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N-Glycolylneuraminic acid (Neu5Gc)-terminated glycans are present in all animal

cells/tissues that are already used in the clinic such as bioprosthetic heart valves

(BHV) as well as in those that potentially will be xenografted in the future to overcome

end stage cell/organ failure. Humans, as a species lack this antigen determinant

and can react with an immune response after exposure to Neu5Gc present in these

products/cells/tissues. Genetically engineered source animals lacking Neu5Gc has been

generated and so has animals that in addition lack themajor αGal xenoantigen. The use of

cells/tissues/organs from such animals may improve the long-term performance of BHV

and allow future xenografting. This review summarizes the present knowledge regarding

structural complexity and tissue distribution of Neu5Gc on glycans of cells/tissue/organs

already used in the clinic or intended for treatment of end stage organ failure by

xenografting. In addition, we briefly discuss the role of anti-Neu5Gc antibodies in the

xenorejection process and how knowledge about Neu5Gc structural complexity can be

used to design novel diagnostics for anti-Neu5Gc antibody detection.

Keywords: N-glycolylneuraminic acid, xenograft, bioprosthetic heart valve, carbohydrate antigen,

anti-carbohydrate antibodies, carbohydrate epitope

INTRODUCTION

Products isolated from animal tissues have been used in clinical medicine for a long time as
exemplified by porcine insulin introduced in the 1920’s and bioprosthetic heart valves (BHV) in
1965 (Binet et al., 1965). In recent years, focus has also been on the potential use in humans of
live cells and tissues from animals, primarily pigs, to overcome the shortage of human cells/organs
for transplantation (Auchincloss and Sachs, 1998; Cowan and Tector, 2017; Ekser et al., 2017).
A major obstacle for transplantation of live animal tissue into humans is the strong xenogeneic
immune rejection initiated in the recipient (Auchincloss and Sachs, 1998; Cowan and Tector, 2017;
Ekser et al., 2017). The most immediate barrier preventing grafting of porcine tissues into man
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and non-human primates was shown to be explained
by preformed antibodies specific for the Galα1,3Gal
(αGal) carbohydrate determinant present on cell surface
glycoconjugates (Auchincloss and Sachs, 1998; Ezzelarab et al.,
2005). These αGal specific antibodies cause hyperacute rejection
of vascularized porcine tissues in humans and non-human
primates similar to that caused by preformed anti-blood group
ABO antibodies in human allotransplantation (Holgersson et al.,
2005). In addition, several non-αGal antigens that humans can
develop antibodies against including N-glycolylneuraminic acid
(Neu5Gc), have been identified and they may contribute to the
xeno-rejection process (Ezzelarab et al., 2005; Byrne et al., 2011;
Padler-Karavani and Varki, 2011; Galili, 2012; Miyagawa et al.,
2012; Salama et al., 2015).

This review summarizes the present knowledge regarding the
structural complexity and distribution of Neu5Gc on glycans
of BHV as well as cells/organs intended for treatment of end
stage organ failure by xenografting. In addition, we discuss
how we can use our knowledge regarding Neu5Gc structural
complexity for the design of novel diagnostics for anti-Neu5Gc
antibody detection. The possible significance of anti-Neu5Gc
antibodies in the xenorejection process has been the subject
of recent reviews (Padler-Karavani and Varki, 2011; Salama
et al., 2015) and will only be commented on briefly in
this contribution.

CHEMICAL STRUCTURE DIVERSITY OF
SIALIC ACIDS FOCUSED ON Neu5Gc

Sialic acids are α-keto acids with a nine-carbon backbone and
are normally placed terminally in the reducing end of glycans
(Angata and Varki, 2002; Schauer, 2004). They are found in the
deuterostome lineage, i.e., chordates and echinoderms (e.g., sea
stars), of animals and in certain bacteria (Angata and Varki, 2002;
Schauer, 2004). Sialic acid used to be considered a synonym
for N-acetylneuraminic acid (5-amino-3,5-dideoxy-D-glycero-
D-galacto-2-nonulosonic acid; Neu5Ac), but since its discovery
in the 80’s the deaminated neuraminic acid, KDN (2-keto-3-
deoxy-D-glycero-D-galacto-nononic acid), is also included in
the family of sialic acids (Inoue and Kitajima, 2006). Like N-
acetylneuraminic acid, KDN is also found in vertebrates and
bacteria. The structural diversity among sialic acids is vast
with more than 50 distinct molecules that are biosynthetic
derivatives of either N-acetylneuraminic acid or KDN (Angata
and Varki, 2002; Schauer, 2004). N-glycolylneuraminic acid
(Neu5Gc) is anothermajor type of sialic acid and is also expressed
in deuterostomes. The initial characterization of Neu5Gc
biosynthesis was explored by Schauer in the 1960’s showing
that Neu5Ac was converted by CMP-N-acetylneuraminic acid
hydroxylase (CMAH) to the N-glycolyl form by addition of an
oxygen atom to theN-acetyl group (Schauer et al., 1968; Schauer,
1991) illustrated in Figure 1. Birds, reptiles, amphibians, sperm
whales, and several other species including NewWorld monkeys
and humans lack CMP-N-acetylneuraminic acid hydroxylase and
therefore these species lack Neu5Gc (Peri et al., 2017). However,
trace amounts of Neu5Gc have been identified in humans, a

finding explained by an uptake from ingested meat and dairy
products (Schauer et al., 1968; Tangvoranuntakul et al., 2003).

GENERAL ASPECTS OF
GLYCOCONJUGATES AND
ANTI-CARBOHYDRATE ANTIBODIES

The Structural Diversity of Cell Surface
Glycoconjugates
The surface of every cell is covered with a diverse array of
glycans, carried by proteins or lipids in the outer plasma
membrane leaflet, mediating interactions leading to cell
adhesion, trafficking, and signaling (Gustafsson and Holgersson,
2006; Sperandio et al., 2009). Glycans determine self/non-self
as they are targets for antibodies of clinical significance in
transfusion medicine and transplantation (Holgersson et al.,
2005; Gustafsson and Holgersson, 2006). Furthermore, cell
surface carbohydrates constitute important attachment sites
for viruses, bacteria and bacterial toxins and as such they are
required by microbes to initiate infection (Karlsson, 2001;
Gustafsson and Holgersson, 2006).

Glycosylation is a common post-translational modification
(PTM) of proteins involving enzymatic glycosylation of the
protein backbone (Kobata, 2004). The varying sequence and
chain length as well as the anomeric configuration (α or
β), linkage position and branching sites make glycosylation
the structurally most diverse PTM (Dwek, 1995). Covalent
modifications of individual sugar residues by sulfation,
phosphorylation, acetylation, or methylation add further
structural variation to the carbohydrate chain. Therefore, the
structural diversity that can be obtained in glycan chains is
by far exceeding the complexity obtained by amino acids in
polypeptides (Samuelsson and Breimer, 1987).

Two of the most abundant protein glycosylation forms
are N- and O-linked glycosylation. N-linked glycans are
usually attached via an N-acetylglucosamine (GlcNAc) to
Asparagine (Asn). They are classified into three types, the high
mannose (oligomannose), complex, and hybrid types. N-glycan
biosynthesis is initiated via the synthesis of the Man5GlcNAc2
core unit on the dolichol pyrophosphate lipid anchor, which
is then re-oriented to the luminal side of the endoplasmic
reticulum (ER) membrane and extended to a Glc3Man9GlcNAc2
sequence. Transfer of the Glc3Man9GlcNAc2 oligosaccharide to
the consensus sequence (N-X-S/T) in acceptor polypeptides is
performed en bloc by the oligosaccharyltransferase (OST). N-
glycans are further modified in the late ER and Golgi apparatus
generating a plethora of N-glycan structures. The processing is
possibly determined by the function of the glycan structures
and the compartment where they are localized, resulting in
a species- or even cell type-specific diversity of N-linked
glycans (Schwarz and Aebi, 2011; Aebi, 2013).

Mucin-type O-linked glycans are attached to Ser or Thr via
N-acetylgalactosamine (GalNAc), but other O-glycans may be
linked to Ser/Thr via GlcNAc, fucose, glucose, mannose, or xylose
(van den Steen et al., 1998). O-glycan biosynthesis is initiated
in the ER and the chain is further extended in the ER and
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FIGURE 1 | Chemical structures of Neu5Ac and Neu5Gc. Neu5Gc is generated from Neu5Ac by the enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH).

Neuraminic acids are linked to the carbohydrate core chain (-R) by a glycosidic linkage involving the hydroxyl group at carbon atom 2 forming an α2-3 or α2-6 linkage.

A second neuraminic acid can be added to the penultimate neuraminic acid by an α2-8 linkage.

Golgi by a stepwise addition of monosaccharides. There is no
known consensus sequence for initiation of O-glycosylation. The
initiating step of mucin-type glycosylation is the addition of
the GalNAc monosaccharide from UDP-GalNAc to the hydroxyl
groups in serine and threonine residues; a reaction catalyzed
by a large family of up to 20 different polypeptide GalNAc-
transferases (ppGalNAc-Ts) (Bennett et al., 2012). Three distinct
regions are recognized in O-linked glycans and include the two
or three innermost sugar residues nearest the peptide chain
constituting the core region, the backbone region contributing
to O-glycan chain length, and the terminal region with its
bioactive determinants (Hanisch, 2001). The determinants are
often sialylated, sulfated, acetylated, and/or fucosylated. At least
eight different O-glycan core chain types, of which cores 1–4
are more common than the rare cores 5–8, have been identified
in mammalian glycoproteins. All are based on the innermost
αGalNAc residue, which is further substituted at the C3, C6, or
both positions (Hanisch, 2001).

Glycolipids are mainly found in the plasma membrane with
the lipophilic part (ceramide) integrated in the outer layer of
the lipid bilayer and the saccharide chain exposed to the cell
environment. In contrast to glycoproteins that carry several
different saccharide chains, only one single glycan is attached to
each ceramide. As for protein-linked glycoconjugates, glycolipid
structural complexity is vast. Immunogenic determinants are
linked to various core saccharide chain types (ganglio-, globo-
, lacto-, neolacto-series etcetera) (Holgersson et al., 1992).
Sialic acid-containing glycolipids (gangliosides) are based on
different saccharides of which lactosylceramide and ganglio-
series compounds are most abundant.

Structural Diversity of
Neu5Gc-Terminated Glycans
Sialic acids including Neu5Gc are mostly found terminally
on glycan chains of glycoproteins and glycolipids. They are
commonly linked via an α2,3- or α2,6-linkage to Gal, an α2,6-
linkage to GalNAc, or via an α2,8-linkage to another sialic
acid (Angata and Varki, 2002; Schauer, 2004). Glycans with the
sialic acid linked to other sugar residues and in other binding

positions exist (Angata and Varki, 2002; Schauer, 2004). For
details regarding the chemical structure of various neuraminic
acid-containing glycans, the reader is referred to previously
published reviews and text books (Angata and Varki, 2002;
Schauer, 2004; Varki et al., 2017).

A variety of Neu5Gc-terminated N- and O-glycans have been
identified. Using CHO-K1 cells as host cells and a mucin-type
fusion protein as a reporter protein to study O-glycosylation,
sialylated core 1, core 2, core 3, and extended core 1 O-glycans
were identified following transient co-expression of the different
core enzymes in CHO-K1 cells (Liu et al., 2015). Between 5
and 10% of the sialylated O-glycans carried Neu5Gc and it was
found α2,3- and α2,6-linked (following expression of ST6Gal
I) to Gal and α2,6-linked to GalNAc (Liu et al., 2015). Choi
and co-workers used matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOFMS) to study N-
glycans released from native porcine heart valves or heart valves
treated with α-galactosidase (Choi et al., 2012). They identified a
number of complex typeN-glycans carrying Neu5Gc (Choi et al.,
2012). The full extent of the structural diversity of N- and O-
glycans carrying Neu5Gc remains to be elucidated. However, a
not too brave assumption is that the majority of glycans carrying
Neu5Ac have their Neu5Gc counterpart.

The most common Neu5Gc-terminated glycolipid is the GM3
ganglioside with Neu5Gc linked to lactosylceramide (Iwamori
and Nagai, 1978; Gasa and Makita, 1980; Hanagata et al., 1990).
Complex Neu5Gc-containing gangliosides with several sialic
acids have been identified (Ohashi and Yamakawa, 1977; Ariga
et al., 1983; Nakao et al., 1991), also in various combinations
with blood group ABO and Lewis antigen determinants (van
Dessel et al., 1979; Nohara et al., 1990). Terminal sialic acid
disaccharides exist in all the possible combinations NeuGc-
NeuGc-, NeuAc-NeuAc-, NeuGc-NeuAc-, and NeuAc-NeuGc-
(Watarai et al., 1991).

Recognition of Saccharide Structures by
Anti-carbohydrate Antibodies
Traditionally, carbohydrates have been considered T
lymphocyte-independent antigens because they activate B
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lymphocytes without T-cell help. As most carbohydrates cannot
be presented via MHC class II antigens and, thus, not recruit
T-cell help, the B-cell response lack affinity maturation and
is skewed toward the production of IgM and IgG2 antibodies
in human (Vos et al., 2000). To overcome the lack of T-cell
help in the response of B-cells to carbohydrate antigens,
neoglycoconjugates have been developed by coupling the
carbohydrate antigen to carrier proteins. Upon intracellular
processing, peptides from the latter can be presented by MHC
class II antigens on B-cells to T-cells that upon activation
can provide help to the B-cell. A good example of this is the
Haemophilus influenzae neoglycoconjugate vaccine (Micoli
et al., 2018). Polysaccharides carrying both negatively and
positively charged substituents have been shown to interact
with MHC class II species (Avci and Kasper, 2010), as have
oxidative breakdown products of polysaccharides (Velez et al.,
2009). Anti-carbohydrate antibodies are normally of low affinity,
often of 103-105 times less affinity than anti-peptide or -protein
antibodies (Krause and Coligan, 1979; MacKenzie et al., 1996;
Brorson et al., 2002). The low affinity is compensated for by
a high avidity provided for by the decavalent configuration of
the IgM antibody or self-associated IgG2 antibodies in humans
(Greenspan et al., 1988; Cooper et al., 1991). Multivalently
configured, as in IgM or self-assembled IgG2, anti-carbohydrate
antibodies facilitate high avidity binding to multivalently
expressed or clustered carbohydrate antigens on the surface
of cells, bacteria, and viruses. They are thus ideally suited to
distinguish cells expressing high densities of a carbohydrate
antigen from those expressing low densities of the same antigen.

The low affinity of anti-carbohydrate antibodies (and lectins)
as opposed to anti-peptide antibodies may be explained by the
contribution of entropic factors to binding, which is not solely
reliant on enthalpic factors (reviewed in Haji-Ghassemi et al.,
2015). Because of the flexible nature of carbohydrates, antibody
binding requires unfavorable immobilization of otherwise
flexible parts of the saccharide chain and, thus, loss of
entropy (Haji-Ghassemi et al., 2015). Therefore, extension of
the sugar chain and fixation of the anomeric carbon in one
conformation may increase antibody binding affinity even if
the extending sugar is not involved in the binding (Haji-
Ghassemi et al., 2015). Further, the entropic consequences
of water in binding of anti-carbohydrate antibodies are hard
to predict because solvating water molecules may need to
be displaced or trapped during antibody-antigen complex
formation (Haji-Ghassemi et al., 2015).

Early studies on the structural features of anti-carbohydrate
antibodies suggested that the antibody binding site could
encompass up to six monosaccharide residues and to
be pocket- or groove-shaped (Kabat, 1978). Pocket-
shaped for binding determinants placed terminally in the
saccharide chain and groove-shaped for binding internally
on polysaccharide structures. In their comprehensive review,
Haji-Ghassemi and co-authors concluded after reviewing
the structural features of anti-carbohydrate antibodies
specific for over 20 antigens, that even though they share
characteristic features there are no general rules governing their
behavior (Haji-Ghassemi et al., 2015).

The crystal structure of the Fab fragment of the murine anti-
Neu5Gc antibody has been resolved at a 2.2 Å resolution and a
molecular model of this fragment in complex with the saccharide
moiety of N-glycolyl GM3 ganglioside has been generated
(Krengel et al., 2004; Bjerregaard-Andersen et al., 2018).

STRUCTURAL COMPLEXITY AND
SPECIES/TISSUE DISTRIBUTION OF
Neu5Gc IN TISSUES OF RELEVANCE FOR
BIOPROSTHETIC HEART VALVES

Several types of bio-devices of animal origin have been developed
for clinical use. Examples of these are sheets to build up the
abdominal wall in the repair of hernias (Patel et al., 2018) and
BHV to replace diseased heart valves (Fiedler and Tolis, 2018).
BHV used clinically are mainly produced from bovine, porcine,
and equine tissues such as pericardium and heart valves. The
tissues are processed, encompassing for example glutaraldehyde,
ethanol, and anti-calcification, to reduce immunogenicity and
to extend preservation times of the tissues. Carbohydrates are
resistant to many of these treatments as shown by remaining
αGal antigens in commercial BHV products (Kasimir et al.,
2005; Naso et al., 2013). Sialic acids are negatively charged
(“acidic” carbohydrate components) and are slightly more
sensitive to chemical degradation compared to neutral saccharide
components. However, sialic acid-terminated saccharides have
been identified by immunohistochemistry in formaldehyde-fixed
tissue sections (Morozumi et al., 1999; Magnusson et al., 2005)
and a recent study did not find any change in anti-Neu5Gc
staining of naïve and glutaraldehyde-treated (0.02–2%) porcine
valves indicating that these saccharides may resist the processing
treatments (Lee et al., 2016). However, BHVs available for clinical
use contain extremely small amounts of biological tissue and
are very expensive, why it is difficult to perform structural
investigations on antigen expression using chemical methods.
Therefore, studies on native animal pericardium and heart valve
tissues have been performed to make a chemical characterization
possible. Bearing in mind that carbohydrate determinants, at
least in part, remain intact despite the processing of the tissue.

Valve Cusps
Immunohistochemical analysis of naïve porcine aortic valve
cusps showed a strong Neu5Gc staining of the cusp endothelium
(Reuven et al., 2016). Using immunohistochemistry, Lee and
coworkers tested pig heart valves obtained from wild-type,
GTKO/CD46 and GTKO/CD46/NeuGcKO animals and a strong
Neu5Gc expression was found in wild-type and GTKO/CD46
tissues that was absent in the GTKO/CD46/NeuGcKO valves
(Lee et al., 2016).

Terminal Neu5Gc saccharides (assumed to be the
Hanganutziu-Deicher, HD, antigens) have been identified
by mass spectrometry in O-glycans isolated from naïve pig
aortic and pulmonary valves (Jeong et al., 2013). A more
complex pattern of Neu5Gc-terminated saccharides was found
in the aortic valves compared to the pulmonary valves and the
heart muscle.
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In investigations of glycolipids of naïve animal heart
valves and pericardia, an unexpected finding was the lack of
Neu5Gc-terminated gangliosides in pig heart valves (Barone
et al., 2014), while the pig, bovine, and equine pericardia all
contained gangliosides with terminal Neu5Gc residues (Barone
et al., 2018). Neu5Gc-GM3 was found in all animal species
while other gangliosides showed a species-specific distribution;
Neu5Gc-GD3 (equine), Neu5Gc-GM1 (pig, bovine), Fuc-
Neu5Gc-GM1 (pig). These structures were deduced by a
combination of thin-layer chromatographic mobility, staining
by the HD antigen-specific chicken monoclonal antibody
(HU/Ch2-7; Asaoka et al., 1992) in combination with liquid
chromatography-mass spectrometry of purified ganglioside
fractions (Barone et al., 2018).

Pericardium
Immunohistochemical analysis of naïve porcine and bovine
pericardia showed anti-Neu5Gc staining of the matrix of the
pericardium as well as the endothelium of a small artery and
a capillary (Reuven et al., 2016). A strong Neu5Gc expression
was found in wild-type and GTKO/CD46 pig pericardium while
pericardia from GTKO/CD46/NeuGcKO animals were negative
(Lee et al., 2016).

Studies on BHV Used in the Clinic
The commercial BHVs used in the clinic are mainly produced
from bovine pericardia even if some manufacturers use porcine
valves and porcine as well as equine pericardia (Reuven et al.,
2016). Immunostaining andHPLC analysis of homogenates from
six different commercial BHV revealed presence of Neu5Gc in
all products but the limited amount of tissue did not allow any
further exploration of saccharide structures (Reuven et al., 2016).
In another study, three different commercial BHV valves were
tested and all showed strong anti-Neu5Gc binding as well as
binding of human serum (Lee et al., 2016).

STRUCTURAL COMPLEXITY AND
SPECIES/TISSUE DISTRIBUTION OF
Neu5Gc IN TISSUES OF RELEVANCE
FOR XENOTRANSPLANTATION

Endothelial Cells
Flow cytometric analysis using the HU/Ch2-7 antibody specific
for HD antigens revealed strong expression of HD antigens
in cultures of porcine and bovine aortic endothelial cells and
immunohistochemical analysis of porcine kidney revealed strong
expression in all vascular endothelial cells (Morozumi et al.,
1999; Reuven et al., 2016). Also, pericardial vessel endothelium
contained Neu5Gc glycans (Reuven et al., 2016).

Bouhours and co-authors studied gangliosides from
primary cultures of porcine endothelial cells labeled with
14C-monosaccharides and were able to identify the GM3 and
GD3 compounds with N-glycolylneuraminic acid as their
predominant sialic acid (Bouhours et al., 1996).

Even if not all animal organs corresponding to the
vascularized organs currently used in clinical transplantation

have been analyzed for Neu5Gc expression in the specific
organ, it can be anticipated that endothelial cells of
these organs express Neu5Gc as shown for pig kidney
endothelium (Reuven et al., 2016).

Pancreatic Islets
Glycoproteins carrying N-linked HD determinants have been
identified in adult pig islet cells together with several other
sialic acid-capped compounds that reacted with human
natural antibodies (Komoda et al., 2004). In addition,
porcine pancreas was shown to contain gangliosides with
Neu5Gc (Nakamura et al., 1984).

Cornea
Our knowledge regarding corneal xenotransplantation has
increased considerably and corneal grafting is, together with
pancreatic islets, close to be tested in human clinical trials.
Neu5Gc have been identified by immunohistochemistry in all
layers of pig cornea (Cohen et al., 2014). Mass spectrometric
analyses of pig corneal endothelial cells and keratocytes releveled
several N-glycans with terminal Neu5Gc (Kim et al., 2009).
Because cornea is a non-vascularized tissue, the clinical relevance
of Neu5Gc antigen expression in this tissue remains to
be elucidated.

Lymphocytes
During reperfusion of grafted vascularized organs, considerable
amounts of blood cells, including leukocytes, trapped in the
organ are transferred to the recipient and may induce an
immune response. Leukocytes remain in the harvested organs
despite extensive rinsing of the vascular tree with perfusion
solution (Magnusson et al., 2003). Therefore, knowledge
regarding carbohydrate antigen expression also in lymphocytes
is of importance.

Porcine spleen lymphocytes contain a complex
ganglioside mixture with Neu5Gc-GM3 and -GD3 as major
constituents (Hueso et al., 1985), while the ganglioside
mixture of peripheral blood lymphocytes was less complex
with Neu5Gc-GD3 as the major ganglioside species
(Hueso et al., 1985; Magnusson et al., 2003).

Studies on peripheral blood lymphocytes and thymocytes
of calves revealed GM3 as major component and that 97% of
the gangliosides from peripheral cells contained Neu5Gc, while
the ganglioside composition of thymic cells was more complex
containing several ganglioside species including Neu5Ac sialic
acids (Dyatlovitskaya et al., 1980).

Vascularized Organs
Most studies identifying Neu5Gc antigens in animals have
been performed on mouse, bovine, rabbit, and sheep tissues.
Studies on vascularized organs of pigs, the most likely species
to be used for xenografting, are limited. However, Neu5Gc-
containing gangliosides have been structurally characterized
in porcine plasma (Hanagata et al., 1990), skeletal muscle
(Ariga et al., 1983), adipose tissue (Ohashi and Yamakawa,
1977), peripheral nerve (Magnusson et al., 2005), small intestine
(Diswall et al., 2007, 2014), kidney (Diswall et al., 2007), and
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pancreas (Nakamura et al., 1984; Diswall et al., 2007), and it
can therefore be anticipated that Neu5Gc-terminated glycans
are present in all porcine organs. Perhaps with the exception
of the brain where Neu5Gc appears to be sparsely expressed
(Davies and Varki, 2015).

Neu5Gc linked to GalNAc onO-glycans has been identified in
pig heart muscle (Jeong et al., 2013). Studies using the anti-HD
antibody revealed Neu5Gc-terminating glycolipid compounds
in pig hearts and Neu5Gc-GM3 was the most abundant one
(Diswall et al., 2010). Several more complex ganglioside species
were found but not structurally characterized in detail.

Pig kidneys show strong anti-Neu5Gc staining of all vascular
endothelial cells and brush border tubular cells, while the smooth
muscle cells of arteries are negative (Reuven et al., 2016). Like
the situation in the heart, Neu5Gc-terminating glycolipids
were identified in pig kidneys by the anti-HD antibody and
Neu5Gc-GM3 was the most abundant one (Diswall et al.,
2010). N-glycans released from pig kidney cell membrane
glycoproteins revealed several novel Neu5Gc-terminated
saccharides with up to 14 monosaccharide units present in
complex branched structures (Kim et al., 2008). These studies
were performed by a combination of HPLC separation of released
saccharides followed by MALDI-TOF mass spectrometry.
Monosaccharide residues were identified by exoglycosidase
digestion (Kim et al., 2008).

ANTI-Neu5Gc ANTIBODIES WITH SPECIAL
REFERENCE TO INDUCED ANTI-Neu5Gc
ANTIBODIES IN HUMANS EXPOSED TO
ANIMAL TISSUE

Hanganutiziu and Deicher (HD) antibodies, the
immunodominant group of which is Neu5Gc, were originally
identified based on their ability to agglutinate erythrocytes of
many animal species (Hanganutziu, 1924; Deicher, 1926).
HD antigen-active molecules were later isolated from
equine and bovine erythrocytes and were shown to include
the Neu5Gc-LacCer (Neu5Gc-GM3) and Neu5Gc-nLc4Cer
glycosphingolipids (Naiki and Higashi, 1980; Mukuria et al.,
1986a,b). A glycoprotein from bovine erythrocytes was also
shown to be HD antibody-reactive (Naiki and Higashi, 1980;
Mukuria et al., 1986a,b). Anti-Neu5Gc antibodies, then defined
as HD antibodies, were originally found in sera of patients
injected with animal serum but has since then been identified
in patients with various malignancies (Malykh et al., 2001) and
chronic inflammatory diseases (Padler-Karavani et al., 2013).
Whether or not anti-Neu5Gc antibodies are present in the serum
of healthy individuals is debated and contradicting results exist
in the literature (Mukuria et al., 1986b; Kobayashi et al., 2000;
Tangvoranuntakul et al., 2003; Nguyen et al., 2005; Padler-
Karavani et al., 2008; Blixt et al., 2009; Huflejt et al., 2009; Le
Berre et al., 2017; Leviatan Ben-Arye et al., 2019). To some extent,
but perhaps not fully, can these discrepant results be explained
by differences in assays and substrates used for their detection
(Mukuria et al., 1986b; Kobayashi et al., 2000; Tangvoranuntakul
et al., 2003; Nguyen et al., 2005; Padler-Karavani et al., 2008;

Blixt et al., 2009; Huflejt et al., 2009). Like blood group ABO
(Holgersson et al., 2014), sialyl-Lewis x (Lofling and Holgersson,
2009), and anti-αGal antibodies (McKane et al., 1998) recognize
their determinants in a structural context-dependent manner,
so do anti-Neu5Gc antibodies (Padler-Karavani et al., 2008).
Thus, to detect all Neu5Gc antibodies and not to miss a part
of the anti-Neu5Gc repertoire, it is important that the assays
used are based on a broad repertoire of Neu5Gc-terminated
glycans linked to different core chains and with different linkage
configurations between Neu5Gc and the penultimate sugar
residue (Padler-Karavani et al., 2008). For this purpose, the
glycan microarray and in which antibody reactivity with pairs
of Neu5Ac- and Neu5Gc-terminated glycans based on the
same core saccharide chain are compared, appears optimal
as the differential and preferred reactivity with the Neu5Gc
glycan can be directly ascribed to the N-glycolyl group (Padler-
Karavani et al., 2011, 2012; Leviatan Ben-Arye et al., 2017, 2019;
Bashir et al., 2019).

Like other anti-carbohydrate antibodies, anti-Neu5Gc
antibodies develop during the first year of life. However, in
contrast to for example ABO antibodies that are believed
to be induced in response to bacteria carrying A- or B-
like determinants in their lipopolysaccharide or capsular
polysaccharide, it is hypothesized that anti-Neu5Gc antibodies
are induced by commensal/pathogenic, non-typeable
Haemophilus influenzae which have taken up Neu5Gc from the
diet and incorporated it into its cell surface lipooligosaccharide
(Taylor et al., 2010). When it comes to the induced immune
response to Neu5Gc following, for example grafting of animal
cells/tissues or administration of animal/recombinant proteins
carrying Neu5Gc-glycans our knowledge is limited.

Immunization of renal allotransplant recipients upon
rabbit anti-human thymocyte induction therapy showed
an IgG antibody response with an expanded diversity
and de novo recognition of different anti-Neu5Gc glycans
(Amon et al., 2017). Exposure of humans to anti-thymocyte
globulin was associated with a shift in the anti-Neu5Gc IgG
repertoire and affected the outcome of subsequent renal
allografts (Mai et al., 2018). However, repeated injections of
recombinant human erythropoietin produced by Chinese
hamster ovary cells expressing 1% Neu5Gc did not result
in any significant production of anti-Neu5Gc-specific
antibodies (Noguchi et al., 1996).

Kobayashi and co-workers studied the anti-Neu5Gc antibody
response in patients grafted with fetal porcine pancreatic islets
(Groth et al., 1994) and in patients who had their circulation
connected to a pig kidney ex vivo (Breimer et al., 1996; Rydberg
et al., 1996). No significant elevation of IgG and IgM antibody
levels against the Neu5Gc-GM3 ganglioside was observed in
sera from these patients (Kobayashi et al., 2000). However,
the Neu5Gc-GM3 coated ELISA used in this study was later
found to be sufficiently sensitive. When individual patients from
these clinical trials were tested using a glycan microarray an
increase of anti-Neu5Gc antibodies was found in some patients
transplanted with pig islets (Blixt et al., 2009). In one of the
two patients, who had their circulation connected to a pig
kidney, an increase in antibodies binding to Neu5Gc-terminated
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GM3 and GD3 gangliosides isolated from pig kidney was found
(Magnusson et al., 2003).

Studies of burn patients exposed to live pig skin revealed a
statistically significant increase in serum levels of anti-Neu5Gc
antibodies in patients compared to controls (Scobie et al.,
2013). However, the increase in the mean anti-non-αGal IgG
antibody level in the patient group was due to some patients
responding, while other patients did not show any increase in
anti-non-αGal IgG antibody levels. Blocking studies in selected
patients, using Neu5Gc/Neu5Ac, suggested that Neu5Gc glycans
were the major non-αGal antigens that induced the antibody
response, although other non-αGal antigens might also be
involved (Scobie et al., 2013).

Studies on xeno-antibody responses in patients grafted with
BHV have been conducted focusing on anti-Gal antibody
levels, which were shown to be increased in patients receiving
BHVs compared to controls (Konakci et al., 2005; Bloch et al.,
2011; Park et al., 2013). So far, no studies investigating anti-
Neu5Gc antibody levels following BHV implantation have, to our
knowledge, been reported.

In summary, the knowledge regarding the immune response
to Neu5Gc glycans in humans exposed to animal tissues is limited
as is the knowledge regarding the potential clinical significance of
anti-Neu5Gc antibodies in allo- and xenograft rejection.

NOVEL ANTI-Neu5Gc ANTIBODY
DIAGNOSTICS SHOULD DETECT AS
MUCH AS POSSIBLE OF THE DIVERSE
ANTI-Neu5Gc ANTIBODY REPERTOIRE IN
A HIGH-THROUGHPUT AND
REPRODUCIBLE MANNER

In 1986, Mukuria et al. described an enzyme-linked
immunosorbent assay (ELISA) for detection of HD antibodies
using flat-bottomed 96-well plates coated with purified Neu5Gc-
LacCer (Mukuria et al., 1986b). There was an overall good
correlation between the HD antibody reactivity obtained with
the ELISA and the horse erythrocyte hemagglutination (HA)
test (Mukuria et al., 1986b). However, ∼3% of the sera were
negative in the ELISA despite a positive HA suggesting that
some anti-Neu5Gc antibodies were not detected in the ELISA
(Mukuria et al., 1986b). Using another ELISA format in which
polyacrylamide (PAA)-based neoglycoconjugates carrying a
single Neu5Gc residue in multiple copies were coated in the
wells, most human sera were shown to contain anti-Neu5Gc
antibodies (Tangvoranuntakul et al., 2003). Reactivity with
the corresponding Neu5Ac-PAA glycoconjugate was used as
background control. Using flow cytometry and α-galactosidase-
treated porcine RBC as target cells in the absence and presence of
7.5mMNeu5Gc, 17/20 sera from healthy volunteers were shown
to contain anti-Neu5Gc antibodies (Zhu and Hurst, 2002).

Realizing that the anti-Neu5Gc repertoire, like other anti-
carbohydrate antibody repertoires, is polyclonal and binds
Neu5Gc in different structural contexts determined by the
underlying carbohydrate core chain, Padler-Karavani and

coworkers developed a novel, innovative ELISA inhibition assay
(EIA) aimed at detecting and quantifying a broader portion of the
anti-Neu5Gc repertoire (Padler-Karavani et al., 2013). The EIA
relied on the difference in reactivity of anti-Neu5Gc antibodies
in human serum with WT and Cmah-KO mouse serum (Padler-
Karavani et al., 2013). To remove all human antibodies reacting
with mouse protein and carbohydrate antigens except Neu5Gc,
human serum was pre-absorbed on mouse serum from Cmah-
KO mice and then incubated in wells coated with mouse serum
from WT mice. The rationale being that only remaining anti-
Neu5Gc antibodies are detected onWTmouse serum. Using this
assay, the authors detected an elevated anti-Neu5Gc response in
patients with an acute Kawasaki’s disease compared to patients
with aneurysms or dilated coronary arteries (Padler-Karavani
et al., 2013). A potential caveat with this assay is the fact that
the proteome and glycome of mouse serum may vary between
individuals of the same strain and between the Cmah-KO and
WT strains even though they are of the same genetic background.
Thus, reproducibility over time can be hard to achieve.

Printed glycanmicroarrays are powerful tools for determining
the fine binding specificity of glycan-binding proteins such as
carbohydrate-specific antibodies (reviewed in Smith et al., 2010;
Rillahan and Paulson, 2011). Arrays directed at determining the
fine specificity of sialoside-binding proteins have been developed
(Padler-Karavani et al., 2011, 2012; Leviatan Ben-Arye et al.,
2017). They have been successfully used to determine the fine
specificity of sialoside-binding plant and animal lectins as well
as carbohydrate-binding antibodies (Padler-Karavani et al., 2011,
2012; Leviatan Ben-Arye et al., 2017). By printing pairs of
Neu5Ac- and Neu5Gc-terminated glycans, the specificity of
polyclonal and monoclonal anti-Neu5Gc antibodies have been
elucidated (Leviatan Ben-Arye et al., 2017). A high-throughput
format of the latter can be used to assess 16 serum samples on
one printed slide (Leviatan Ben-Arye et al., 2017). It is important,
however, to realize that the chemistries used to produce, present
and couple the glycan to the glass slide will all influence the
results. Thus, glycan arrays carrying identical glycan structures
may not always give similar results (Padler-Karavani et al., 2012;
Bashir et al., 2019).

Despite, the very important contributions of glycan arrays
to the specificity-determination of anti-Neu5Gc antibody
repertoires in health and disease, there is still a need for
novel assays allowing quantification of the structurally diverse
anti-Neu5Gc repertoire in a reproducible manner and which
can be used in clinical routine laboratories on large patient
cohorts. Investigations of large patient cohorts suffering from
various chronic inflammatory and malignant disorders will be
necessary to investigate the full scope of the medical importance
of anti-Neu5Gc antibodies.

CONCLUSION

In addition to the αGal antigen determinant, glycans with
terminal Neu5Gc residues may constitute an immunogenic
barrier for xenografts into humans. However, firm evidence
for the role of Neu5Gc antibodies in xenograft rejection is
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lacking. Because the immune biology of the anti-Neu5Gc
response is slightly different from both the ABO and anti-
Gal antibody responses, further studies are needed to better
define the exact role of the Neu5Gc antibody repertoire in
the xenorejection process. Because carbohydrate antigens are
quite resistant to destruction/removal by the procedures used in
the manufacturing of bioprosthetic products of animal origin,
these antigen determinants must be considered when using
live as well as chemically modified animal cells/tissues/organs
for treatment of end stage human organ failure. Animals
genetically engineered to silence the CMP-N-acetylneuraminic
acid hydroxylase (CMAH) responsible for the biosynthesis of
Neu5Gc have been generated and may be used as source animals

for future xenografting including procurement of tissues for
bio-prosthesis manufacturing.
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