Table 2 ｜ Photobiomodulation for traumatic brain injury in animal and clinical studies 

Animal studies Animal models Modeling method
Wavelength 
(nm)

Irradiation 
parameters

Power density/energy 
density

Oron et al. (2007) 24 Mice Weight-drop device 808 CW 10 or 20 mW/cm2, 1.2 or 
2.4 J/cm2

Oron et al. (2012) / Weight-drop device 808 PW at 100 Hz or 
CW

/

Ando et al. (2011) 40 Mice Controlled cortical impact 810 CW; PW at 10 Hz 
and 100 Hz

50 mW/cm2, 36 J/cm2

Wu et al. (2012) 28 Adult male BALB/c mice Controlled weight drop onto the 
skull

665, 730, 810, 
or 980 

CW 150 mW/cm2, 36 J/cm2

Anders et al. (2014) 22 New Zealand white rabbits Controlled cortical impact 810 and 980  CW 10 mW/cm2; 2–200 mJ/cm2

Moreira et al. (2009) 51 Adult male Wistar rats Cryogenic brain injury 660 or 780 CW 40 mW, 3 or 5 J/cm2 per site 
(2 sites in total)

Moreira et al. (2011) Forty adult male Wistar rats (Rattus 
norvegicus albinus)

Cryogenic brain injury 780 CW 40 mW, 3 J/cm2

Khuman et al. (2012) 239 Male C57BL/6 mice Controlled cortical impact 800 CW 500  mW/cm2, 60 J/cm2 
Quirk et al. (2012) 104 Sprague-Dawley rats Controlled cortical impact 670 CW 50 mW/cm2, 15 J/cm2

Xuan et al. (2013) 144 Adult male BALB/c mice Cortical impact; the bone flap was 
removed and mice were subjected 
to controlled cortical impact using 
a pneumatic impact device

810 CW 25 mW/cm2, 18 J/cm2

Xuan et al. (2014) 64 Young adult male BALB/c mice Controlled cortical impact 810 CW 25 mW/cm2, 18 J/cm2

Xuan et al. (2015) 40 Male BALB/c mice Controlled cortical impact 810 CW 50 mW/cm2, 36 J/cm2

Xuan et al. (2016) 96 Male BALB/c mice Cortical impact; the bone flap was 
removed and mice were subjected 
to controlled cortical impact using 
a pneumatic impact device

810 CW 25 mW/cm2, 18 J/cm2 

Zhang et al. (2014) Wild-type mice and IEX-1 knockout 
mice on 129Sv/C57BL/6 background

Controlled cortical impact 810  PW at 10 Hz 150  mW/cm2, 36  J/cm2

Dong et al. (2015) C57BL/6 mice Controlled cortical impact 810  PW at 10 Hz 150  mW/cm2; 36  J/cm2

Clinical studies Subjects Wavelength (nm)
Irradiation 
parameters Power density/energy density

Naeser et al. (2011) Two chronic, traumatic brain injury  
cases

633 and 870 CW 19.39 mW/cm2 and 22.48 mW/cm2, 13.3 J/cm2

Naeser et al. (2014) Eleven chronic, mild traumatic brain 
injury participants

633 and 870 CW 500 mW, 22.48 mW/cm2, 13 J/cm2

Nawashiro et al. 
(2012)

Patients in a persistent vegetative 
state

850 CW 11.4 mW/cm2; the energy density 20.5 J/cm2

Henderson et al. 
(2015)

A patient with moderate traumatic 
brain injury

810 and 980 CW 10–15 W

Hipskind et al. 
(2018)

Twelve symptomatic military 
veterans with chronic traumatic 
brain injury > 18 months post-
trauma

220 CW 6.4  mW/cm2 for 20 min

Morries et al. (2015) Ten patients with chronic traumatic 
brain injury 

810 and 980 PW at 10 Hz 10 and 15 W, 14.8–28.3 J/cm2

CW: Continuous wave; PW: pulsed wave. 
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effects of two PBM modes (PW versus CW), and found a 
substantial improvement and better outcome with pulsed 
laser mode at 100 Hz (Oron et al., 2012). Ando et al. (2011) 
found that 10-Hz pulse frequency was more effective than 
CW and 100-Hz mode with a wavelength of 810 nm. The 
effectiveness of 810 nm is also supported by another study 
(Wu et al., 2012). Anders et al. (2014) proposed that the 
parameters can be optimized with in vitro models, and then 
followed by in vivo research and clinical application.

Several studies have investigated the underlying mechanisms. 
Moreira et al. (2009) found that PBM affected local and 
systemic immune functions following cryogenic brain injury by 
modulating tumor necrosis factor-alpha (TNF-α), interleukin-
1beta (IL-1β) and interleukin-6 (IL-6) levels. They also showed 
that PBM prevented neuronal death and severe astrogliosis, 
thereby promoting wound healing (Moreira et al., 2011). 
Reduced microgliosis was also observed in the PBM-treated 
group in another study (Khuman et al., 2012). In addition, 
PBM may exert neuroprotective effects by upregulating 
mitochondrial function and decreasing oxidative stress 
(Quirk et al., 2012). Xuan et al. (2013) found that mice in 
the treatment group had smaller lesion size at 28 days and 
fewer degenerating neurons, suggesting that PBM therapy 
may encourage neurogenesis. They further discovered that 
laser therapy promoted neurogenesis in the hippocampus 
and subventricular zone by upregulating brain-derived 
neurotrophic factor, which may stimulate synaptogenesis 
and at least partially account for the improved memory 
and learning function (Xuan et al., 2014, 2015). Xuan et al. 

(2014, 2015) observed an interesting biphasic dose-response 
relationship in which the effect of PBM seemed to decline 
with increasing laser exposure. They designed another 
study with two groups given 3 or 14 sessions daily of PBM 
treatment, and found that the negative effect of excessive 
PBM was temporary and might be caused by temporary 
induction of reactive gliosis. With longer follow-up time, 
mice given 14 sessions started to show steady improvement 
(Xuan et al., 2016). Zhang et al. (2014) investigated the 
effect of PBM on secondary brain injury in mice lacking 
immediate early responsive gene X-1 (IEX-1). Laser therapy 
regulated proinflammatory mediators and increased ATP 
levels, promoting brain recovery. The recovery of learning 
and memory function was associated with reduced loss of 
hippocampal tissue compared with the control group (Dong et 
al., 2015).

Six human studies, all case series, with 37 patients in total 
have been done in traumatic brain injury with various results. 
Naeser et al. (2011) reported two cases with closed-head TBI 
that showed significant cognitive improvement and reduced 
cost of treatment. They then conducted a study in eleven 
chronic TBI patients. They found improvement in learning 
ability, which was positively correlated with treatment 
duration (Naeser et al., 2014). In other case reports, clinical 
symptoms, including depression, anxiety, headache and 
insomnia, were reduced after laser therapy, which might 
be associated with increased regional cerebral blood flow 
(Nawashiro et al., 2012; Henderson and Morries, 2015). 
Hipskind et al. (2018) investigated its effect on cognitive 

Table 3 ｜ Photobiomodulation for Parkinson's disease in animal studies 

Animal studies Animals Modeling method
Wavelength 
(nm)

Irradiation 
parameters Power density/energy density

Peoples et al. (2012) 80 Male albino BALB/c mice Injection of MPTP 670 CW 5 J/cm2; 90 s

Shaw et al. (2012) 96 Male albino BALB/c mice Injection of MPTP 670 CW 0.5 J/cm2

Moro et al. (2013) 40 Male BALB/c (albino) and 40 C57BL/6 
(pigmented) mice 

Injection of MPTP CW /

Moro et al. (2014) 36 Male BALB/c mice and 3 Sprague-Dawley 
rats 

Injection of MPTP 670 PW, CW 1.5 mW/cm2 (PW) or 14.5 mW/cm2 
(CW)

Moro et al. (2016) 15 Monkeys Injection of MPTP 670 PW with 5 s 
ON/60 s OFF

Lower doses (25 J or 35 J); higher 
dose (125 J)

Darlot et al. (2015) A monkey Injection of MPTP 670 PW with 5 s 
ON/60 s OFF

10 mW; 25 or 35 J

Shaw et al. (2014) 12 Adult male macaque monkeys (Macaca 
fascicularis, Mauritius); 30 adult male albino 
BALB/c mice

Injection of MPTP CW /

Reinhart et al. (2015) Male BALB/c mice Injection of MPTP 810 / 5.3 mW/cm3

Reinhart et al. (2016) 147 Male BALB/c mice Injection of MPTP 670 CW 5.3 mW/cm2, 0.5 J/cm2

Reinhart et al. (2016) 62 Male BALB/c mice Injection of MPTP 670 and/or 
810 

CW 15 or 30 mW

El Massri et al. (2014) 130 Male BALB/c mice Injection of MPTP 670 CW 5.3 mW/cm2

Purushothuman et al. 
(2013)

K3 transgenic mouse model (K369I tau 
transgenic model (K3))

Transgenic mouse 
model

670 CW 80 J/cm2

Vos et al. (2013) Pink1 null mutants Rotenone treatment 808 CW 10–25 mW/cm2

Johnstone et al. (2014) 143 Male BALB/c mice Injection of MPTP 670 CW 50 mW/cm2, 4 J/cm2; 90 s
El Massri et al. (2016) 24 Adult Macaque monkeys (Macaca 

fascicularis) 
Injection of MPTP 670 PW with 5 s 

ON/60 s OFF
10 mW; 25 or 35 J over 7 days

El Massri et al. (2017) 17 Balb/c mice, 15 Wistar rats and 16 
macaque monkeys (Macaca fascicularis) 

Injection of MPTP 670 CW 0.16 mW for mouse and rat, and 
10 mW for monkey

El Massri et al. (2018) 12 Macaque monkeys (Macaca fascicularis) Injection of MPTP 670 / /
Kim et al. (2018) 10 Male C57BL/6 mice/group Injection of MPTP 670 CW 50 mW/cm2, 3 min
Oueslati et al. (2015) 23 Sprague-Dawley female rats (Charles 

River Laboratories)
Injection of 2 μL of 
viral suspension

808 / 2.5 mW/cm2 (n = 7) and 5 mW/cm2 
(n = 7)

Ganeshan et al. (2019) 62 Male BALB/c mice Injection of MPTP 670 CW 50 mW/cm2; 4 J/cm2 per day
Reinhart et al. (2016) 61 Male Wistar rats Injection of 6-OHDA 670 PW, CW 333 nW or 0.16 mW, 634 mJ or 304 J
Shaw et al. (2010b) BALB/c albino mice Injections of MPTP 670 CW 40 mW/cm2 at scalp, 5.3 mW/cm2 

inside skull, 0.47 J/cm2

CW: Continuous wave; PW: pulsed wave. 
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functional improvement and regional cerebral blood flow in 
12 symptomatic military veterans diagnosed with chronic TBI.

Photobiomodulation for Parkinson’s Disease  
In vitro studies have provided preliminarily support for a 
protective effect of PBM against 1-methyl-4-phenylpyridinium 
ion (MPTP)-induced neurotoxicity, supporting its application 
in in vivo studies (Dilworth et al., 1975; Liang et al., 2008; 
Ying et al., 2008; Trimmer et al., 2009). Peoples et al. (2012) 
found that laser therapy given concomitantly or after chronic 
MPTP administration protected dopaminergic cells from 
degeneration in the MPTP mouse model of PD (Table 3). The 
effect was long lasting, even after minimal exposure (Shaw 
et al., 2012). Moro et al. (2013) contributed greatly to the 
assessment of the efficacy and safety of laser treatment. They 
found higher numbers of tyrosine hydroxylase (TH)-positive 
cells in the laser-treated groups in both C57BL/6 (pigmented) 
and Balb/c (albino) mice. The albino mice showed better 
outcome because of greater penetration of NIR through the 

skin and fur. They then investigated its safety in MPTP-treated 
mice (Moro et al., 2014) and monkeys (Moro et al., 2016). 
NIR caused no observable behavioral deficits, nor was there 
evidence of tissue necrosis, suggesting NIR can be applied 
intracranially. Its effects on monkey PD models have also been 
investigated, and this primate model might be more suitable 
for pre-clinical studies (Shaw et al., 2010a; Darlot et al., 2016).

Reinhart et al. (2015) evaluated the impact of different 
treatment parameters. They showed that 810 nm laser 
therapy had a more immediate therapeutic effect than 670 
nm (Reinhart et al., 2015). They also investigated the effects 
of laser therapy before, at the same time, and after injection 
of MPTP. These investigators found that all three treatments 
produced similar outcomes in their PD model (Reinhart et 
al., 2016a). In addition, exposure to 670 nm and 810 nm NIR 
either together or sequentially produced better results than 
either alone, especially together (Reinhart et al., 2016b). 
El Massri et al. (2016a) investigated the effect of different 
doses of NIR. The positive effect of PBM seemed to be dose-

Table 4 ｜ Photobiomodulation for Alzheimer’s disease in animal and clinical studies 

Studies Animals/Subjects Modeling method
Wavelength 
(nm)

Irradiation 
parameters Power density/energy density

De Taboada et al. 
(2011) 

One hundred male transgenic 
Aβ PP mice 

Microinjection of human 
Aβ PP gene

808 PW at 100 Hz, 
or CW

10 mW/cm2; 1.2, 6, or 12 J/cm2

Grillo et al. (2013) TASTPM mice Transgenic mouse model 1072 PW at 600 Hz 5 mW/cm2, 1.8 J/cm2

Purushothuman et al. 
(2014)

15 K3 mice or 18 APP/PS1 
mice 

Transgenic mouse model 670 CW 4 J/cm2; 90-second treatment equates to  
4 J/cm2; a total of 80 J/cm2 was delivered to the 
skull over the 4 weeks; 90 seconds

Purushothuman et al. 
(2015)

10 K3 and 12 APP/PS1 
transgenic mice

Transgenic mouse model 670 CW 4 J/cm2

da Luz Eltchechem et 
al. (2017)

60 Male Wistar rats (Rattus 
Norvegicus) 

Transgenic mouse model 627 / 7 J/cm2, 70 mW

Farfara et al. (2015) 5XFAD transgenic male mice 
(Tg6799)

Transgenic mouse model / CW 400 mW, 1 J/cm2

Lu et al. (2017) 12 Male Sprague-Dawley rats Transgenic mouse model 808 CW 25 mW/cm2, 3 J/cm2

Saltmarche et al. 
(2017)

Five participants with 
dementia or Alzheimer‘s 
disease 

/ 810 PW at 10 Hz 14.2 mW/cm2; 10.65 J/cm2

Berman et al. (2017) 11 Participants / 1072 PW at 10 Hz /
Chao (2019) 8 Participants with dementia / 810  PW at 40 Hz 75 mW/cm2, 45 J/cm2

CW: Continuous wave; PW: pulsed wave.

Table 5 ｜ Photobiomodulation for major depressive disorder in animal and clinical studies 

Animal studies Animals Wavelength (nm) Irradiation parameters

Ando et al. (2011) 40 Male BALB/c mice Depression following traumatic 
brain injury

810  CW; PW at 10 Hz and 100 Hz

Wu et al. (2012) 32 Adult male BALB/c mice Chronic mild stress 810 PW at 100 Hz
Salehpour and Rasta  (2016) 50 Adult male BALB/c mice Chronic mild stress 630 or 810 PW at 10 Hz
Mohammed (2016) 24 Adult male albino rats Reserpine induced depression 804 CW
Xu et al. (2016) / Depression induced by Ahi1 KO or 

space restriction
808 CW

Salehpour  et al. (2018) 75 Adult male BALB/c mice Sub-chronic restraint stress 810  PW at 10 Hz

Clinical studies Subjects Wavelength (nm)
Irradiation 
parameters Irradiation parameters

Quah-Smith et al. (2005) 30 Patients with elevated depressive 
symptoms

804  CW /

Schiffer et al. (2009) 10 Patients with treatment-resistant major 
depressive disorder 

810 CW 250 mW/cm2, 60 J/cm2

Cassano et al. (2015) 4 Patients with major depressive disorder 808 CW 5 W, 700 mW/cm2, 84 J/cm2

Henderson et al. (2017) 39 Patients with traumatic brain injury 
presenting with depressive symptoms

810, 980 CW 8–15 W

Disner et al. (2016) Fifty-one adult participants with elevated 
symptoms of depression 

1064  CW 250 mW/cm2, 60 J/cm2

Caldieraro et al. (2018) One patient with major depressive 
disorder with anxious distress 

830  CW 36 mW/cm2; 80 J/cm2

CW: Continuous wave; KO: knock-out; PW: pulsed wave. 
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dependent—exposure to higher doses of NIR had a longer 
protective effect and was associated with reduced astrogliosis. 
Further studies are needed to optimize treatment parameters.

Several studies have investigated the mechanisms underlying 
the therapeutic effects of laser therapy. Purushothuman et al. 
(2013) found that NIR treatment reduced oxidative stress and 
inhibited neurodegeneration. Mitochondrial dysfunction has 
been observed in PD animal models and patients. PBM can 
improve mitochondrial function and cellular metabolism (Vos 
et al., 2013). Interestingly, it has been observed that unilateral 
exposure to NIR can have a bilateral effect. Indirect light 
may rescue TH+ cells in the substantia nigra pars compacta, 
possibly via unidentified mediators. This indirect effect is 
diminished by high-dose MPTP exposure (Johnstone et al., 
2014).

El Massri et al. (2016b) discovered changes in the glial 
response, especially in astrocytes, after laser therapy in a 
monkey model of PD. These investigators further found that 
trophic factors, such as glial-derived neurotrophic factor, in the 
striatum may also play a role during NIR therapy (El Massri et 
al., 2017). In a subsequent study, their research group focused 
on encephalopsin, which is expressed by two populations of 
striatal interneurons constituting complex networks. Although 
PBM seemed to have no notable effect, external light seemed 
to exert an effect on the network of encephalopsin-expressing 
cells (El Massri et al., 2018).

A number of recent studies have examined the indirect effects 
of PBM. For example, PBM applied distally can trigger brain 
protective mechanisms, saving crucial neurons in PD (Kim et 
al., 2018). Consistent with previous studies (Purushothuman 
et al., 2013; Oueslati et al., 2015; Vos et al., 2016), remote 
PBM was demonstrated to modulate a variety of signaling 
pathways, thereby upregulating cell signaling and migration, 
including CXCR4+ stem cells, adipocytokine signaling and 
nuclear factor erythroid 2-related factor 2 expression, in 
turn modulating cellular oxidative stress response pathways. 
In addition, PBM affects the blood-brain barrier and might 
reduce damage to the brain (Ganeshan et al., 2019).

Photobiomodulation for Alzheimer’s 
Disease 
Aβ plaques and hyperphosphorylated tau are observed 
in patients with AD. NIR was shown to reduce Aβ plaques 
in the brain of a transgenic AD mouse model in a dose-
dependent manner (De Taboada et al., 2011; Grillo et al., 
2013) (Table 4). Grillo et al. (2013) reported upregulation of 
heat shock proteins in an AD model; however, a significant 
downregulation of heat shock proteins was observed after 
treatment with 1072-nm NIR. Purushothuman et al. (2014) 
used two different mouse models of AD: the K369I tau 
transgenic model (K3) that develops neurofibrillary tangles, 
and the APPswe/PSEN1dE9 transgenic model (APP/PS1) that 
develops Aβ plaques. Both of these characteristic features 
of AD were reduced after NIR treatment (Purushothuman 
et al., 2014). These investigators subsequently examined 
the therapeutic effects of NIR treatment on the cerebellum 

(Purushothuman et al., 2015). A recent study demonstrated 
that PBM improves spatial  memory and behavioral 
performance (da Luz Eltchechem et al., 2017). As mentioned 
above, PBM can impact signaling pathways, and thereby 
regulate cell proliferation, migration and apoptosis. In an 
AD model, NIR induces proliferation of CD11b-positive 
monocytes, which appear to remove plaques by phagocytosis 
(Farfara et al., 2015). Because inflammatory responses and 
oxidative stress are associated with the development of AD 
(De Felice and Ferreira, 2014; Urrutia et al., 2014), PBM may 
ameliorate mitochondrial dysfunction in the disease. Indeed, 
Lu et al. (2017) showed that PBM inhibits G6PDH and NADPH 
oxidase activities, thereby reducing reactive oxygen species 
production and oxidative stress.

Human studies on the effects of PBM are still limited. 
Saltmarche et al. (2017) reported a case series of five 
patients given PBM therapy. The subjects showed cognitive 
improvement and better emotional control after a 4-week 
treatment period. No side effects were observed. In another 
controlled trial with 11 participants, no significant difference 
was found between the PBM group and controls, possibly 
because of small sample size (Berman et al., 2017). Chao 
(2019) found increased cerebral perfusion in eight participants 
diagnosed with dementia after 12 weeks of PBM. Given 
the encouraging outcomes in animal studies, further well-
designed clinical trials with larger sample size and long-term 
follow-up are warranted.

Photobiomodulation for Major Depressive 
Disorder 
Major depressive disorder (MDD) is one of the most common 
psychiatric disorders. PBM has been found to be potentially 
effective in the treatment of MDD (Table 5). In studies 
investigating PBM for TBI, immobility time in the forced swim 
test was reported to be decreased in the treatment group, 
suggesting an anti-depressive effect of PBM (Ando et al., 
2011; Wu et al., 2012). Salehpour and Rasta (2017) assessed 
the effects of low-level laser therapy (10 Hz PW, 810  nm) in 
the chronic mild stress model of depression, compared with 
citalopram. Immobility time was significantly decreased in 
both groups; however, no significant reduction in anxiety-
like behavior was detected in the elevated plus maze test. An 
antidepressant-like effect of PBM was also observed in the 
model of reserpine-induced depression, as evaluated by forced 
swim test and electrocorticography (Mohammed, 2016). Xu 
et al. (2017) reported that the NIR-treated group showed 
better outcomes in behavioral despair tests, and found that 
this improvement was associated with the modulation of 
neurotransmitter levels and improved mitochondrial function 
in the prefrontal cortex. Furthermore, PBM has been shown to 
reduce oxidative stress and superoxide anion levels (Salehpour 
et al., 2019). In a randomized double-blind controlled study 
with 30 patients with depression, a significant difference was 
observed in Beck Depression Inventory scores between the 
laser therapy and control groups (Quah-Smith et al., 2005). 
Schiffer et al. (2009) used the Hamilton Depression Rating 
Scale (HAM-D) and Hamilton Anxiety Rating Scale (HAM-A) 

Table 6 ｜ Other applications of photobiomodulation in animal and clinical studies

Studies Animals/subjects Modeling method
Wavelength 
(nm)

Irradiation 
parameters Power density/energy density

Muili et al. (2012) 17 C57BL/6 mouse model of multiple 
sclerosis

Induction with myelin 
oligodendrocyte glycoprotein

670 CW 5 J/cm2

Leisman et al. (2018) 40 Patients with autism spectrum 
disorder

635 CW A power output of 15 mW

Yang et al. (2019) Sprague-Dawley rats with neonatal 
hypoxic ischemic encephalopathy 

Ligation of the right common 
carotid artery

808 CW 100 mW/cm2; 12 J/cm2

CW: Continuous wave.
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to evaluate the efficacy of PBM in 10 patients. Cassano et 
al. (2015) investigated the safety of 700 mW/cm2 NIR, and 
reported that no serious adverse events were observed. High 
power NIR provides persistent and better results compared 
with low power NIR (Henderson and Morries, 2017). In 
addition, PBM can be used in combination with other 
treatment modalities to enhance therapeutic effectiveness. 
For example, laser therapy combined with attention bias 
modification can enhance cognitive improvement (Disner 
et al., 2016). A case report of a 76-year-old white woman 
diagnosed with MDD with anxious distress showed steady 
improvement (Caldieraro et al., 2018).

Other Applications
PBM has been shown to be effective in other CNS diseases 
as well (Table 6). Muili et al. (2012) found amelioration of 
symptoms in a mouse model of multiple sclerosis. A study 
reported improvement of autism spectrum disorder in 
children and adolescents of 5–17 years of age after PBM 
treatment (Leisman et al., 2018). PBM can also prevent 
ischemic injury to neurons after global cerebral ischemia 
caused by cardiac arrest and neonatal hypoxic-ischemic 
encephalopathy (HIE) (Tucker et al., 2018; Yang et al., 2019). 
PBM attenuates hypoxic-ischemic brain injury by maintaining 
mitochondrial function, decreasing oxidative stress and 
inhibiting neuronal apoptosis.

Discussion 
PBM with NIR delivered noninvasively to the deep brain tissue 
has wide application in the treatment of neurological diseases. 
Numerous studies have demonstrated its efficacy in stroke, 
TBI, PD, AD, MDD and other disorders. The low power density 
laser, insufficient to burn or damage tissue, has no adverse 
effects on non-human primates (Moro et al., 2017). Notably, 
no adverse events have been reported in clinical trials.

The parameters of PBM, including wavelength, operation 
mode, power density and treatment duration, are critical 
factors to optimize therapeutic effectiveness (Salehpour et al., 
2018). The wavelengths affect the absorption and penetration 
depth. Light has been employed in recent studies with 
wavelengths in the red including 606, 627, 630, 632.8, 640, 
660 and 670 nm, and in the NIR regions including 785, 800, 
804, 808, 810, 830 and 850 nm. NIR wavelengths produce 
more favorable outcomes. PBM has CW and PW modes. 
Studies have shown that PW mode at 10, 40 and 100 Hz 
provides better outcomes compared with CW. Pulsed light 
at 10 or 40 Hz may better affect brain activity. In addition, 
PBM with energy densities of 0.1–15 J/cm2 is effective for 
neurons in animal models, whereas 10–84 J/cm2 is effective in 
humans. PBM treatment appears to observe a biphasic dose-
response relationship that follows the Arndt-Schulz Law. It has 
a stimulatory effect at low doses, but after the peak, stronger 
stimuli are inhibitory, leading to a negative response (Huang 
et al., 2011). Therefore, treatment dose and duration are of 
great importance. However, optimal parameters have not yet 
been determined.

The application of 670 nm and 810 nm NIR together or 
sequentially provides better outcome than individually 
(Reinhart et al., 2017). PBM combined with intranasal and/
or transcranial light-emitting diodes has notable advantages 
for long-term therapy in that it can be performed at home for 
long-term use (Naeser et al., 2011).

Given favorable outcomes in pre-clinical and clinical studies, 
the application of PBM in CNS diseases has a promising future. 
However, studies with larger sample size are needed for a 
consensus on treatment parameters. An improved apparatus 
with optimal parameters could enhance the efficacy and 
safety of PBM, and allow its application to be standardized to 
minimize side effects.
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