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Background. Africa has the highest incidence of gonorrhea in the world. However, little is known about gonococcal populations 
in this continent or mechanisms of antimicrobial resistance (AMR).

Methods. Whole-genome sequence data were analyzed from 103 Neisseria gonorrhoeae isolates from 73 patients, mainly men 
who have sex with men, from coastal Kenya. We annotated loci, defined the core genome, defined mechanisms of AMR, and per-
formed phylogenetic analysis. For patients with multiple episodes of gonorrhea, we determined whether infections occurred with 
related strains.

Results. We identified 3 clusters of isolates that are phylogenetically distinct from isolates found elsewhere. Plasmids were virtu-
ally ubiquitous: pTetM and pblaTEM were found in 97%, and 55% of isolates, respectively. This was associated with high doxycycline 
use for undiagnosed sexually transmitted infections. Twenty-three percent of multiple episodes of gonorrhea in the same individual 
were caused by a related strain, suggesting inadequate treatment or reinfection.

Conclusions. The prevalence of plasmid-mediated AMR in Kenyan gonococci contrasts with that in wealthy countries, where 
AMR is largely chromosomally mediated. Antimicrobials have a profound effect on the maintenance of lineages harboring plasmids. 
Doxycycline can select for tetracycline and penicillin resistance, through plasmid cooperation. Understanding the mechanisms of 
AMR in high-risk groups is required to inform treatment strategies.

Keywords. Neisseria gonorrhoeae; antimicrobial resistance; whole-genome sequencing; MSM; plasmids.
 

Sexually transmitted infection (STI) caused by Neisseria gon-
orrhoeae is a major public health concern [1]. Complications 
from gonococcal disease include infertility, pelvic inflammatory 
disease, ectopic pregnancy and neonatal conjunctivitis, which 
can cause blindness [2]. Furthermore, gonococcal infection 
increases HIV acquisition and transmission by increasing viral 
shedding [3]. Effective treatment of N.  gonorrhoeae infection 
is therefore essential. However, the bacterium has developed 
resistance against all available classes of antimicrobials [2] and 
recently was added to the World Health Organization (WHO) 
list of highly antibiotic-resistant, priority pathogens [4]. While 
most AMR determinants exist on the chromosome, penicil-
lin and tetracycline resistance can be conferred by plasmids 
(pblaTEM and pTetM), which can rapidly spread through gono-
coccal populations [5]; pblaTEM can be mobilized between 

gonococci by the conjugative plasmid pTetM [6]. Understanding 
the molecular epidemiology of gonococcal infection, including 
the development and acquisition of AMR, is therefore essential 
for effective management of gonococcal infection [2].

Africa has the highest incidence of gonorrhea in the world, 
with an estimated 50–60 new infections per 1000 adults per 
year, compared with an annual incidence of 7–8 infections 
per 1000 adults in Europe [7]. Despite this, remarkably little is 
known about the populations of N. gonorrhoeae that circulate 
in Africa. Furthermore, there is little information on the extent 
and mechanisms of gonococcal AMR in strains from Africa. 
In Kenya, there is a high prevalence of gonococcal infection 
among men who have sex with men (MSM) who are at high 
risk of acquiring STIs [8]. Core transmission groups such as sex 
workers and MSM in particular have been shown to have a crit-
ical role in the emergence and transmission of gonococcal AMR 
[9]. Therefore, monitoring and treatment of high-risk groups 
is essential to understand transmission of the bacterium and 
inform strategies for its control [9].

Recent advances in whole-genome sequencing (WGS) have 
provided insights into the global spread of successful gono-
coccal lineages and the molecular mechanisms responsible 
for AMR. These studies have focused on gonococcal disease 
in high-income countries [10, 11], where diagnostic facilities 
and therapeutic options are different from those in less wealthy 
countries in sub-Saharan Africa.
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Here we characterized N. gonorrhoeae isolates predominantly 
from MSM in coastal Kenya by WGS. Results reveal that gon-
orrhea in this high-risk group is caused by a unique population 
of gonococcal lineages not found in other parts of the world. 
In contrast to Europe and the United States, where AMR is 
predominantly chromosomally mediated [10, 11], AMR in 
gonococci from a high-risk group in coastal Kenya is mainly 
conferred through the acquisition of plasmids pblaTEM and 
pTetM. This is associated with high doxycycline use for undi-
agnosed STIs. Our findings demonstrate how antibiotic policies 
influence gonococcal populations through selective pressure 
and have significant implications for the management of gono-
coccal disease and other STIs in resource-poor settings.

MATERIALS AND METHODS

Clinical Setting and Samples

Between June 2010 and May 2015, 103 N. gonorrhoeae isolates 
were obtained from 73 patients (aged 18–49 years), including 
sex workers and MSM, who were participating in cohort stud-
ies at the Kenyan Medical Research Institute clinic in Mtwapa. 
Ethical approval was granted by the Kenya Medical Research 
Institute (KEMRI) Scientific and Ethical Review Unit (approval 
2842). Gonorrhea was diagnosed in men with urethral or rectal 
discharge, in men who reported receptive anal intercourse, and 
in women irrespective of symptoms. Samples were obtained 
by swabbing and screening for N. gonorrhoeae by Gram stain, 
the oxidase test, and API-NH (bioMerieux, France). A total of 
31 of 73 patients (42.5%) were HIV positive. Of 103 N.  gon-
orrhoeae isolates, 84 (81.6%) were urethral, 17 (16.5%) were 
rectal, and 2 (1.9%) were cervical (Supplementary Table  1). 
Seventeen patients had multiple episodes of gonococcal infec-
tion (Supplementary Table 2). Of these, most had 2 (8 patients 
[47%]) or 3 (6 patients [35%]) episodes and attended the clinic 
within 2  years (median, 231  days; range, 0–1071  days) of the 
previous diagnosis.

Susceptibility to Antimicrobials

Disk diffusion testing [12] was used to determine susceptibil-
ity to penicillin and tetracycline, and the Etest [13] was used 
to determine minimal inhibitory concentrations (MICs) of cip-
rofloxacin, cefixime, penicillin, tetracycline, azithromycin, and 
doxycycline (bioMerieux, France). Gonococcal strains ATCC 
31426 and ATCC 49226 [12] and WHO F, WHO G, WHO L, 
WHO O, and WHO P [13] were used as references.

DNA Isolation and WGS

N.  gonorrhoeae was grown overnight on Chocolate GC 
Selective Agar (Oxoid) in 5% CO2 at 37°C. Genomic DNA 
was extracted using the Wizard Genomic DNA Purification 
Kit (Promega). DNA was sequenced using Illumina HiSeq, 
and reads were assembled using the Velvet assembly pro-
gram with VelvetOptimiser [14]. The resultant assemblies  
were uploaded to the pubMLST database (available at:  

http://www.pubmlst.org/neisseria), where data are publicly 
available, and linked to the European Nucleotide Archive 
(accession numbers ERR1143657–ERR976965; Supplementary 
Table 1).

Whole-Genome Analysis

Whole-genome sequences were automatically annotated for 
defined loci, which identified alleles with ≥98% sequence iden-
tity. This enabled assignment of PorB and FetA types and multi-
locus sequence typing (MLST) sequence types (STs). The BIGsdb 
Genome comparator tool was used to compare WGS data, where 
1668 loci were identified in the N.  gonorrhoeae core genome 
(cgMLST N. gonorrhoeae v.1.0) [15]. Gonococci from the United 
States [10] and United Kingdom [11] and WHO reference strains 
[16] were compared to gonococci from coastal Kenya using the 
cgMLST scheme. Between 7 and 10 isolates from the most preva-
lent STs in the United States [10] and the United Kingdom [11] (ie, 
ST-1580, ST-1584, ST-1588, ST-1596, ST-1901, ST-7822, ST-8122, 
ST-9363, and ST-11990) were chosen in addition to strains from 
STs found also in coastal Kenya (ie, ST-1583, ST-1599, ST-1893, 
ST-1903, and ST-1931). Chromosomal and plasmid genes and 
intergenic regions implicated in gonococcal AMR are defined in 
the pubMLST Neisseria database [17]. The type of pblaTEM was 
determined by polymerase chain reaction as previously described 
[18]. Plasmid alignments were built using Easyfig [19].

RESULTS

Gonococcal Isolates in Coastal Kenya Are Distinct From Those in the Rest 

of the World

To characterize N.  gonorrhoeae strains causing STI in coastal 
Kenya, we sequenced the genomes of 103 gonococcal isolates 
and analyzed them using the BIGSdb genomics platform hosted 
on PubMLST.org/neisseria. The resultant assemblies con-
tained an average DNA length of 2 211 853 bp and 159 contigs 
(Supplementary Table 3). A total of 22 STs were found by MLST, 
with ST-1893 (n = 29), ST-1903 (n = 21), ST-1599 (n = 14), and 
ST-11366 (n = 11) the most prevalent (Supplementary Table 1).

To understand phylogenetic relationships among isolates, 
we performed cgMLST analysis, which generated a star-burst 
phylogeny revealing the presence of 3 distinct clusters of iso-
lates: cluster 1 (n = 30), including ST-1903; cluster 2 (n = 36), 
including ST-1893; and cluster 3 (n = 11), including ST-11366 
(Figure 1). There was no association between HIV infection and 
cluster. The remaining 26 isolates did not belong to any cluster 
and were located on longer branches of the phylogenetic tree, 
consistent with them being distantly related and diverse.

To understand how gonococci from coastal Kenya compare 
with isolates from elsewhere in the world [10, 11], including 
WHO reference isolates [16], phylogenetic comparisons of gono-
coccal core loci were undertaken (Figure 2). Clusters 1, 2, and 3 
were distinct from isolates commonly found in the United States 
and United Kingdom, such as ST-1901, ST-9363, and ST-11990 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://www.pubmlst.org/neisseria
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
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[10, 11]. Based on MLST, which compares fragments of 7 house-
keeping genes, isolates belonging to ST-1599 and ST-1893, which 
are represented in our collection, are also found in the United 
Kingdom [11]. However, cgMLST provided greater resolution 
and demonstrated that the strains from the United Kingdom are 
distinct from those found in Kenya (Figure 2).

High Prevalence of Mobile Genetic Elements Among Gonococcal Isolates 

in a High-Risk Group

One hundred isolates (97%) harbored pTetM, a conjugative 
plasmid conferring tetracycline resistance. A  further isolate, 
45029 (Supplementary Table 1), contained the conjugative plas-
mid without tetM. Both types of tetM (NEIS2210), Dutch (allele 
1) and American (allele 2) [20], were found: allele 1 was only 
found in strains belonging to cluster 1, while all other isolates 
contained allele 2. Detailed analysis of pTetM loci revealed that 
each cluster had a distinct allelic profile, regardless of the type of 
tetM. Major differences between plasmids were in loci involved 
in plasmid stability (ε/ζ toxin-antitoxin system and marR regu-
lator) and mating pair formation (trbK and trbL; Figure 3) [20].

We examined patient records to see whether the strikingly 
high prevalence of pTetM in this population could be explained 

by antimicrobial use. Clinical data were available for 61 of 73 
participants (83.6%) and indicated extensive use of doxycycline: 
54 (88.5%) received doxycycline in the 6 months before diagno-
sis, while 50 (82%) received doxycycline on the day of diagno-
sis. We therefore examined whether pTetM confers resistance to 
doxycycline in a panel of representative strains (Supplementary 
Table 4). Of note, all pTetM-containing isolates were less sus-
ceptible to doxycycline (MIC range, 1.5–12  μg/mL) as com-
pared to isolates without tetM (MIC range, from 0.19–0.38 μg/
mL; Supplementary Table  4), confirming that pTetM confers 
doxycycline resistance. This is consistent with the high use of 
doxycycline selecting for the maintenance of pTetM.

Fifty-seven isolates (55%) contained the nonconjugative 
plasmid pblaTEM, all of which were of the African type (pJD5) 
[18]. The highest prevalence of pblaTEM was in isolates belong-
ing to cluster 1 (28 of 30 [93%]; Table 1). In this cluster and in 
other distantly related isolates, allele 3 of blaTEM (NEIS2357), 
which encodes TEM-1 β-lactamase, was the most prevalent. We 
identified 2 novel blaTEM alleles, 10 and 12 (Table  1). These 
differed from allele 3 by a single amino acid insertion (Q5) and 
a single substitution (H6Y) for allele 10 or from allele 12 by a 
single substitution (A224T). Both these alleles were associated 
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Figure 1. Whole-genome genealogy of Neisseria gonorrhoeae isolates in coastal Kenya. A Neighbor-Net graph depicting core genome multilocus sequence typing–based 
comparison of whole-genome sequencing data. Each branch represents one isolate, with squares and circles color-coded according to Antimicrobial resistance genotype and 
plasmid type, respectively. Clusters 1, 2, and 3 are indicated. Blue stars indicate the absence of gonococcal genetic island (GGI). FLUORO, fluoroquinolones; PEN, penicillin; 
R, resistant; S, susceptible; TET, tetracycline.
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with high-level resistance to penicillin, with MICs ranging 
from 16 μg/mL (allele 12, strain 47 547) to 192 μg/mL (allele 10, 
strains 42 876 and 50 659; Supplementary Table 4).

We also detected a high prevalence of the gonococcal genetic 
island (GGI), a mobile genetic element encoding a type 4 secre-
tion system implicated in DNA export [5]. The GGI was present 
in 97 isolates (94%; Figure 1). Compared with GGI-harboring 
strains, there are no polymorphisms in the dif insertion site and 
xerC and xerD site-specific recombinases [5] that could explain 
the absence of the GGI in the 6 strains lacking this mobile 
element.

Chromosomally Encoded AMR Determinants in Kenyan Isolates

WGS analysis revealed that each cluster has a distinct geno-
typic AMR profile (Figure  1 and Table  2). All isolates con-
tained chromosomal AMR determinants conferring resistance 
to fluoroquinolones and penicillin (Table 2). Nonsynonymous 
mutations in gyrA (NEIS1320), which confer resistance to flu-
oroquinolones (Table 3) [17], were highly prevalent in isolates 
from all 3 clusters: 28 of 30 (93%) in cluster 1, 28 of 36 (78%) in 
cluster 2, and 10 of 11 (91%) in cluster 3 (Table 2). Mutations in 

parC and parE, also associated with fluoroquinolone resistance 
[17], were not found.

Isolates in clusters 1 and 2 had nonsynonymous substitu-
tions in penA (NEIS1753) and ponA (NEIS0414; Tables 2 and 
3), which confer resistance to β-lactams [17]. In addition, 20 
of 30 (66%) and 18 of 30 (60%) in cluster 1 harbored AMR-
associated mutations in porB (NEIS2020) and in the promoter 
of mtrR (pro_NEIS1635), respectively (Tables 2 and 3). No clus-
ter 1 isolates and only 2 cluster 2 isolates harbored premature 
stop codons in mtrR (NEIS1635), which result in overexpres-
sion of the MtrCDE efflux pump (Tables 2 and 3) [17]. However, 
cluster 2 isolates had no AMR-associated mutations in the 
mtrR promoter (Table 2). In contrast, cluster 3 isolates did not 
harbor AMR-associated mutations in penA, but all contained 
AMR-associated mutations in ponA and harbored internal stop 
codons in mtrR (Table 2).

Different AMR characteristics were present in the remaining 
26 more distantly related isolates (Figure  1). Sixteen of these 
isolates did not have any chromosomally mediated resistance 
(excluding resistance-associated mutations in porB) but pos-
sessed pTetM and pblaTEM (Figure 1).
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Figure 2. Whole-genome genealogy of Neisseria gonorrhoeae isolates in coastal Kenya and isolates from the United States [10] United Kingdom [11] and World Health 
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We established AMR profiles by measuring MICs for tetracy-
cline, azithromycin, and penicillin in 14 representative isolates. 
Phenotypic AMR profiles for the strains were concordant with 
our genotypic analysis (Supplementary Table 4).

Of note, all isolates in our study contained the rpsJ allele 
encoding S10 protein with Met57 mutation, which has been 
shown to increase resistance to tetracycline [21]. However, in 
our study, the MIC for tetracycline ranges from 0.25  μg/mL 
(for strains 65 600 and 63 179) to 16 μg/mL (for strains 64 500, 
42 974, 64 204, and 47 547; Supplementary Table 4), suggesting 
that this mutation had no effect on the observed low- or high-
level resistance to tetracycline.

No isolate harbored mutations in 23s ribosomal RNA 
and ribosomal protein S5 (NEIS0149), which are associated 
with resistance to azithromycin and spectinomycin, respec-
tively [17]. Additionally, no isolates had mosaic penA alleles 
associated with resistance to third-generation cephalospo-
rins [17]. Consistent with this, all 103 isolates were suscepti-
ble to cefixime (MIC range, 0.016–0.064 μg/mL), and a panel 
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Table  1.  Distribution of β-Lactamase Plasmids With Specific blaTEM 
Alleles

blaTEM 
Allele

Cluster 1,  
No. (%) 
(n = 30)a

Cluster 2,  
No. (%) 
(n = 36)

Cluster 3,  
No. (%) 
(n = 11)

Other,  
No. (%)  
(n = 26)a

3 28 (93) 1 (3) 1 (9) 10 (38)

10 0 (0) 6 (16) 5 (45) 3 (11)

12 0 (0) 0 (0) 0 (0) 1 (4)

aIn 1 isolate in this group, the blaTEM allele could not be determined.

n = total number of isolates in this cluster.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
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of representative isolates were susceptible to azithromycin 
(Supplementary Table 4).

A Significant Proportion of Multiple Episodes of Gonorrhea are Caused by 

Closely Related Strains

Seventeen patients had multiple episodes of gonorrhea (47 iso-
lates; Supplementary Table  2). We performed cgMLST analy-
sis to determine whether these episodes were caused by closely 
related or unrelated strains. Two isolates (64 203 and 64 204; 
Supplementary Table 2) were obtained from 1 individual on the 
same day from different sites (urethra and rectum) and exhibited 
only 1 difference by cgMLST, so they were likely the same strain. 
Most pairs of isolates differed by a median of 884 loci (range, 
67–990 loci). However, 5 pairs of isolates (10 of 47 [21%]) from 
4 patients had ≤18 locus differences by cgMLST (median, 3 loci; 
range, 1–18 loci; Supplementary Table  2), consistent with the 
multiple episodes resulting from inadequate treatment or rein-
fection from the same source. These closely related pairs of iso-
lates were recovered from urethral swabs, except one (43 346), 
which was from a rectal swab. Four of the closely related pairs 
of isolates were from 3 HIV-positive individuals, and the time 
between episodes ranged from 22 to 67 days (median, 24 days; 
Figure 4 and Supplementary Table 2).

DISCUSSION

This study provides the first WGS analysis of gonococcal iso-
lates from Africa where the highest rates of gonorrhea have been 

documented [7]. Comparison of genes core to the gonococcus 
revealed the presence of distinct gonococcal lineages clustering 
by AMR genotype, which are phylogenetically distinct from 
those found elsewhere in the world. Moreover, strains that are 
prevalent in other parts of the world and have spread globally 
[10, 11] were not found in coastal Kenya. Of note, the strains 
from our high-risk group possess a remarkably high frequency 
of mobile genetic elements.

Plasmid-mediated AMR among this collection is the high-
est observed in any gonococcal population, with 97% possess-
ing pTetM and 55% possessing pblaTEM. The prevalence of 
pTetM varies between countries, ranging from 6% in cefix-
ime-resistant isolates in the United States [10] to 73.3% in 
South Africa [22]. The unique lineages in coastal Kenya may 
have adaptive chromosomal mutations that compensate for 
the fitness costs that are often associated with harboring a 
plasmid [23]. The prevalence of pTetM is most likely a conse-
quence of the high use of doxycycline in this cohort, as isolates 
with pTetM exhibit reduced susceptibility to this antibiotic. 
Where diagnostic facilities are limited, doxycycline is used in 
line with WHO guidelines for treatment of nongonococcal 
urethritis, proctitis, and cervicitis [24] and/or prior to labo-
ratory confirmation of disease. pTetM is a conjugative plas-
mid [20], so it can rapidly disseminate in a population with 
appropriate selection pressure, such as the use of doxycycline. 
Furthermore, pTetM can facilitate the transfer of nonconjuga-
tive plasmids, such as pblaTEM, which are not self-mobilizable 
[6]. Therefore, use of doxycycline can coselect for pblaTEM 
and pTetM, resulting in spread of resistance to penicillin and 
tetracycline in a gonococcal population. Consistent with our 
findings, the frequency of pblaTEM mirrors that of pTetM in 
other gonococcal populations [10, 22, 25].

The prevalence of plasmids carrying blaTEM-1 is a significant 
concern because only a few single-nucleotide polymorphisms 
are required for TEM-1 to evolve into an extended-spectrum 
β-lactamase [26], which would result in rapidly transmissible 
cephalosporin resistance in gonococcus, a major public health 
threat [27]. Indeed, we found evidence of genetic alterations 

Table 3. Antimicrobial Resistance (AMR) Alleles and Corresponding Mutations Conferring Resistance in Neisseria gonorrhoeae Isolates From This Study

Locus
AMR-Associated Amino Acid Substitution(s)  

in Kenyan Isolates Allele(s) With Mutations Conferring AMR

NEIS1320 (gyrA) S91—F, D95—G/A 14, 234

NEIS1753 (penA) F504—L, P551—L 20, 23, 166, 228, 285, 294

NEIS0414 (ponA) L421—P 13

NEIS1635 (mtrR) Premature stop codons 423, 424, 427, 846, 847

pro_NEIS1635 (mtrR promoter 
region)

Adenine deletion in promoter region 3

NEIS2020 (porB) G120—D, A121—G/S/D 719, 826, 957, 1106, 1107, 1111, 1117, 1118, 1120, 1123,  
1130, 1132, 1133, 1279, 1280, 1281, 1282, 1287, 1288

NEIS2357 (blaTEM) Not relevant 3, 10

NEIS2210 (tetM) Not relevant 1, 2

Table  2. Chromosomal Antimicrobial Resistance Determinants Present 
in Each Cluster

Determinant

Cluster 1,  
No. (%) 
(n = 30)

Cluster 2,  
No. (%)
(n = 36)

Cluster 3,  
No. (%)
(n = 11)

NEIS1320 (gyrA) 28 (93) 28 (78) 10 (91)

NEIS1753 (penA) 30 (100) 30 (83) 0 (0)

NEIS0414 (ponA) 30 (100) 35 (97) 11 (100)

NEIS1635 (mtrR) 0 (0) 2 (5) 11 (100)

pro_NEIS1635 (mtrR  
promoter region)

18 (60) 0 (0) 0 (0)

NEIS2020 (porB) 20 (66) 5 (14) 4 (36)

n = total number of isolates in this cluster.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy240#supplementary-data
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in TEM-1 with the occurrence of 2 novel blaTEM alleles 
(NEIS2357 alleles 10 and 12) associated with high-level resis-
tance to penicillin. NEIS2357 allele 10 carries alterations in 
N-terminal signal peptide, which may enhance export of the 
enzyme into the periplasm, resulting in increased resistance 
[28]. A single substitution, A224T, is present in NEIS2357 allele 
12; so far, this allele has only been observed in the laboratory 
and its effects on resistance are unknown [29].

Our results indicate that the use of doxycycline for empiri-
cal therapy of STIs might impact the nature and mechanisms of 
gonococcal AMR, and this should be considered when devis-
ing global treatment strategies for STIs. In addition, the high 
prevalence of pblaTEM in a high-risk population emphasizes 
the need for a combined therapy to prevent the emergence of 
mobile resistance to third-generation cephalosporins [30], even 
where local strains are susceptible to both cefixime and azithro-
mycin, the WHO recommended therapies [31].

As well as plasmids, the GGI is highly prevalent in the gono-
coccal strains in this population. The GGI is associated with the 
spread of AMR through unknown mechanisms and is thought 
to have contributed to the expansion of the ST-1901 lineage in 
the western hemisphere [17]. Interestingly, 94% of isolates in our 
study harbored the GGI and plasmids, unlike other gonococcal 
populations, where they tend to be mutually exclusive [17].

In this study, we characterized gonococcal isolates from 
patients with multiple episodes of gonorrhea. Four patients 
(23% of those with repeated episodes), 3 of whom were HIV 
positive, were infected with closely related strains at different 
times. This frequency differs from a larger study in the United 
Kingdom, in which only 5% of multiple episodes were caused by 
closely related strains [11]. The reisolation of phylogenetically 
similar strains from an individual, in one instance up to 67 days 
later, indicates that the strain is either undergoing intense trans-
mission or that the patient has not been treated adequately. 

These findings highlight the need for appropriate test of cure 
and intense contact tracing to ensure that initial infections are 
eliminated in high-risk populations.

Core groups of high-risk individuals have the potential to 
transmit gonorrhea and other STIs to a large number of sex 
partners [9]. Comprehensive monitoring, treatment, and under-
standing of gonococcal transmission in high-risk groups are 
therefore essential for the effective management and control of 
gonorrhea in such settings. Africa is an area with high prevalence 
of gonococcal disease [7], and it is therefore critical to continue 
the surveillance of AMR on this continent and monitor the emer-
gence of novel gonococcal lineages. Data presented here provide 
compelling evidence that gonococcal populations become struc-
tured by antibiotic use as a result of selection pressure, and they 
emphasize the need for a global strategy to effectively control this 
infection [27]. Our data highlight the need to acquire globally 
distinct gonococcal collections, in which antimicrobial selection 
pressures will be different, thus enhancing our understanding of 
the emergence of AMR in this important pathogen.
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