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Liver zonation is fundamental to normal liver function, and numerous studies have
investigated the microstructure of normal liver lobules. However, only a few studies
have explored the zonation signature in hepatocellular carcinoma (HCC). In this study,
we investigated the significance of liver zonation in HCC with the help of single-cell RNA
sequencing (scRNA-seq) and multicolor immunofluorescence staining. Liver zonation-
related genes were extracted from the literature, and a three-gene model was established
for HCC prognosis. The model reliability was validated using bulk RNA and single-cell
RNA-level data, and the underlying biological mechanism was revealed by a functional
enrichment analysis. The results showed that the signaling pathways of high-risk groups
were similar to those of perivenous zones in the normal liver, indicating the possible
regulating role of hypoxia in HCC zonation. Furthermore, the co-staining results showed
that the low-grade tumors lost their zonation features whereas the high-grade tumors lost
the expression of zonation-related genes, which supported the results obtained from the
sequencing data.
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INTRODUCTION

The liver is the central metabolic organ. It performs various critical functions that maintain body
homeostasis. It also produces a considerable proportion of circulating proteins (Gebhardt, 1992;
Trefts et al., 2017; Ben-Moshe et al., 2019; Ben-Moshe and Itzkovitz, 2019). After the development of
scRNA-seq and spatial transcriptomes, numerous studies have researched the micro-anatomical
structure of the normal liver (Halpern et al., 2017, 2018; Kietzmann, 2017; Ben-Moshe et al., 2019;
Ben-Moshe and Itzkovitz, 2019; Gola et al., 2021). Approximately 50% of hepatocytic genes are
expressed in a zoned manner. These genes are responsible for most liver-specific functions, such as
albumin synthesis, drug metabolism, glycolipid metabolism, free radical scavenging, and immune
activity (Ben-Moshe et al., 2019). Different subsets of hepatocytes perform various liver activities,
and this optimization of function mainly depends on liver zonation (Jungermann, 1986; Meijer et al.,
1990; Bartl et al., 2015). Besides their distinct gene expression profiles, hepatocytes in different
lobular regions also have different epigenetic characteristics, regenerative capacities, susceptibility to
damage, and other functional aspects (Dezső et al., 2017; Brosch et al., 2018; Wei et al., 2021). It is
well known that the liver is the only organ with the ability to regenerate itself, but not all hepatocytes
have the ability to proliferate (Michalopoulos and Bhushan, 2021). Recent studies have shown that
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only hepatocytes at a specific zonation can self-replicate in the
presence of pathological damage to the liver (He et al., 2021; Wei
et al., 2021), which suggests that not all hepatocytes have the same
potential to develop into tumor cells (Sia et al., 2017). However,
few studies have explored the variation in liver zonation
characteristics in hepatocellular carcinoma (HCC).

In this study, we combined large sample transcriptome cohorts,
single-cell sequencing data, and multiplex immunofluorescence
techniques to explore the liver zonation-related genes in HCC. We
found that liver zonation-related genes are liver-specific and
commonly downregulated in HCCs. The liver zonation-related
signature (LZRS) is a reliable predictor of an HCC patient’s
prognosis and can identify the more malignant tumor cell
subtypes at the single-cell resolution level. These signature genes
decreased with the activation of the proto-oncogene network in
HCC cells and were negatively correlated with the degree of HCC
dedifferentiation. Although highly differentiated HCCs still have
characteristic genes, they are not zoned and are expressed in a
mixed fashion. In contrast, low-differentiated tumors lose the

expression of characteristic genes. Our findings provide a
framework to further understand the changing landscape of
liver zonation during the development of HCC.

MATERIALS AND METHODS

Public Data Collection and Processing

The normalized gene-level RNA-seq data and clinical
information from 364 patient TCGA-LIHC cohorts were
downloaded from UCSC Xena (https://xenabrowser.net/) using
the R package UCSC Xena Tools (Wang and Liu, 2019). The
LIRI-JP validation sets for 258 patients and GSE14520 validation
sets for 239 patients were obtained by downloading the RNA-seq
data and the related clinicopathological data from the
International Cancer Genome Consortium (ICGC) website
(https://dcc.icgc.org/projects/LIRI-JP) (Zhang et al., 2019) and
the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.

FIGURE 1 | Establishment of the liver zonation-related prognostic signature. (A) Summary of liver zonation-related genes. Dif: The number of differentially
expressed datasets. Red/blue for consensus upregulated/downregulated. HCC/AllTumor: red/blue for the positive/negative fold change in log2 scale by comparing
HCC with all tumors (TCGA data). HCC/AllAdjacent: red/blue for the positive/negative fold change in log2 scale by comparing HCC with all adjacent samples (TCGA
data). HCC/Adjacent: red/blue for the positive/negative fold change in log2 scale by comparing HCCwith adjacent samples (HCCDB data). Liver/OtherNormal: red/
blue for the positive/negative fold change in log2 scale by comparing liver with normal tissues (GTEx and TCGA data). (B)C-index of the three-gene signature was 0.67 in
the TCGA cohort, 0.67 in the ICGC cohort, and 0.62 in the GSE14520 cohort. (C) Violin diagram showing higher risk scores for the higher tumor stage. (D) Top graphs
show the distribution of risk scores; the center graphs show the survival status of patients in the training cohorts; the bottom graphs show expression patterns of the
three genes.(E) Kaplan–Meier plot of the three-gene signature in TCGA cohort. (F) tROC curve of the three-gene signature in TCGA.
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gov/geo/). The single-cell RNA sequencing barcode sequences
and raw gene expression matrix were downloaded from
CNP0000650 (Sun et al., 2021). Mutation data that contained
somatic variants were stored in the Mutation Annotation Format
(MAF) form and were downloaded from the Genomic Data
Commons (GDC) (https://portal.gdc.cancer.gov).

Exploring the Expression Patterns of Liver
Zonation-Related Genes in HCC
The liver zonation-related genes (n = 50, Figure 1A) were selected
from previously published articles and further verified using the
Human Protein Atlas (Uhlén et al., 2015; Halpern et al., 2017,
2018; Ben-Moshe et al., 2019; Droin et al., 2021). Furthermore,
the expression patterns of liver zonation-related genes were
summarized using the HCCDB database. We used the 4D
metric defined by a previous study to summarize the patterns
(Lian et al., 2018). In detail, 4D metrics, which include four
metrics, are defined in the following way:

1) The liver-specific metric quantifies the specificity of a gene in
the liver compared to other tissues:

log2 FC1 � (log2( �xliver

�xtissue
)

GTEx

+log2(�xadjacent of LIHC

�xadjacent
)

TCGA

)/2.

2) The deregulation metric measures the deregulation extent of a
gene in HCCs compared to adjacent samples:

log2 FC2 � log2( �xHCC

�xadjacent
)

HCCDB

.

3) The tumor-specific metric quantifies the specificity of a gene
in HCCs compared to other tissues:

log2 FC3 � log2( �xHCC

�xadjacent
)

TCGA

.

4) The HCC-specific metric is the specificity of a gene in HCCs
compared to other tumor types:

log2 FC4 � log2(
�xHCC

�x�tumor
)TCGA.

Development and Validation of the Liver
Zonation-Related Signature for HCC
Cases from the TCGA datasets were used as the training cohort
to establish the liver zonation-related signature (LZRS).

The signature generation procedure was as follows: 1) a
univariate Cox regression identified prognostic liver zonation-
related genes in the TCGA-LIHC cohort. 2) Then, a LASSO
regression was performed on the prognostic genes to the fit
prediction models in the TCGA-LIHC cohort. 3) The model
was detected in two validation datasets (GSE14520 and ICGC-
LIHC).

The risk score for each patient was calculated by the LASSO
model weighting coefficient as follows:

riskscores � ∑n

i�1Coe f jpXj,

where n represents the number of key genes, Coefj is the
LASSO coefficient of gene j, and Xj is the normalized
expression value of gene j (formimidoyltransferase
cyclodeaminase [FTCD]: −0.0522, aminolevulinate
dehydratase [ALAD]: −0.0136, and paraoxonase 1 [PON1]:
−0.0247). Then, the concordance c-index proposed by
Harrell was applied to validate the predictive ability of the
signature in all datasets using the “survcomp” R package
(Harrell, 1982; Haibe-Kains et al., 2008). A larger c-index
indicated that the predictive ability of the model was more
accurate.

Processing of Single-Cell RNA-Seq Data
Single-cell RNA sequencing data were processed for dimension
reduction and unsupervised clustering by following the
workflow in Seurat (v. 4.0.2) (Butler et al., 2018). In brief,
first, the read counts for each cell were divided by the total
counts for that cell and multiplied by the scale factor (10,000),
and then natural log transformed. A principal component
analysis (PCA) matrix with 50 components was calculated
to reveal the main axes of variation, and the data were denoised
by using the “RunPCA” function with the default parameter.
For visualization, the dimensionality of each dataset was
further reduced using uniform manifold approximation and
projection (UMAP) implemented in the “RunUMAP”
function (Becht et al., 2019). We retained cell clustering
based on a previous study (Sun et al., 2021). The cluster-
specific marker genes were identified by using the
“FindAllMarkers” function with the MAST algorithm (Finak
et al., 2015).

The liver zonation-related feature scores were calculated by
the negative LASSO model weighting coefficient:

f eaturescores � ∑n

i�1Coe f jpXj,

where n represents the number of key genes, Coefj is the LASSO
coefficient of gene j, and Xj is the normalized expression value of
gene j (FTCD: −0.0522, ALAD: −0.0136, and PON1: −0.0247).

Survival Analysis
The malignancy of different tumor cell subpopulations in the
scRNA-seq data was identified by extracting the top 10
differentially expressed genes (DEGs) in each cluster, and
then, the potential prognostic significance of these genes was
assessed using the LIHC data from GEPIA2 (http://gepia2.
cancer-pku.cn/#index).

The Kaplan–Meier curves were also generated to graphically
demonstrate the overall survival (OS) of the high-risk and low-
risk groups, which were stratified by the liver zonation-related
signature. The R package “survminer” was utilized to perform the
survival analysis, and the optimal cut-off was ascertained by the
“surv_cutpoint” function.
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Bioinformatics Analysis
Gene set enrichment analysis (GSEA) was further used to investigate
the functional enrichment of risk score-associated genes using the R
package “clusterProfiler” (Yu et al., 2012). The Benjamini–Hochberg
methodwas used to adjust the nominal p-values (false discovery rate,
FDR) for multiple testing. A gene set variation analysis (GSVA) was
performed to evaluate the pathway activities in the scRNA-seq data
and bulk data. A single-sample gene set enrichment analysis
(ssGSEA) implemented in the R package GSVA was used to
quantify the relative infiltration of 28 immune cells in the
TCGA-LIHC cohort. The gene sets used in the enrichment
analysis were downloaded from the Molecular Signature Database
(MsigDB, http://software.broadinstitute.org/gsea/msigdb/).

Tissue Samples
The tumor samples were collected from HCC patients at the
First Affiliated Hospital of Zhengzhou University, China. They
consisted of 136 paired samples of primary HCC tumor and
paracancerous tissues from January 2014 to August 2019, each
with a follow-up of more than 2 years. This study complies
with the guidelines of the China Ethical Committee and the
Helsinki Declaration. Informed consent was obtained.

The tissues were fixed with formalin, embedded in paraffin,
and arranged into three tissue chips.

Multicolor Immunofluorescence
Tissue sections were dewaxed in xylene overnight and
rehydrated in a graded alcohol series (ethanol:deionized
water 100:0, 90:10, 80:20, 70:30, 50:50, and 0:100; 5 min
each). After deparaffinization with xylene and rehydration,
antigen retrieval was performed by microwave treatment in
10 mmol sodium citrate buffer (pH 6.0) for 20 min. The
endogenous peroxidase was blocked with 3% H2O2 in
methanol, and non-specific binding was blocked for 10 min
using a protein-blocking buffer. The sections were washed in
phosphate-buffered saline (PBS). In a microwave oven, heat-
induced epitope retrieval was conducted in Tris-EDTA buffer
at pH 9 for 25 min, and then, the sample was allowed to cool
down to 25°C. The endogenous peroxidase activity was
blocked by incubating the slides in 3% hydrogen peroxide
for 25 min and then blocked with 3% bovine serum albumin
(BSA) in Tris-buffered saline (TBS) for 30 min.

The ALAD (Abcam, ab151754), PON1 (Proteintech, 18155-1-
AP), and FTCD (Proteintech, 21959-1-AP) antibodies were
labeled with Alexa Fluor® 488, 555, and 647, respectively,
using Lightning-Link Rapid Kits (Abcam, ab236553, ab269820,
and ab269823, respectively). The primary antibodies were
incubated at 4°C overnight. After overnight incubation at 4°C,
the sections were washed with PBS and stained with DAPI.

Whole slide digital images were scanned using a Pannoramic
DESK scanner (3DHISTECH), and all IF staining were quantified
by QuPath software (Bankhead et al., 2017).

Statistical Analysis
Student’s t-test was conducted to make the statistical comparison,
and the “pheatmap” R package was used to generate heatmaps.
Survival analysis was conducted using the Kaplan–Meier method,

and the prediction performance of the risk model was evaluated
using the receiver operating characteristic (ROC) in the “time-
ROC” R package. Multivariate Cox regression analyses were used
to investigate the prognostic value of the risk score. The hazard
ratio (HR) and 95% confidence intervals (CI) for each variable
were also calculated where needed. p < 0.05 was defined as a
statistically significant difference. All of our analyses were
conducted by R software version 4.0.2 (https://www.r-
project.org).

RESULTS

Summary and Characterization of Liver
Zonation-Related Genes
We used zonation-related genes in normal liver lobules
obtained from a literature review to obtain a representative
list of liver zonation genes (Halpern et al., 2017; Halpern et al.,
2018; Ben-Moshe et al., 2019; Droin et al., 2021). These genes
are robust according to several different experimental
platforms, including single-cell RNA sequencing (scRNA-
seq), spatial transcriptomes, seqFISH, and spatial sorting
proteomics (Halpern et al., 2017; Halpern et al., 2018; Ben-
Moshe et al., 2019). Liver zonation-related genes can be
divided into two main groups: peri-central vein genes and
peri-portal vein genes (Ben-Moshe and Itzkovitz, 2019).
These genes are controlled by factors such as oxygen,
nutrients, and microorganisms and form the basis for
normal liver function. To explore the liver zonation
characteristics in HCC, we first investigated the expression
of these genes in HCC and its paraneoplastic tissues in 15
HCC transcriptomic datasets (Lian et al., 2018). These genes
had the highest expression levels in normal liver tissues. They
were downregulated in cancerous liver tissues but were still
higher than in other non-hepatic tissues, indicating their
specificity in liver tissues (Figure 1A).

Construction and Validation of a
Three-Gene Zonation-Related Signature
To obtain the prognostic genes, we retained the genes
significantly associated with prognosis by univariate Cox
analysis. The results of the univariate Cox regression
analysis of 24 genes were used in the LASSO regression to
identify robust markers in the TCGA-LIHC cohort (Ally
et al., 2017). PON1, FTCD, and ALAD were 445 extracted
and had the most significant HCC overall 446 survival times
(Figure 1D, Supplementary Figures S1A,B). The ICGC
dataset and GSE14520 were used as external validation
cohorts to verify the predictive ability of the model (Zhang
et al., 2019). There was a significant difference in survival
among patients in the high- and low-risk groups within the
three cohorts (Figures 1E,F; Supplementary Figures
S1C–F), and the risk scores were upregulated with the
increasing TNM stage (Figure 1C). The credibility of this
model was validated by assessing the C-index in the three
cohorts (0.67, 0.67, and 0.62, respectively) (Figure 1B).
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Three-Gene Zonation-Related Signature
Could Accurately Identify More Malignant
Cells at the Single-Cell Level
The performance of the model was validated by the SMART-
seq2–based high-quality scRNA-seq data for HCC
(Figure 2A) (Sun et al., 2021). We calculated the feature
score for each tumor cell by taking the negative value of the
risk score. Cluster C14 had the highest feature score, and
cluster C12 had the lowest feature score (Figures 2B,C).
Differential genes were calculated for each cluster using
the MAST algorithm (Finak et al., 2015). The top 10
differential genes were selected as the cluster-specific
signatures for the survival analysis to assess the degree of
malignancy for each cluster. We compared whether there was
a survival difference between the two groups to determine the
malignancy of the malignant cell clusters. Signature C14
represented a better prognosis, and signature C12 showed
a worse prognosis (Figures 2D,E). In contrast, the other
cluster signatures were not related to a prognosis,
indicating that the model could accurately identify the
more malignant cells.

Loss of Liver Zonation Features Is
Associated With Proto-Oncogene Network
Activation and Tumor Cell Immune Escape
To investigate the biological mechanisms underlying the loss of
liver zonation-related features leading to a poor prognosis for
HCC, we performed a GSVA on each cell and ranked the cells
from the highest to the lowest according to the feature score
(Hänzelmann et al., 2013) (Figure 2F). In general, themalignancy
of HCC cells gradually increases as the feature score decreases in
three significant ways: 1) the proliferation and activation of the
proto-oncogene network (“G2M checkpoint,” “WNT/β-catenin
signaling,” “MYC targets,” and “E2F targets”); 2) the loss of
intrinsic hepatic features (“coagulation” and “complement”);
and 3) the downregulation of the inflammatory response
(“inflammatory response,” “IL2_STAT5 signaling,”
“IL6_JAK_STAT3 signaling,” “TNFα signaling via NF-κB,”
“interferon α response,” and “interferon γ response”). The
upregulation of the “Hedgehog” and “WNT/β-catenin”
signaling pathways and the metabolic pathways, such as
glycolysis, in HCC were consistent with the variation in
typical liver zonation (Rebouissou et al., 2016). They are the
most relevant pathways for early liver cancer progression

FIGURE 2 | Three-gene signature could identify more malignant cells well in the single-cell level. (A) UMAP plot shows the cluster of tumor cells. The annotation of
cell types follows the original authors. (B,C) Feature plot and violin plot show the feature score of each cluster. The higher the feature score, the less malignant is the
tumor. (D,E) Kaplan–Meier plot of the C14_Tumor signature and C12_Tumor signature in TCGA cohort. (F)Heat map shows the GSVA enrichment of each cell; cells are
sorted according to the feature score.
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FIGURE 3 | Functional enrichment analysis of the three-gene signature. (A) Bar plot of GSVA enrichment in the high-risk group and low-risk group. (B,C) GSEA
enrichment results in the high-risk group and low-risk group. (D–J) Correlation of the risk score with infiltrative immune cells. (K) KEGG enrichment result of immune
genes’ negative correlation with risk scores. (L) Boxplot shows the expression of immune checkpoints in the high-risk group and low-risk group (*p < 0.05, **p < 0.01,
and ***p < 0.001).
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FIGURE 4 | Protein level validation for external cohorts. (A) Full tissue microarray scans with nuclei labeled with DAPI (blue), ALAD labeled with Alexa Fluor 488,
FTCD labeled with Alexa Fluor 550, and PON1 labeled with Cy5. For better visualization, FTCD signals are converted to pseudo-color. (B) Distribution of the difference in
staining intensities of ALAD, FTCD, and PON1 in HCC tissues compared with that in paired adjacent tissues. (****p < 0.001). (C–E)Representative images of multicolor IF
staining in tissues. Adjacent tissues (C), triple-negative tumor tissues (D), and triple-positive tumor tissues with chaotic distribution (E). (F) K-M plot of the three-
gene prognosis model in 136 patient external validation cohorts.

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 8064087

Yu et al. Liver Zonation in HCC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


(Benhamouche et al., 2006; Sia et al., 2017; Perugorria et al., 2019).
Notably, the bulk level analysis was consistent with the single-cell
level analysis. We performed a GSVA on the TCGA cohort and
calculated the differential pathways between high- and low-risk
groups using the limma package (Ritchie et al., 2015). The high-
risk group had a greater proliferative capacity and glycolytic
activity, while the low-risk group had a more potent immune
activation profile (Figure 3A). The GSEA results also confirmed
this discovery (Figures 3B,C). These results suggest that the LZRS
can be a good marker for predicting early proto-oncogenic
pathway activation in HCC.

The immune microenvironment of tumors is associated
with their prognosis (Thorsson et al., 2018). Notably, both the
bulk-level and single-cell resolution data showed negative
correlations between tumor inflammation levels and the
LZRS (Figure 2F, Figures 3A–C).

Deconvolution analysis of the tumor microenvironment
showed that antitumor immune cells, such as CD8, CTL,
B cells, and Th17, were negatively correlated with the LZRS,
indicating poor immune infiltration in the high-risk group
(Figures 3D–J). A total of 2,498 immune-related genes were
extracted from the ImmPort database. We calculated the
Pearson correlations between these genes and their risk
score and selected immune genes that were negatively
correlated with the risk score (r < −0.3 and p < 0.05). A
KEGG pathway enrichment analysis showed that these genes
were mainly involved in the immune activation process
(Figure 3K). We examined the expression of classical
immune checkpoints in the high- and low-risk groups;
CTLA4, PDCD1, and HAVCR2 were significantly
upregulated in the high-risk group (Figure 3L). This
implies that immune infiltration may be an important
cause of prognostic differences.

Multiplex Immunofluorescence Reveals the
Alteration and Loss of Typical Zonation
Characteristics in HCC
To determine the protein expression of three genes, we
performed multicolor IF staining using 136 paired samples
of primary HCC tumor and paracancerous tissues from
January 2014 to August 2019, each with a follow-up of
more than 2 years. The patient characteristics are listed in
Supplementary Table S1. The genes were mainly expressed
in adjacent tissues, but they were absent in tumor tissues
(Figures 4A,B). Co-staining revealed that the normal tissues
showed distinct zonation, the low-grade tumors lost their
zonation, and the high-grade tumors showed no expression of
these zonation-related genes (Figures 4C–E). Considering
that liver function is mainly based on zonation, the alteration
and loss of normal zonation characteristics represent the
degree of tumor cell dedifferentiation. We divided the
samples based on the calculated risk score for each sample.
The results showed there were significant survival differences
between the high- and low-risk groups (Figure 4F), and the
validation results were consistent with the results of the study
analysis.

DISCUSSION

The liver exhibits a profound division of labor between
hepatocytes residing in different regions of the liver, and
such a division of labor is fundamental if the liver is to
perform its normal functions (Jungermann, 1986;
Jungermann and Keitzmann, 1996; Ben-Moshe and
Itzkovitz, 2019; Gola et al., 2021). Recent studies have
suggested that in addition to the functional differences,
hepatocytes in different regions exhibit different responses
to injury in pathological situations because only some of them
can reproduce (Michalopoulos and Bhushan, 2021, 2021; Wei
et al., 2021). Therefore, understanding and modeling the
changes in the liver during disease progression require the
characterization of hepatocyte function at each lobular
coordinate. This study combined machine learning, single-
cell sequencing, and multiplex IF approaches to extract
signatures from liver zonation-related genes, most of which
were associated with HCC prognosis, and determined the
changes in liver zonation characteristics during HCC
progression.

Our machine learning results showed that PON1, FTCD,
and ALAD best responded to the changing characteristics of
zonation during HCC progression. Paraoxonase 1 is a
hydrolase located on HDL and has been postulated to have
a protective effect on low-density lipoprotein oxidation
(Mackness and Mackness, 2015). Previous studies have
reported that PON1 is significantly upregulated during the
regulation of chronic liver disease and plays an active role in
oxidative stress, fibrosis, and hepatocyte apoptosis (Ferré et al.,
2006). The FTCD encoded by this gene is a bifunctional
enzyme that channels 1-carbon units from
formiminoglutamate, a metabolite in the histidine
degradation pathway, to the folate pool (Kanarek et al.,
2018). The ALAD enzyme is composed of eight identical
subunits and catalyzes the condensation of two molecules of
delta-aminolevulinate to form porphobilinogen (Sassa, 1998).
All three proteins are liver-specific and expressed at high
levels. They showed significant downregulation at the RNA
and protein levels in HCC.

Sorting tumor cells according to their feature score in the
single-cell dataset revealed that the degree of HCC
dedifferentiation progressively increased with the
decreasing expression of these three genes. Our multiplex
IF results also supported the conclusion that the highly
differentiated HCC tissue still expresses these genes but
loses zonation. In contrast, the hypodifferentiated HCC
tissue completely lost the expression of these genes. On the
one hand, it shows that this signature can be used to
determine the degree of HCC differentiation and to assess
the prognosis of patients. On the other hand, it suggests that
the expression of these genes may be involved in the
dedifferentiation of tumor cells.

The origin of HCCs remains a mystery (Sia et al., 2017).
Previous studies have speculated that they originate from liver
progenitor cells, but there is still no direct evidence for this
speculation (Mokkapati et al., 2014). However, recent studies
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have found that only some regions of the hepatocytes can
regenerate and participate in repairing the liver after
injury and that these cells may be the origin of
hepatocarcinogenesis (He et al., 2021; Wei et al., 2021). Once
again, this shows the importance of the intrinsic zonation of the
liver in liver cancer. The upregulation of the “Hedgehog” and
“WNT/β-catenin” signaling pathways and metabolic
pathways, such as glycolysis, in HCCs was consistent with the
variation in typical liver zonation. Probably due to hypoxia, the
metabolic and related regulation pathways in high-risk groups
were similar to those in the perivenous zone of a normal liver.
Previous studies proposed that the oxygen gradient was a
regulator of liver zonation, where the low oxygen content in
the perivenous zone would activate the β-catenin signaling
pathway via the hypoxia-inducible factor (HIF) system
(Matsumura and Thurman, 1983; Wolfle et al., 1983;
Kietzmann, 2017). In this concept, gradients of morphogens,
such as “WNT/β-catenin” and “Hedgehog,” restrict the gene
expression to differentiated hepatocytes located in specific
zones of the liver acinus (Benhamouche et al., 2006; Sekine
et al., 2006; Lade and Monga, 2011; Kietzmann, 2017;
Perugorria et al., 2019). The HCC cells that can adapt to the
hypoxic environment are more likely to originate from the
periportal zones.

There were several limitations to this study. The LZRS model
can be reproduced using a simple immunohistochemistry
assay, making it attractive for clinical translation and
implementation. Although the clinical significance of the LZRS
in HCC is promising, researchers should acknowledge some
limitations. First, all of the samples from this study were
retrospective, and future validation of the LZRS should be
performed using prospective multicenter cohort studies.
Second, there was a lack of single-cell sequencing datasets that
explored advanced liver disease and early HCC, as well as focused
on the changes in the hepatocytes themselves during liver disease.
This made it difficult to determine the role of the LZRS in the
hepatocarcinogenesis process. Third, the cause of liver lobular
zonation disorder during the progression of chronic liver disease
is unclear, and further in vivo and in vitro experiments need to be
undertaken.

In summary, we showed that the characteristics of liver zonation
were disrupted in low-gradeHCC tissues and vanished in high-grade
HCC tissues, representing a loss and dedifferentiation of liver
features. Our results show that zonation-related genes can
accurately classify patients into different risk groups and predict
immunotherapy efficacy.
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