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In clinical cancer research, it is a hot topic on how to accurately stratify patients based on genomic data.With the development of next-
generation sequencing technology, more and more types of genomic features, such as mRNA expression level, can be used to
distinguish cancer patients. Previous studies commonly stratified patients by using a single type of genomic features, which can
only reflect one aspect of the cancer. In fact, multiscale genomic features will provide more information and may be helpful for
clinical prediction. In addition, most of the conventional machine learning algorithms use a handcrafted gene set as features to
construct models, which is generally selected by a statistical method with an arbitrary cut-off, e.g., p value < 0.05. The genes in the
gene set are not necessarily related to the cancer and will make the model unreliable. Therefore, in our study, we thoroughly
investigated the performance of different machine learning methods on stratifying breast cancer patients with a single type of
genomic features. Then, we proposed a strategy, which can take into account the degree of correlation between genes and cancer
patients, to identify the features from mRNAs and microRNAs, and evaluated the performance of the models with the new
combined features of the multiscale genomic features. The results showed that, compared with the models constructed with a
single type of features, the models with the multiscale genomic features generated by our proposed method achieved better
performance on stratifying the ER status of breast cancer patients. Moreover, we found that the identified multiscale genomic
features were closely related to the cancer by gene set enrichment analysis, indicating that our proposed strategy can well reflect the
biological relevance of the genes to breast cancer. In conclusion, modelling with multiscale genomic features closely related to the
cancer not only can guarantee the prediction performance of the models but also can effectively provide candidate genes for
interpreting the mechanisms of cancer.

1. Introduction

Compared with the microarray technology, next-generation
sequencing technology including DNA sequencing [1, 2] and
RNA sequencing [3, 4] provides multiscale genomic features,
such as mRNA expression [5, 6], microRNA expression [7,
8], and gene structure variation [9, 10], to characterize cancers
in different aspects at the molecular level. These features had
been widely used to construct models in clinical cancer

researches for distinguishing the subtypes of cancer [11] and
stratifying the patients [12], as well as predicting the prognosis
of cancers [13]. The genes used in the models are commonly
applied to the subsequent interpretation of the mechanisms
of cancers.

Generally, the whole modeling procedure mainly
includes the gene selection and the parameter estimation of
prediction models. The clinical cancer samples were firstly
divided into two groups according to the phenotypic status.
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By comparing the phenotypic differences between the two
groups of samples, a set of genes can be identified by a statis-
tical method with an arbitrary cut-off. In previous studies,
only the single type of genomic features, including mRNA
expression level [14], microRNA expression level [15], and
gene mutation status [16], as well as the copy number varia-
tions [17, 18], was applied to characterizing the phenotypic
difference of the samples. Considering the fact that a single
type of genomic features can only reflect one aspect of the
characteristics of tumor samples, multiscale types of features
should be able to better represent the clinical status of the
samples. However, there are few studies on how to use multi-
scale features to improve the prediction performance of the
clinical models [19], which needs to be further explored. In
addition, the gene selection process using statistical methods
mainly focuses on the differences between the two groups of
samples and cannot ensure the causal relationship between
the differences and the predicted endpoint. A certain number
of false positive genes will be involved in the predictive
models. Meanwhile, an arbitrary cut-off used in the statistical
method will also lead to the neglect of some important
disease-related genes. As a result, the reliability of models
based on limited data sets will be reduced.

Therefore, to explore the benefits of integrating multi-
scale genomic features for clinical prediction, we thoroughly
investigated the performance of models constructed with a
single type of genomic features, and as a comparison, we con-
structed models with multiscale features to predict the same
clinical endpoints. Considering that the performance of the
models is mainly related to the predictability of clinical end-
points [20], we evaluated the model performance by using
the same endpoint, namely, the estrogen status of breast can-
cer patients. In our study, the patients were categorized into
two groups according to their estrogen status: estrogen posi-
tive (ER+) and estrogen negative (ER-). Using two types of
genomic features separately, namely, mRNA expression level
and microRNA expression level, we constructed the models
with 20 popular machine learning algorithms and five feature
selection methods. In total, over 500 models were con-
structed and evaluated in this study. For the comparison,
we used both the mRNA expression level and the microRNA
expression level as features to construct models and stratify
the patients. In addition, for the purpose of generating the
features of biological relevance to breast cancer, we proposed
a strategy by using the Shapley additive explanation (SHAP)
method [21] to screen the mRNAs and microRNAs. Our
results showed that, compared with the models with a single
feature type, the performance of the models on stratifying the
breast cancer patients was improved effectively by combining
the two feature types of the mRNA expression level and the
microRNA expression level. The results of gene set enrich-
ment analysis indicated that mRNAs and microRNAs identi-
fied by our proposed strategy had strong correlation with
breast cancer. Our proposed strategy was also applied to the
stratification of the patients in kidney renal clear cell carci-
noma (KIRC) and thyroid carcinoma (THCA) data sets.
The mean MCCs for KIRC and THCA achieved by the
models with selected multiscale features were 0.512 and
0.447, respectively, indicating that the model using the

mRNAs and microRNAs closely related to the cancers can
not only ensure the prediction performance but also effec-
tively reduce the number of features and avoid overfitting,
which should ensure its reliability in future prediction.

2. Materials and Methods

2.1. Data Set. The mRNA and microRNA sequencing data
of breast invasive carcinoma (BRCA) samples as well as
the clinical information were downloaded from the NCI’s
Genomic Data Commons (GDC) [22], which included
1092 RNA sequencing samples and 1079 microRNA
sequencing samples. We took the intersection of the sam-
ples and finally kept 1025 samples with both the mRNA
expression and microRNA expression profiles for the subse-
quent modeling. In the modeling procedure, 80% samples
(819 samples) were randomly selected as the training set
to construct the models and the rest of the samples (206
samples) were used as the independent test set to validate
the models. According to their estrogen receptor (ER) status
in clinical information, the samples were categorized in
either the ER positive group or the ER negative group. Each
sample contained the expression values of 60,482 mRNAs
and 1886 microRNAs, which were summarized in the form
of fragments per kilobase of exon per million fragments
mapped (FPKM). The expression values of mRNA and
miRNA were separately normalized. By comparing the
expression values of mRNAs and microRNAs of the sam-
ples between the two ER groups in the training set with Stu-
dent’s t-test, 24,585 mRNAs and 722 microRNAs for each
sample, in total, were kept as features by using a cut-off of
p < 0:05. In addition, to validate the performance of the pro-
posed strategy, we also applied it to stratifying the patients
in KIRC and THCA data sets, which included 588 and
567 patients, respectively. The patients with tumor stages
III and IV were categorized into the high-risk group, and
the rest of the patients were categorized into the low-risk
group. We used the same modeling procedure that had been
used in the BRCA data set to stratify the patients.

2.2. Algorithms for Feature Selection. Five commonly used
feature selection methods, namely, Fold Change (FC), OneR
[23], ReliefF [24], InfoGain [25], and GainRatio [26], were
involved in this study. All the methods can rank the mRNAs
and microRNAs by the calculation results, and the top 30, 50,
100, 200, 300, and 500 of the mRNAs and microRNAs were
separately extracted as features to construct the models. For
the method of FC, the log 2-tranformed fold change for each
mRNA or microRNA between the samples in the ER positive
and ER negative groups was calculated and used for ranking
the features. When extracting the top n features, we sepa-
rately took the top n/2 features from upregulated and down-
regulated directions. OneR separately used each feature to
classify the samples and calculated the error rate and then
assigned a weight to the feature according to the error rate.
As for ReliefF, it randomly selected a sample from the train-
ing set as well as its k nearest neighbors of the same and dif-
ferent classes. By calculating the differences of features
between the two classes of samples, each feature was assigned
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a weight. The method updated the weights continuously
through multiple resampling. Both InfoGain and GainRa-
tio were derived from information theory and assigned
the weights to the features according to their information
entropies [27]. GainRatio can be considered as a normali-
zation of InfoGain, but the information entropies of the
features calculated by GainRatio were totally different
from those calculated by InfoGain. In the end, we ranked
the features by their weights and selected the top n fea-
tures for modeling.

2.3. Machine Learning Methods for Modeling. To investigate
the model performance with a single type of genomic fea-
tures, 20 modeling methods, including ten ensemble learning
methods (AdaBoostM1, Dagging, LogitBoost, RandomCom-
mittee, RandomForest, RotationForest, MultiClassClassifier,
RandomSubSpace, Decorate, and MultiBoostAB) and ten sin-
gle classifiers (SimpleLogistic, NaiveBayes, LibSVM, LocalKnn,
LibLINEAR,Hoeffding Tree, DecisionTable, CSForest, ADTree,
and Ridor), were involved in our study. For each modeling
method, we evaluated the performance of the models, which
were separately constructed by using the expression levels of
the top n mRNAs and microRNAs identified by the five fea-
ture selection methods. For the purpose of comparison, all
the models were constructed by directly using the script inter-
face of WEKA (version 3.8.4) [28] with default parameters.
The names of the methods in this study directly came from
their names used in WEKA. Three performance metrics,
namely, accuracy (ACC), Matthews’s correlation coefficient
(MCC), and F1 score, were applied to the model evaluation,
which were defined by the following:

Accuracy ACCð Þ = TP + TN
TP + TN + FP + FN

, ð1Þ

MCC =
TP × TN − FP × FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp
, ð2Þ

F1 = 2TP
2TP + FP + FN

, ð3Þ

where TP, TN, FP, and FN indicate the numbers of true posi-
tives, true negatives, false positives, and false negatives,
respectively.

2.4. Shapley Additive Explanation Method. The Shapley value
was firstly proposed by Shapely based on game theory [29],
which was raised for measuring the contribution from every
player in cooperation. For the past ten years, the Shapely
value has been utilized for explaining the modeling results
from machine learning methods [30, 31]. Recently, a python
module named SHAP (SHapley Additive exPlanations) for
generating the Shapely values from machine learning models
was released at http://github.com/slundberg/shap [32], and
this module was used in this work as the explainer of random
forest. As a brief introduction, the Shapley values could be
used for measuring the impact to the built model from the
following feature:

ϕi f , xð Þ = 〠
S⊆Sall/ if g

Sj j! M − Sj j − 1ð Þ!
M!

f x S ∪ if gð Þ − f x Sð Þ½ �

= 〠
S⊆Sall/ if g

1
C Sj j
M M − Sj jð Þ

f x S ∪ if gð Þ − f x Sð Þ½ �,

ð4Þ

where M is the number of features, S is a subset of the fea-
tures, f is the model, Sall/fig represents all the possible subsets
that exclude feature i, and f x is the conditional expectation
function. With the Shapley values, a model can be repre-
sented as a linear combination of the Shapely values:

f xð Þ = ϕ0 fð Þ + 〠
M

i=1
ϕi f , xð Þ, ð5Þ

where ϕ0ð f Þ = f xð∅Þ. The implementation of the Shapley
value is complicated since there would be too many terms
for evaluating, and usually only a few approximate ways are
used [33].

In this work, to generate the Shapley values, the data set
was firstly trained by a random forest classifier from the
SKlearn package. Then, the tree explainer was generated
from the trained model. The Shapley values Sx,y could be gen-
erated by the explainer, where x and y are the index of sam-
ples and features. The Shapley values could be different
according to the samples, but our target is to find out the fea-
ture which could influence the samples as much as possible.
Therefore, a 10-fold crossvalidation strategy was used to
select the features: (1) The data sets were divided into 10
folds, and every fold could be the test data set and the others
as the training data sets. (2) For every fold, the training set
was used to generate the Shapley values Skx,yðk = 1,⋯, 10Þ,
then the importance of features was acquired by computing
the summation of the absolute values:

Ssubky =〠
x

Skx,y
�

�

�

�

�

�

: ð6Þ

Since there will be lots of values in every Ssubfy , we filtered
Ssub fy by keeping the top 300 maximum values (i.e., set the
top 300 maximum number as 1 and the others as 0). Then,
the overall feature importance could be generated by com-
puting the summation:

Fy =〠
k

gSsub
k

y , ð7Þ

where gSsub
k

y is the filtered Ssubky , and all the features which
had Fy larger than 5 were picked out for subsequent model-
ing. In this study, the selected feature was ranked in the top
300 among those which were more than 6 folds.
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3. Results

3.1. Study Design. In this study, the mRNA sequencing and
microRNA sequencing data of 1025 BRCA samples were
used to investigate predictive models with single type and
multiple types of genomic features. The BRCA samples were
stratified into the ER positive and ER negative groups accord-
ing their ER status. Using the expression levels of mRNAs
and microRNAs, we separately applied 20 machine learning
algorithms with five feature selection methods to construct
models for the stratification of BRCA samples. As a compar-
ison, the combined features including expression levels of
mRNAs and microRNAs were also used to build the models.
For the purpose of obtaining the interpretable features, we
proposed the SHAP method to identify the genomic features
which were closely related to the cancer. The selected
mRNAs and microRNAs were analyzed by gene set enrich-
ment analysis. The entire workflow is depicted in Figure 1.

3.2. Model Performance with a Single Type of Genomic
Features. To evaluate the model performance, the top n
mRNAs and microRNAs (n = 30, 50, 100, 200, 300, and 500)
were separately selected by five feature selection methods
and used as features for 20 modeling algorithms. Figure 2
shows the prediction results of the models with the top 300
mRNAs and microRNAs as features. The results of the pre-
dictive models using the top 30, 50, 100, 200, and 500 features
are exhibited in Supplementary Figure 1. In general, the
performance of models using the expression levels of
mRNAs was better than that using the expression levels of
microRNAs. Additionally, there was a slight difference in
the model performance when using a different number of
top ranked features for modeling (Supplementary Figure 2).

The mean MCCs across different machine learning
methods and different feature selection methods are shown
in Figure 3. From the figure, it can be seen that the mean
MCCs achieved by all the machine learning methods except

MultiClassClassifier and LibLINEARwith mRNAs as features
were greater than 0.700 (Figure 3(a)). For the machine learn-
ing methods with microRNAs as features, the MCC values
achieved by more than half of the methods were less than
0.7 (Figure 3(b)). It indicated that the information carried
by the expression levels of mRNAs might be more suitable
than those of microRNAs for constructing the models to
stratify the ER samples. For the same type of genomic fea-
tures, the performance of ensemble modeling methods was
superior to that of single modeling methods. Especially for
microRNA, the mean MCCs achieved by seven out of ten
ensemble methods were greater than 0.700, while only the
MCCs achieved by SimpleLogistic and DecisionTable in the
ten single modeling methods were higher than 0.700. Among
all the machine learning methods, random forest performed
the best (meanMCC = 0:813) by using the expression levels
of mRNAs as features.

As for the feature selection methods, there was no signif-
icant difference in the meanMCC values between five feature
selection methods when using mRNAs as features to con-
struct the ensemble predictive models (Figure 3(c)), which
performed the best among all the models. The main differ-
ence in mean MCCs was whether to use mRNAs or miRNAs
as features for prediction. By using mRNAs as features for
modeling, the mean MCCs were generally higher than those
achieved by the models using miRNAs as features
(Figures 3(c) and 3(d)).

3.3. Model Performance with Multiscale Genomic Features.
To demonstrate the importance of selecting interpretable
genomic features for modeling, we applied SHAP to generate
the features from mRNAs and microRNAs, as well as from
multiscale genomic features, which are an integration of
mRNAs and microRNAs in this study. As a comparison, we
separately constructed the models with all the features of
mRNAs, microRNAs, and the multiscale genomic features.
The random forest algorithm, which performed best in the
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Figure 1: The workflow of our study.
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previous step, was applied for modeling. The prediction
results for the independent test set are shown in Figure 4.
The MCCs, ACCs, and F1s for the independent test set are
listed in Supplementary Table 1.

If all the mRNAs were used as features, the model perfor-
mance (meanMCC = 0:791) was slightly worse than the best

model in the previous step (meanMCC = 0:813). It indicated
that, for the same modeling method, the feature selection
process can help remove the useless variables and improve
the prediction performance of the model to some degree.
Then, we proposed SHAP to rank the features and took the
top 300 features for modeling. For the single type of genomic
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Figure 2: The MCCs achieved by different machine learning algorithms combined with different feature selection methods. (a) Prediction
results with the top 300 mRNAs as features. (b) Prediction results with the top 300 microRNAs as features.
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Figure 3: Continued.
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Figure 3: MeanMCCs achieved by the models across different machine learning algorithms and different feature selection methods. (a) Mean
MCCs achieved by different machine learning algorithms with the top 300 mRNAs as features. (b) MeanMCCs achieved by different machine
learning algorithms with the top 300 microRNAs as features. (c) Mean MCCs achieved by using different feature selection methods with the
top 300 mRNAs as features. (d) Mean MCCs achieved by using different feature selection methods with the top 300 microRNAs as features.
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features, we finally identified 289 mRNAs and 291 micro-
RNAs from the total features of 24,585 mRNAs and 722
microRNAs, respectively. From the multiscale feature set, we
identified 290 genomic features including 283 mRNAs and 7
microRNAs. After the feature selection procedure, the perfor-
mance of the model constructed with mRNAs as features was
improved (medianMCC = 0:798). Similarly, themedianMCC
achieved by the model with multiscale genomic features was
0.825, which was higher than that achieved by the model
before feature selection (medianMCC = 0:798). Interestingly,
after feature selection, the prediction performance of the
model with mRNA as a feature is close to that of the model
with multiscale genomic features. We inspected the selected
features in the list of multiscale genomic features and found
that only seven out of 290 features were microRNAs and the
rest were mRNAs. It indicated that the contribution of multi-
scale genomic features was dominated by the expression levels
of mRNAs, which might be more related to the phenotypic
difference of the samples. As for the microRNAs, the perfor-
mance of the model was the worst when it was used for pre-
dicting the ER status, regardless of whether feature selection
was conducted or not. Our proposed strategy and the same
modeling procedure were also applied to the KIRC and THCA
data sets. The prediction results for KIRC and THCA are
shown in Supplementary Figures 3 and 4 and listed in
Supplementary Tables 2 and 3. The median MCCs for
stratifying the patients in the KIRC and THCA data sets by
the models with multiscale features after feature selection were
0.514 and 0.438, respectively (Supplementary Figures 3 and 4).

3.4. Gene Function Analysis. To elucidate the biological rele-
vance of the selected genomic features to the cancers, the
gene set enrichment analysis was conducted in the subse-
quent analysis. The KEGG pathways enriched by using
DAVID (https://david.ncifcrf.gov/) [34] with 289 mRNAs

are listed in Table 1. Among four significantly enriched path-
ways, two of them named Pathways in cancer (p = 0:026) and
MicroRNAs in cancer (p = 0:036) were directly associated
with cancers. The top ten enriched Gene Ontology (GO)
terms that related to the biological process and molecular
functions of the genes are listed in Tables 2 and 3, respec-
tively. From the biological process, we found that the gene
set was significantly associated with the homeostasis in cells
(GO:0042592~homeostatic process and GO:0048871~multicel-
lular organismal homeostasis) and the response to drugs
(GO:0042493~response to drug). In addition, the gene set was
also related to the regulation of hormones (GO:0010817~regu-
lation of hormone levels). As for the molecular functions of the
genes, GO terms related to protein binding and enzyme activ-
ity were significantly enriched. Our results suggested that the
mRNAs identified by our strategy are closely associated with
the mechanism of cancers.

For the enrichment analysis of 291 microRNAs, it was con-
ducted by using GeneCodis 4.0 (https://genecodis.genyo.es/)
[35], which is a web-based tool for providing concurrent anno-
tations of a gene set. The enriched KEGG pathways and GO
terms related to biological processes and molecular functions
are listed in Supplementary Tables 4, 5, and 6, respectively.
Only one pathway named MicroRNAs in cancer was
significantly enriched, indicating that the microRNAs
identified by our strategy were mainly associated with cancer.
The top 10 enriched GO terms of biological processes
indicated that the 291 microRNAs were significantly
associated with gene silencing (GO:0035195~gene silencing by
miRNA) and inhibition of translation (GO:0035278~miRNA
mediated inhibition of translation). Most of the top 10 GO
terms referred to the negative regulation of genes. The
enriched GO terms of molecular functions reflected that the
functions of 291 microRNAs were correlated with DNA and
RNA binding.

Total
SHAP

0.65

0.70

0.75M
CC

0.80

0.85

mRNA miRNA mRNA+miRNA

BRCA

Figure 4: MCCs for the independent test set by using mRNAs, microRNAs, and the combination of mRNAs and microRNAs as features. The
Welch t-test p value for the MCCs achieved by the models with combined mRNAs and miRNAs before and after feature selection was 0.171.
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In addition, only seven microRNAs were involved in the
final decided multiscale genomic feature set. Four of them,
namely, miR-135b, miR-190b, miR-224, and miR-588, had
been reported to be associated with various cancers. miR-
135b is closely related to cervical cancer, lung cancer, and
prostate cancer. It is commonly upregulated in cervical can-
cer cell lines, and the downregulation of miR-135b can
inhibit the growth of cervical cancer cells [36]. It can also

promote the metastasis of lung cancer by regulating LZTS1
and multiple targets in the Hippo pathway [37] and inhibit-
ing the metastasis of prostate cancer by targeting STAT6
[38]. miR-190b is significantly upregulated in hepatocellular
carcinoma cells and interacts with the 3′-untranslated region
of IGF-1 [39]. Both miR-224 and miR-588 showed clear evi-
dence of being associated with breast cancer. miR-224 plays
an important role in preventing the metastasis of breast can-
cer cells to bone by directly inhibiting tumor suppressor gene
RKIP [40]. miR-588 is considered as an important prognostic
biomarker in breast cancer because it is significantly down-
regulated in breast cancer cells and its abnormal expression
level has been reported to be closely associated with the poor
prognosis of breast cancer patients [41].

4. Discussions

For the studies in tumorigenesis, the purpose of modeling is
not only to accurately predict the prognosis of cancer patients
but also to identify genes with significant biological relevance
to cancers. Considering that most of the existing modeling
processes involve steps of handcrafted gene selection, it is pos-
sible to neglect cancer-related genes or to include false positive
genes in the selected gene set, which will interfere with the sub-
sequent biological analysis. Therefore, in this study, we thor-
oughly conducted a comparative study on the model
performance with different genomic features and different
modeling methods and proposed a strategy to identify the
disease-related genes. All the models were tested by using the
mRNA and microRNA sequencing data of BRCA samples.
According to the ER status of the patients, the samples were
categorized into the ER positive and ER negative groups,
which were used as the clinical endpoint for prediction.

The model performance mainly depended on which
type of genomic features was used for modeling. The
models with the expression levels of mRNAs as features
showed better performance than those with the expression
levels of microRNAs (Figures 2 and 3), indicating that the
expression profile of mRNAs might be more related to the
phenotypic difference of BCRA samples. Compared with
the best model constructed with a single type of genomic
features (meanMCC = 0:813), the model performance was
further improved when using multiscale genomic features
for modeling (meanMCC = 0:819). It has been suggested that
integrating the information of the expression profiles of
mRNAs and microRNAs can be helpful for ER status predic-
tion. It is worth noting that mRNAs still accounted for a large
proportion of the final identified multiscale genomic features.
When using the same type of genomic features for model-
ing, the ensemble modeling methods showed better predic-
tion performance (Figure 3). Random forest with mRNAs
as features performed the best among all the models
(meanMCC = 0:813). As for the feature selection methods,
no matter what method was used, there was only a slight
difference in the performance of the models (Figure 3).

When applying our strategy to the genomic feature selec-
tion, 289 mRNAs and 291 microRNAs were selected from
the total features of mRNAs and microRNAs, respectively.
The results showed that, compared with the performance of

Table 3: The top ten GO terms related to molecular functions
significantly enriched with 289 mRNAs identified by SHAP.

GO terms p value

GO:0004716~receptor signaling protein
tyrosine kinase activity

p < 0:001

GO:0042802~identical protein binding 0.001

GO:0008134~transcription factor binding 0.002

GO:0045502~dynein binding 0.006

GO:0046983~protein dimerization activity 0.011

GO:0019899~enzyme binding 0.017

GO:0016769~transferase activity, transferring
nitrogenous groups

0.030

GO:0016772~transferase activity, transferring
phosphorus-containing groups

0.035

GO:0044325~ion channel binding 0.039

GO:0019904~protein domain-specific binding 0.046

Table 2: The top ten GO terms related to biological processes
significantly enriched with 289 mRNAs identified by SHAP.

GO terms p value

GO:0042493~response to drug p < 0:001

GO:0035239~tube morphogenesis p < 0:001
GO:0051093~negative regulation of
developmental process

p < 0:001

GO:0042592~homeostatic process p < 0:001
GO:0051270~regulation of cellular
component movement

p < 0:001

GO:0048565~digestive tract development p < 0:001
GO:0048871~multicellular organismal
homeostasis

p < 0:001

GO:0010817~regulation of hormone levels p < 0:001
GO:0035148~tube formation 0.001

GO:0045595~regulation of cell differentiation 0.002

Table 1: The KEGG pathways enriched with 289 mRNAs identified
by SHAP.

KEGG pathway p value

hsa05120: epithelial cell signaling in
Helicobacter pylori infection

0.036

hsa05206: microRNAs in cancer 0.036

hsa01100: metabolic pathways 0.034

hsa05200: pathways in cancer 0.026
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the models constructed with all mRNAs as features
(meanMCCs = 0:791), the model performance was improved
when modeling with the features identified by our proposed
strategy (meanMCCs = 0:800). As for the models with multi-
scale genomic features, the performance of the models also
had been improved to some extent (Figure 4). It indicated that
the genomic features selected by our strategy were helpful for
the performance of the models. Gene set enrichment analysis
revealed that the selected mRNAs and microRNAs were signif-
icantly associated with cancers. More specifically, the selected
mRNAs were mainly involved in the biological processes of
homeostasis in cells, cellular response to drugs, and regulation
of hormones. The microRNAs were involved in the processes
of gene silencing and inhibition of translation and were mainly
associated with the negative regulation of the genes in a set of
processes, e.g., the negative regulation of inflammatory
response. As for the molecular functions of mRNAs and micro-
RNAs, both of them were highly associated with the binding of
genes and proteins, as well as the activity of enzymes. These
findings can provide valuable reference for stratifying BCRA
patients and exploring the mechanism of the cancer.

In order to illustrate the effectiveness of multiscale geno-
mic features and our proposed strategy for feature selection,
we used the ER status of BCRA patients and the tumor stages
of KIRC and THCA as the prediction endpoints to evaluate
the performance of various models. It is worth noting that
the predictive models were data dependent. For different pre-
diction endpoints, the performance of the models will change
a lot. The deep optimization of the models would be also con-
ducive to improving the prediction performance of the
models, although in this study, the use of a different number
of features and default parameters had no significant impact
on model performance. As the number of mRNAs is larger
than that of miRNAs, if we apply feature selection on the
multiple genomic inputs with a simple combination, the
top-ranked ones are more likely to be dominated by mRNAs,
which can be easily found in our selected feature lists. For
leveraging multiscale genomic data, this is a challenging
problem that is worth further discussion. Furthermore, we
only used the FPKM normalized gene expression values as
features in the current study to construct the predictive
models, and using different transcript quantification
methods applied to represent the gene expression levels, such
as RSEM [42], might result in different prediction results.

5. Conclusions

In conclusion, compared with a single type of genomic fea-
tures, multiscale genomic features can provide more infor-
mation of cancer for constructing the predictive models
and help to improve the prediction performance of the
models. The integration of multiple genomic features will lead
to a sharp increase in the number of features. Effective screen-
ing of genomic features closely related to cancer is important
for the prediction performance of the models. Our proposed
strategy can well identify the genomic features of breast cancer
and effectively improve the stratification of breast cancer
patients having different estrogen receptor status.
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