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Abstract: The aim of pharmacological conditioning is to protect the heart against myocardial ischemia-
reperfusion (I/R) injury and its consequences. There is extensive literature that reports a multitude
of different cardioprotective signaling molecules and mechanisms in diverse experimental protocols.
Several pharmacological agents have been evaluated in terms of myocardial I/R injury. While results
from experimental studies are immensely encouraging, translation into the clinical setting remains
unsatisfactory. This narrative review wants to focus on two aspects: (1) give a comprehensive update
on new developments of pharmacological conditioning in the experimental setting concentrating
on recent literature of the last two years and (2) briefly summarize clinical evidence of these car-
dioprotective substances in the perioperative setting highlighting their clinical implications. By
directly opposing each pharmacological agent regarding its recent experimental knowledge and most
important available clinical data, a clear overview is given demonstrating the remaining gap between
basic research and clinical practice. Finally, future perspectives are given on how we might overcome
the limited translatability in the field of pharmacological conditioning.

Keywords: cardioprotection; molecular mechanisms; preconditioning; postconditioning; ischemia
reperfusion injury

1. Introduction

Conditioning is still the strongest cardioprotective mechanism to reduce ischemia-
reperfusion (I/R) injury and cell death after myocardial infarction (MI). In 1986, Murry
et al. were the first to describe that short periods of non-lethal coronary artery occlusions
followed by reperfusion reduced cardiac infarct size after global ischemia [1]. This phe-
nomenon was called ischemic preconditioning (IPC). However, due to its invasiveness, it
is rather impractical for the clinical setting. Another way to protect the heart against the
consequences of I/R injury is pharmacological conditioning, a concept that is based on
the administration of specific drugs mimicking the effect of IPC. Several pharmacologi-
cal agents have been evaluated regarding protection against myocardial I/R injury, e.g.,
volatile anesthetics, opioids or alpha-2 agonists, and further a multitude of different signal-
ing molecules and mechanisms of conditioning have been identified in the experimental
setting (as shown in Figure 1). The results from experimental studies are encouraging.
However, clinical trials on different conditioning strategies have revealed inconclusive,
neutral or even negative results. This review will address the significant gap between new
developments of pharmacological conditioning in the experimental setting and current
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clinical implications of the respective agents in more detail. Finally, future perspectives
on how to possibly overcome the limited translatability in the field of pharmacological
conditioning are illustrated. With regard to the exact pathways of cardioprotection, we
refer to previously published articles where general underlying mechanisms are explained
more in depth [2,3]. More detailed information on current clinical evidence and potential
reasons for the limited translation can be found in further review articles [3,4]. In the
following, most important substances for pharmacological conditioning of the heart in the
perioperative setting are presented systematically regarding experimental developments
and clinical implications of each agent.
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Figure 1. Molecular targets of pharmacological conditioning. GPCR = G protein-coupled receptor; TNF-R2 = tumor
necrosis factor receptor 2; gp130 = glycoprotein 130; TRPV4 = transient receptor potential vanilloid 4; VEGFR-1 = vas-
cular endothelial growth factor receptor 1; SAFE = survivor activating factor enhancement; TNFα = tumor necrosis
factor alpha; JAK/STAT = janus kinase/signal transducers and activators of transcription; RISK = reperfusion injury
salvage kinase; PI3K = phosphatidylinositol 3-kinase; PKB = protein kinase B; ERK = extracellular-signal-regulated kinase;
GSK3β = glycogen synthase kinase 3 beta; NO/PKG = nitric oxide/protein kinase G; eNOS = endothelial nitric oxide
synthase; cGMP = cyclic guanosine monophosphate; miRNA = micro ribonucleic acid; mBKCa = mitochondrial large-
conductance calcium-sensitive potassium channel, mKATP = mitochondrial adenosine triphosphate-sensitive potassium
channel; mPTP = mitochondrial permeability transition pore.

2. Volatile Anesthetics
2.1. Experimental Developments

To date, there are three routinely used volatile anesthetics that have been investigated
in the context of pharmacological conditioning: sevoflurane, isoflurane and desflurane.

Sevoflurane confers cardioprotection through pre- and post-conditioning [5,6] via
several key pathways as well as mitochondrial adenosine triphosphate-sensitive potassium
channel (mKATP) activation and modulation of mitochondrial permeability transition pore
(mPTP) (Figure 1) [2,7]. In addition, apoptosis is modulated by sevoflurane-induced
postconditioning via the janus kinase-signal transducer and activator of transcription 3
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(JAK/STAT3) pathway. A JAK2 selective inhibitor fully abrogates cardioprotection by
sevoflurane in a rat model of myocardial I/R injury [8]. In addition, a pivotal role for
autophagy in cardiac conditioning with sevoflurane has been described [9]. A study
by Qiao et al. underlined these findings in an in vivo and in vitro rat model showing
that sevoflurane-induced postconditioning confers cardioprotection. Administration of
sevoflurane improves autophagic flux by a nitric oxide (NO)-dependent mechanism [10].
The beneficial effects of sevoflurane were fully abolished by administration of the nitric
oxide synthase (NOS) inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) as well
as by the autophagic flux blocker chloroquine (CQ) [10].

Next to the commonly known pathways of cardioprotection, in the last two years
research mainly focused on the identification of different cell types as cardioprotective
molecular targets. Vascular endothelial growth factor receptor (VEGFR)—more specifically
VEGFR-1—is one of these targets. Qian et al. demonstrated that treatment with sevoflurane
results in an increase of VEGFR-1 expression along with a decrease in markers of inflam-
mation [11]. This remained effective when adding a selective VEGFR-1 agonist (placenta
growth factor (PlGF)), while administration of a specific VEGFR-1 blocker (macrophage
migration inhibitory factor-1 (MIF-1)) completely abolished protection [11]. Another aspect
recent research activity focused on refers to the role of non-coding ribonucleic acids (RNA)
(Figure 1). Referring to microRNAs (miRNA) and conditioning strategies, sevoflurane-
induced cardioprotection seems to be regulated by small RNAs [12], for example by a
decrease of miRNA-155 [13]. In turn, sirtuin1 (SIRT1), a target gene of the respective
miRNA, is increased and leads to inhibition of cardiomyocyte apoptosis.

Fortunately, preconditioning with sevoflurane is not negatively affected by diabetic
conditions, which is a promising approach regarding successful translation into the clin-
ical setting. In this context, Xie et al. showed that treatment with sevoflurane protects
the heart via AMP-activated protein kinase (AMPK)-dependent inhibition of pro-death
mitogen-activated protein kinase p38 (p38 MAPK) in non-diabetic mice [14]. In contrast,
the volatile anesthetic confers its cardioprotective effects in diabetic animals completely
independent of AMPK [14]. While these experimental results on diabetes and sevoflurane-
induced cardioprotection are promising for the clinical context, unfortunately the beneficial
effects of sevoflurane are abrogated in aged hearts. Studies indicate that in this context,
sevoflurane is possibly influenced by a changed modulation in genes regulated by the
nuclear transcription factor kappa B (NFkB) [15].

The second routinely used volatile anesthetic is isoflurane. First investigations on its
cardioprotective effects were performed in the 1980s: Warltier et al. demonstrated that
inhalation of isoflurane results in a significantly reduced infarct size in stunned canine my-
ocardium [16]. Numerous studies followed and investigated isoflurane-induced pre- and
post-conditioning [17–19]. The majority of experimental studies was conducted in young
and healthy animals. However, there is an aging population with increasing co-morbidities
and co-medications. Therefore, recent research activities focused on the impact of aging.
One compound that has been suggested in this context is the potent antioxidant TEMPOL
reported to avoid the inhibitory effects of aging on isoflurane-induced cardioprotection
in rats by improving mitochondrial function. In contrast, inhibition of autophagy and mi-
tophagy abolished protection mediated by isoflurane in cardiomyocytes from both young
and TEMPOL pretreated old rats [20]. In general, there are controversies regarding the
role of mitophagy and autophagy in cardioprotective strategies [21]. Mitophagy prevents
potential detrimental reactive oxygen species (ROS) production in damaged mitochon-
dria after I/R, is involved in cardiac preconditioning and declines with age. Therefore,
mitophagy might be a crucial target of cardioprotection in the elderly heart [22]. Cheng
et al. showed that treatment with isoflurane reduced autophagy and increased cell via-
bility of primary cardiomyocytes and thus protection against anoxia/reoxygenation [23].
This effect was mediated by a reduced expression of nucleotide binding oligomerization
domain containing 2 (NOD2), which is usually accompanied with higher expression of
autophagy-related genes and increased phosphorylation of p38 MAPK [23]. A variety of
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previous studies have demonstrated cardioprotective effects against I/R injury by increased
autophagy; however, excessive autophagy plays a pivotal role in the reperfusion-induced
damage on cardiac function (as reviewed in [21]). These controversial findings are just
examples emphasizing the importance of further unravelling the basic mechanisms of
cardioprotection. Moreover, the central role of mitochondria in conditioning strategies is
highlighted and reflects why most recent research has mainly focused on this aspect. For
example, Xu et al. demonstrated that treatment with isoflurane in isolated, myocardial
mitochondria results in an uncoupling effect during state 2 respiration and attenuates state
3 respiration independent of endogenous mitochondrial NO [24]. Alongside this work,
Harisseh and coworkers investigated effects of different anesthetics on mitochondrial activ-
ity dependent on Cyclophilin D (CypD)—a main mediator of mitochondrial dysfunction
and component of the mPTP [25]. CypD plays a major role in regulation of mitochondria by
regulating mPTP, e.g., through decreasing the threshold for opening of the mPTP triggered
by phosphate or calcium (Ca2+) [26]. Isoflurane inhibits state 3 respiration in complex I of
mitochondria, decreases membrane potential and enhances adenosine diphosphate (ADP)
consumption duration in wildtype (WT) as well as CypD knockout mice [25].

Previous studies revealed that isoflurane confers cardioprotective effects in mouse
hearts against I/R injury through a miRNA-21-dependent mechanism [27,28]. MiRNA-21,
which is highly expressed in cardiomyocytes and upregulated by isoflurane, exerts effects
on different cardioprotective signaling pathways, like phosphorylation of protein kinase B
(PKB) or endothelial NOS (eNOS). More recently, Liu et al. demonstrated that treatment
with isoflurane also reduces expression of miRNA-23 in cardiomyocytes resulting in in-
creased resistance against oxidative stress [29]. Consistently, overexpressing of miRNA-23
seems to sensitize cardiomyocytes to oxidative stress. These findings clarify that protection
of cardiomyocytes against I/R injury by isoflurane might be mediated by suppression of
miRNA-23 [29].

Finally, the third routinely used volatile anesthetic is desflurane. To date, experimental
data on its cardioprotective properties are scarce. Interestingly, Heiberg et al. reported that
the protective effect of desflurane is superior to that of propofol. However, a combination
of both agents fully abolished cardioprotective effects [30]. Further studies are needed
regarding desflurane and its effectiveness in pharmacological cardiac conditioning.

2.2. Clinical Implications

With regard to the clinical setting, there is no final answer regarding cardioprotective
effects of volatile anesthetics (Table 1). In a meta-analysis Uhlig et al. reported that
anesthesia with volatile anesthetics in cardiac surgery may reduce mortality [31]. However,
no benefits were seen in non-cardiac surgical patients. In a moderate-sized randomized
controlled trial (RCT) including 868 patients undergoing coronary artery bypass graft
(CABG) surgery, a reduced length of hospital stay and a reduction in one-year mortality
was observed when using sevoflurane instead of total intravenous anesthesia employing
propofol [32]. In contrast, another trial (n = 200) did not reveal any beneficial in terms
of prolonged intensive care unit stay, mortality, or both in patients undergoing high-risk
cardiac surgery [33]. Most robust data come from a pragmatic, multicenter RCT by Landoni
and colleagues including 5400 patients undergoing isolated CABG surgery [34]. This study
compared the use of volatile anesthetics (desflurane, sevoflurane, isoflurane) at any given
moment during anesthesia versus propofol-based total intravenous anesthesia and found
no significant reduction in mortality one year after surgery [34]. There were also no
significant differences regarding secondary outcomes such as myocardial infarction or
other adverse events [34]. In conclusion—and as recommended by current guidelines—
volatile anesthetics may be preferable especially in cardiac surgery patients, but definite
evidence is lacking.
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Table 1. Important clinical trials on pharmacological conditioning.

Study Title Population Intervention Endpoints Results

Volatile anesthetics versus total
intravenous anesthesia for

cardiac surgery [34]

Elective CABG
(RCT; n = 5400)

Volatile anesthetic
vs. TIVA

Death from any cause
at 1 year

No difference
regarding deaths at 1

year between a volatile
agent and total

intravenous anesthesia

Volatile compared with total
intravenous anaesthesia in

patients undergoing high-risk
cardiac surgery: a randomized

multicentre study [33]

High-risk cardiac
surgery patients with

CPB
(RCT; n = 200)

Sevoflurane versus
TIVA

Composite of death,
prolonged intensive

care unit stay

No observed beneficial
effect of sevoflurane on
the composite endpoint

Sevoflurane Versus Total
Intravenous Anesthesia for
Isolated Coronary Artery

Bypass Surgery with
Cardiopulmonary Bypass: A

Randomized Trial [32]

CABG with CPB
(RCT; n = 868)

Sevoflurane versus
TIVA

Hospital length of
stay

Reduction of cardiac
biomarker release and
length of hospital stay

after CABG by
Sevoflurane

Randomized comparison of
sevoflurane versus propofol to

reduce perioperative
myocardial ischemia in

patients undergoing
noncardiac surgery [35]

Noncardiac surgery
patients at increased
cardiovascular risk

(RCT; n = 385)

Sevoflurane versus
Propofol

Composite of
myocardial ischemia

detected by
continuous ECG
and/or troponin

elevation

Sevoflurane did not
reduce the incidence of

myocardial ischemia

Clonidine in patients
undergoing noncardiac

surgery [36]

Patients at risk for
atherosclerotic

disease undergoing
noncardiac surgery
(RCT; n = 10,010)

Clonidine vs.
Placebo

Composite endpoint
of death or nonfatal

myocardial infarction
at 30 days

Clonidine did not
reduce the rate of the
composite outcome,
but increased risk of

hypotension and
cardiac arrest

Effect of Xenon Anesthesia
Compared to Sevoflurane and
Total Intravenous Anesthesia
for Coronary Artery Bypass

Graft Surgery on Postoperative
Cardiac Troponin Release [37]

Low-risk, on-pump
CABG

(RCT; n = 492)

Xenon vs.
sevoflurane and

TIVA

Cardiac troponin I
concentration in the

blood 24 h
postsurgery

In postoperative
troponin I release,

xenon was noninferior
to sevoflurane in CABG

patients

Levosimendan in patients with
left ventricular dysfunction

undergoing cardiac
surgery [38]

LVEF of 35% or less
and cardiac surgery

with CPB (RCT;
n = 882)

Levosimendan vs.
Placebo

Composite of death,
RRT, MI and use of

ECLS

Levosimendan did not
reduce the incidence of
the composite endpoint

RCT = randomized controlled trial; CABG = coronary artery bypass graft; TIVA = total intravenous anesthesia; LVEF = left ventricular
ejection fraction; CPB = cardiopulmonary bypass; RRT = renal replacement therapy; MI = myocardial infarction; ECLS = extracorporeal life
support; STEMI = ST-elevation myocardial infarction; MRI = magnetic resonance imaging.

3. Helium—A Noble Gas
3.1. Experimental Developments

Several aforementioned mechanisms have been described for another type of inhala-
tional drugs: noble gases (e.g., xenon, helium, neon and argon). These gases are supposed
to be chemical ‘inert’, meaning a lack of chemical reactivity. However, they have proven to
be far away from being biological inert. They exert a pronounced cardioprotective effect
that has not only been described in vitro and in vivo in animals, but also in humans [39].

Since noble gases are monoatomic gases with a filled outer shell of valence electrons
an interaction with other compounds was suggested highly unlikely. Hence, findings indi-
cating cardioprotection by noble gases in vivo were quite surprising [40]. Helium, argon
and neon—compared to xenon—do not confer a hypnotic effect, thus its cardioprotective
effect must be separate from any anesthetic properties of the noble gases. This makes
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helium an interesting candidate for an easily applicable intervention as it can be given to
awake patients experiencing an I/R situation. Moreover, helium is already available for
clinical use in patients suffering from respiratory diseases.

Referring to comprehensive reviews of several mechanisms involved in helium in-
duced cardioprotection [39,41–43], we want to focus on one key mechanism conferring the
effects of helium within the cell to the target proteins ultimately leading to cardioprotection.
The determination of caveolins as activators of a multi protein signaling pathway connect-
ing the cell membrane to downstream targets, has been the latest steps fully elucidating
the cardioprotective mechanisms of an ‘inert’ gas like helium. Caveolins are small proteins
that are anchored into so called caveolae in the plasma membrane acting as structural
components of the cellular membrane [44–47]. Caveolins partly build caveolae and their
scaffolding domain has a key role in binding proteins that have been described to be
involved in helium conditioning of the heart: e.g., the G-alpha subunit of heterotrimeric
G-proteins, Src kinases, phosphatidylinositol 3-kinase (PI3K), eNOS, protein kinase C (PKC)
isoforms and extracellular-signal-regulated kinase (ERK) [48–50]. Furthermore, these small
proteins mediate several responses in stress adaptation processes [51]. The isoforms cave-
olin 1 and 2 are expressed in a variety of cell types, e.g., endothelial cells [52]. In contrast,
caveolin 3 is predominantly found in skeletal, cardiac muscle and certain smooth muscle
cells [53]. The properties of caveolae and caveolins in transmitting a signal from the cell
membrane into the cell itself make them a very promising molecular target for noble gases
like helium. Additionally, for the inhalational anesthetic isoflurane there is convincing
evidence that caveolins are also a key mediator in the cardioprotection exerted by the
volatile anesthetic [52,54].

Recent in vivo studies have shown that caveolin 1 and 3 can be identified as key
mediators of helium induced cardioprotection. In a rat model of I/R injury, helium
used as inductor of postconditioning increases caveolin 3 levels in plasma of the animals.
Interestingly,—in contrast to the non-infarcted area—in the infarcted myocardium both
caveolin 1 and 3 levels were increased [55]. In line with these findings, in a study of
cardiac arrest and subsequent resuscitation in rats, application of helium for five minutes
as preconditioning stimulus also revealed differential regulation of both proteins within
the myocardium accompanied by a reduced cardiac apoptosis [56]. In contrast, in a
study of helium-induced preconditioning in isolated Langendorff perfused mice hearts no
protection was found [57]. Given that the Langendorff model lacks any blood circulation,
further studies were carried out assessing the distribution and expression of caveolins
in mice hearts in more detail. In fact, a decrease in caveolin 1 and 3 expression in the
membrane fractions of hearts was observed [57]. This effect was accompanied by an
increase of both proteins in the platelet free plasma of mice [57]. Thus, the missing
blood component in the respective Langendorff model might be one of the carriers of the
protective caveolin. Helium is able to induce the secretion of caveolin into the blood stream,
and thereby, the protective factors are transported to the target organ. These findings were
supported by in vitro experiments showing increased mitochondrial metabolism of muscle
cells that were treated with serum from mice after inhalation of helium [57].

3.2. Clinical Implications

Although helium might seem to be an ideal candidate for drug-induced cardiopro-
tection, there is yet no compelling evidence proofing that helium administration indeed
protects patients at risk for an ischemic insult (Table 1). Thus, all the above described
promising experimental results are yet to be translated into the clinical scenario.

In contrary, limited clinical data suggest no protection in patients undergoing CABG [58].
125 CABG patients were included in a prospective, placebo controlled, investigator blinded,
parallel arm single-center study. Patients randomly assigned to ventilation with helium
(70% in a gas mixture) for three x five minutes before the start of the cardiopulmonary
bypass, after the release of the cross clamp (referring to helium pre- and postconditioning)
or in a combination of both strategies. However, none of the applied conditioning protocols
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had a protective effect on post-operative troponin release [58]. Furthermore, neither group
showed an upregulation of potential molecular targets within the human heart—p38
MAPK, ERK 1/2 or levels of heat shock protein 27 (HSP27) and PKC-ε—indicating no
involvement of these targets [58].

Interestingly, there are a few small studies in humans assessing inflammation related
effects of helium on the vascular system rather than direct cardioprotective effects. How-
ever, results from these studies might also contribute to understanding the cardioprotective
mechanisms of helium, considering a compromised vascular system also contributes to
cardiac dysfunction. In a forearm blood flow model of I/R in healthy volunteers, results
showed that three times of five minutes 79% helium inhalation improved post-ischemic
endothelial dysfunction and protection was still effective even up to 24 h after helium
inhalation [59]. Unfortunately, potentially involved molecular targets, like cytokines, ad-
hesion molecules, or microparticles, were not influenced by helium in this study [59].
In contrast, a study addressing post-ischemic reactive hyperemia by administering 50%
helium before, during and after forearm ischemia failed to show endothelial protection [60].
In fact, only a modest anti-inflammatory activity of helium—shown in a decrease of intra-
cellular adhesion molecule (CD) 1 and CD11b on leukocytes as well as a reduced expression
of pro-coagulant markers CD42b and P-selectin glycoprotein ligand-1 on platelets—was
detected [60].

Taken together, even though animal and cell experimental studies showed promising
cardioprotective effects, translation of helium as a cardioprotective strategy for clinical use
has yet failed and more large randomized clinical trials are needed.

4. Propofol
4.1. Experimental Developments

Due to its contradictory behavior, propofol takes a special role in the field of pharma-
cological conditioning: on the one hand it is suggested to provide cardioprotection itself,
but on the other hand it seems to negatively affect cardioprotective properties of other
substances such as volatile anesthetics [2]. In different experimental studies, propofol-
induced pre- and postconditioning demonstrated protective effects against I/R injury [61].
Underlying mechanisms include reduction in ROS and the regulation of Ca2+ overload
through various channels (e.g., long lasting (L)- and transient opening (T)-type Ca2+ chan-
nels) during reperfusion. Emphasizing the most recent studies on this topic, a particular
focus has been given on identifying the underlying mechanisms of cardioprotective effects
by propofol in more detail.

Similar to the above-mentioned volatile anesthetics, recent studies revealed that reg-
ulation of miRNA expression seems to play a relevant role in terms of propofol-induced
cardioprotection (Figure 1). Pretreatment with propofol in vivo and in vitro reduced infarct
size and increased myocardial function by upregulation of miRNA-541 expression [62].
The respective miRNA in turn decreases expression of High Mobility Group Protein B1
(HMGB1), which is a mediator of apoptosis and has been shown to be involved in my-
ocardial I/R injury. Furthermore, propofol regulates cardiac mast cells accumulating after
myocardial infarction, possibly due to reduction of tryptase release, ultimately conferring
cardioprotection [63,64]. Wang et al. investigated the influence of propofol on the transient
receptor potential vanilloid (TRPV4) channel, especially focusing on changes of Ca2+ entry
into cardiomyocytes. Propofol does attenuate I/R injury both in vitro and ex vitro and its
cardioprotective action is—at least partially—mediated by the suppression of TRPV4 chan-
nel resulting in inhibition of intracellular Ca2+ overload [65]. Adverse effects induced by
applying the TRPV4 agonist GSK1016790A were completely abolished by preconditioning
with propofol in vitro. Moreover, propofol attenuates hypoxia/reperfusion (H/R)-induced
intracellular Ca2+ overload ex vivo via the suppression of TRPV4 channel [65]. The in-
volvement of TRPV4 underlying propofol’s cardioprotective effects might be an interesting
starting point for future studies regarding pharmacological conditioning strategies.



Int. J. Mol. Sci. 2021, 22, 2519 8 of 19

Based on these data, propofol seems to be a promising agent in terms of pharmacolog-
ical conditioning. However, as mentioned above, a combined administration of propofol
with other pharmacological (or non-pharmacological) conditioning strategies seems to
hamper cardioprotective effects. The exact mechanism of this paradox is still underex-
plored. One possible explanation may be that propofol has ROS scavenging abilities [61],
which in turn might counteract the effects of other cardioprotective approaches. While
cardioprotection by IPC is not attenuated by inducing anesthesia with propofol in an
in vivo rat model of I/R [66], the protective effects of remote ischemic preconditioning
(RIPC) are completely inhibited by the administration of propofol. This has been shown in
an in vivo I/R rat model [67]. Interestingly, human plasma from RIPC-treated patients that
received propofol for induction of general anesthesia forfeits its cardioprotective potential
against I/R injury after transfer to isolated rat hearts [68]. These findings suggest that
propofol may have an influence either on the target organ itself (in this case the heart) or
on the release of humoral factors and their impact on I/R injury. In this context, Bunte
et al. showed that only the release of humoral factors and not the direct effect on the heart
were affected by propofol [66]. Transferring RIPC plasma from pentobarbital anesthetized
rats to isolated rat hearts resulted in a reduced infarct size. In contrast to these findings,
plasma collected from rats treated with RIPC undergoing propofol anesthesia did not
show any cardioprotective effects in isolated hearts [66]. Interestingly, when administering
plasma from RIPC-treated animals anesthetized with pentobarbital to propofol perfused
isolated hearts mounted on a Langendorff system, cardioprotective properties of RIPC
were fully effective. Comparable with these counteracting effects of propofol on RIPC,
pharmacological-induced cardioprotection is also mitigated by propofol. Protective effects
against myocardial I/R injury by preconditioning with phosphodiesterase inhibitors such
as milrinone or levosimendan are fully abolished by propofol perfusion in an isolated rat
heart I/R [69]. Similar results were observed in a working heart model by Lucchinetti et al.
investigating postconditioning with Intralipid (ILPostC) [70]. Propofol perfusion as well as
ILPostC alone, both sufficiently improved recovery of left ventricular work. However, the
benefit of ILPostC was abolished in combination with propofol [70].

4.2. Clinical Implications

The contradictory behavior of propofol on I/R injury is crucial in the discussion
why translation of cardioprotective strategies into the clinical setting so far has not been
successful. ERICCA and RIPHEART—the two major clinical trials, being recalled when
discussing failure of translation—were carried out in patients undergoing CABG surgery
investigating the influence of RIPC on myocardial ischemia [71,72]. Notably, both studies
used propofol-based anesthesia. Therefore, lack of protective effects of RIPC in these
patients might be due to an abrogating effect of propofol. These hypotheses have been
underlined by a secondary analysis of the RIPHEART trial [73]. This study revealed that
RIPC did not affect the release of cardioprotective humoral factors and inflammatory
biomarkers nor the activation of protein kinases involved in well-established signaling
cascades [73]. Taking all these findings into account, it becomes apparent that more
extensive research is needed to elucidate a possible negative impact of propofol in patients
being investigated in the context of pharmacological conditioning strategies—especially in
the clinical setting.

5. Opioids
5.1. Experimental Developments

Various review articles on cardioprotective effects of opioids have been published
previously [74–76]. Regarding most recent literature, Melo et al., for instance, concentrated
on non-coding RNAs and opioid-induced cardioprotection [77]. Non-coding RNAs, like
miRNAs, have a profound influence on opioid receptors, regulate opioid signaling and are
thus involved in the reduction of apoptosis and protection against postischemic myocardial
damage [77]. Opioid receptors, e.g., kappa-opioid receptors (KOR), delta opioid receptors



Int. J. Mol. Sci. 2021, 22, 2519 9 of 19

(DOR) and mu opioid receptors (MOR), are part of the G protein-coupled superfamily and
next to the commonly known analgesic effect, they confer cardioprotection. While KOR
and DOR are both expressed in the adult heart, cardiac expression of MOR depends on the
species and its developmental stage. A multitude of signaling pathways in cardiomyocytes
are known to be located downstream of and triggered by opioid receptors, finally inducing
reduction in infarct size and protection against myocardial I/R injury [77].

Preconditioning with remifentanil confers cardioprotection against cardiac I/R injury
comparable to IPC. This effect is meditated by the opioid receptors DOR and KOR as well
as extracardiac MOR [76]. Notably, remifentanil-induced preconditioning has a second
window of protection 24h after administration—comparable with IPC [76].

Interestingly, in healthy non-ischemic hearts, the MOR is practically absent, while
these receptors are distinctively upregulated in the failing heart. This upregulation can
be induced by the administration of doxorubicin or through myocardial infarction [78].
Naturally, this effect has a relevant impact on the underlying mechanism of protection by
remifentanil. In the non-ischemic heart, infarct size reduction by treatment with remifen-
tanil is completely abolished by the application of an antagonist that is selective for DOR
and KOR. However, the administration of MOR-selective antagonists does not abolish
cardioprotection. In contrast, under failing heart conditions opposite results are shown,
where only the MOR antagonist blocks cardioprotection. It has to be mentioned that the my-
ocardial MOR predominantly triggers opioid-induced conditioning via the ERK/glycogen
synthase kinase 3 beta (GSK3β) signaling pathway [78]. In line with this, Jin et al. demon-
strated that in the failing heart ERK and c-JUN N-terminal kinase (JNK) are both acti-
vated by remifentanil [78]. These MAPKs lead to a phosphorylation and consecutively
inactivation of GSK3β. This is a major integration point of pro-survival protein kinases
that results in regulation of apoptosis and protects against I/R injury [78]. The distinct
role of GSK3β inhibition in protective effects of remifentanil is further underlined by a
study of Chen et al. [79]. Remifentanil-induced postconditioning attenuates apoptosis in
H9c2 cardiomyoblasts after I/R injury by inactivating GSK3β in a histone deacetylase 3
(HDAC3) dependent manner [79]. Moreover, Li et al. demonstrated that preconditioning
with remifentanil has a dose-dependent cardioprotective effect, by improving myocardial
dysfunction and reducing cell death after I/R injury [80].

Lastly, we want to emphasize the influence of different comorbidities on remifentanil-
induced cardioprotection regarding translation into the clinical setting. It is recognized that
both diabetes and acute hyperglycemia completely abolish the infarct size reduction by
remifentanil. An explanation may be that increased oxidative stress leads to an impairment
of caveolin-3 modulated PI3K/PKB and JAK2/STAT3 signaling [81].

5.2. Clinical Implications

Clinical evidence on cardioprotective effects of opioids is scarce. In cardiac surgery,
commonly used opioids such as sufentanil or remifentanil reduce infarct size defined as
decreased release of cardiac biomarkers. Aortic root infusion of sufentanil in patients
undergoing mitral valve repair attenuated I/R injury as measured by significantly lower
plasma concentrations of creatinine kinase (CK)-MB and troponin I [82]. In a small RCT
(40 patients undergoing elective on-pump CABG surgery) the addition of remifentanil to the
anesthesia regimen consisting of fentanyl and propofol reduced myocardial damage [83].
A meta-analysis including 1473 patients from 16 randomized trials stated that remifentanil
reduced cardiac troponin release, duration of mechanical ventilation, and length of hospital
stay in cardiac surgery patients [84].

As opioids are commonly used in cardiac surgery, the most interesting questions are:
Which opioid is most protective and which dose is needed to achieve a cardioprotective
effect? Both questions can currently not be answered, but available evidence suggests that
cardioprotective doses are much higher than opioid doses routinely used for anesthesia [85].
Additional research is needed to finally define the role of cardioprotection by opioids in
the clinical setting.
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6. Alpha-2 Agonists
6.1. Experimental Developments

Two alpha-2 agonists have been investigated regarding their cardioprotective effects:
Clonidine and dexmedetomidine. Application of the alpha-2 receptor agonist clonidine
has long been suggested to improve outcome of high-risk cardiac patients undergoing
surgery [86], most likely by blunting central sympathetic outflow. However, a direct
conditioning effect of clonidine in human myocardial tissue has not been shown so far.
As dexmedetomidine slowly replaces clonidine in the clinical setting, we will specifically
highlight this agent in the following.

Dexmedetomidine is a highly selective alpha-2 receptor agonist that is clinically used
for sedation or prevention/ therapy of postoperative delirium. It confers cardioprotection
in pre, per- and postconditioning by mediating the reperfusion injury salvage kinase (RISK)
pathway and activation of mitochondrial potassium channels (Figure 1) [87].

There are some distinct advantages of conditioning with dexmedetomidine over other
substances: while for many other pharmacological agents, treatment immediately after
the onset of reperfusion is necessary to achieve cardioprotection, for dexmedetomidine
protection against I/R injury is completely independent of time and duration of appli-
cation. In detail, 15 min of dexmedetomidine treatment that was initiated 45 min after
ischemia was still effective in reducing infarct size [88]. These findings indicate a more
extensive period for dexmedetomidine-induced cardioprotection after reperfusion which
might give more flexibility for treatment in the clinical setting. Moreover, the protective
effects of dexmedetomidine also seem to be maintained under pathological conditions.
Cheng et al., demonstrated—in an in vivo rat model of I/R injury—that infarct size reduc-
tion by dexmedetomidine-induced postconditioning is not attenuated in type 2 diabetic
rats in comparison with healthy rats [89]. In line with these results, our own research
showed that preconditioning with dexmedetomidine confers cardioprotection despite the
presence of acute hyperglycemia. Unfortunately, elevated glucose levels interfere with
dexmedetomidine-induced postconditioning [90]. Additionally, in hearts with endothelial
dysfunction, the protective effects of dexmedetomidine preconditioning are maintained [91].
In an isolated rat heart Langendorff system, endothelial dysfunction was induced by pre-
treatment with 60mM potassium and preconditioning with dexmedetomidine still induced
protective effects on cell death and heart function after I/R injury [91]. These findings are
comparable to IPC. Nonetheless, dexmedetomidine application is a noninvasive strategy
which is a clear advantage. These mentioned aspects underline the promising potential of
dexmedetomidine-induced cardioprotection in the clinical setting.

Besides the commonly known pathways in cardioprotective strategies, for dexmedetomidine—
similar to other substances—the role of miRNA and protein expression was further investi-
gated in recent years. Findings suggest that downregulation of miRNA-208 by dexmedeto-
midine alleviates apoptosis in cardiomyocytes [92]. A protective effect of dexmedetomidine
by reducing apoptosis is not only mediated by miRNAs [92–95]—but also by hypoxia-
inducible factor 1 alpha (Hif1α) signaling [96]. Peng et al. revealed that postconditioning
with dexmedetomidine leads to a downregulation of Hif1α mRNA levels and its target
gene BNIP3 [96]. Furthermore, apoptotic proteins such as cleaved caspase 3 and cleaved
poly-ADP-ribose-polymerase 1 decreased after dexmedetomidine postconditioning. Over-
all, dexmedetomidine reduced apoptosis which consecutively resulted in protection against
myocardial I/R injury in an in vivo rat model, as well as in ex vivo cardiomyocytes H/R
experiments [96].

In accordance to dexmedetomidine-induced protection against apoptosis, Liu et al.
demonstrated that treatment with dexmedetomidine likewise has an anti-apoptotic effect
in H2O2-damaged neonatal rat cardiomyocytes by reducing oxidative stress in mitochon-
dria and endoplasmic reticulum (ER) [97]. Focusing on the topic of protein expression in
myocardial conditioning, treatment with dexmedetomidine seems to achieve its cardiopro-
tective effects by enhancing the release of HMGB1 in an in vivo rat model of myocardial
I/R [98]. This mechanism requires vagal nerve integrity and is dependent on alpha-7 nico-
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tinic acetylcholine receptor (α7nAChR)-mediated cholinergic stimulation. Involvement of
acetylcholine (ACh) receptor stimulation in protection against myocardial I/R has been
described and reviewed extensively in the past [99]. However, these more recent findings
suggest that cardioprotection may also be triggered by the cholinergic anti-inflammatory
pathway and the activation of α7nAChR. Thus, the overexpression of HMGB1 may aggra-
vate I/R injury or even abolish cardioprotection. Referring to this aspect, HMGB1 may be
a key protein in myocardial conditioning by dexmedetomidine [98].

6.2. Clinical Implications

In the clinical setting, cardioprotective effects of alpha-2 agonists in humans might
partly be a result of hemodynamic changes [100]. With regard to clonidine, a large RCT did
not show a reduction of the composite outcome of death or nonfatal myocardial infarction
in patients undergoing non-cardiac surgery (Table 1) [36]. Referring to dexmedetomidine,
a small prospective trial including 38 patients undergoing CABG surgery indicated that
myocardial damage was not reduced by dexmedetomidine, although a higher cardiac index
and lower mean pulmonary arterial pressures were observed in the dexmedetomidine
treated group [101]. In a retrospective analysis, Zhou et al. indicated that in patients under-
going valve surgery post-operative release of myocardial biomarkers (cardiac troponin I)
was lower in patients receiving dexmedetomidine during the procedure [102], an observa-
tion that was confirmed in a small prospective randomized study in 28 patients undergoing
valve replacement [103] and in patients undergoing CABG surgery [104]. However, large
outcome trials are pending and the available data on clinically relevant cardioprotection by
dexmedetomidine are of low to moderate quality.

7. Local Anesthetics
7.1. Experimental Developments

A further pharmacological agent that should be mentioned briefly is lidocaine. It is a
routinely used local anesthetic and antiarrhythmic agent. Moreover, lidocaine confers car-
dioprotection after myocardial I/R injury [105,106]. As a cardiac sodium channel blocker,
lidocaine ultimately leads to a reduction of intracellular Ca2+ levels [107]. In addition, lido-
caine seems to reduce ROS production and modulates mitochondrial bioenergetics [108].
In the experimental setting, several animal studies revealed that systemic lidocaine is
protective against myocardial I/R injury [109]. In the last two years, there are no relevant
new findings according to our literature research. For more detailed general information
on pharmacological conditioning with lidocaine we refer to published articles [110,111].

7.2. Clinical Implications

In the clinical setting, lidocaine could also show diverse beneficial effects which
include reductions in pain, nausea, ileus duration, opioid use, and length of hospital
stay [112]. Unfortunately, after CABG surgery studies have not shown any benefits in
terms of postoperative pain treatment. However, Lee et al. did show in a RCT including
99 consecutive patients, that continuous i.v. application of lidocaine during surgery reduces
myocardial injury in patients undergoing off-pump CABG surgery [113]. Wang et al.
demonstrated that use of lidocaine results in a reduced rate of postoperative delirium after
cardiac surgery. In this study, lidocaine was administered as a bolus of 1.5 mg/kg followed
by a 4-mg/minute infusion added to CPB solution [114]. Another study by Mathew et al.
also investigated this phenomenon, but could only show an effect for low doses of lidocaine
in nondiabetic cardiac surgery patients [115]. In summary, the available clinical evidence
currently is not sufficient to advice routine application of perioperative lidocaine infusion
in cardiac patients.
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8. Phosphodiesterase Inhibitors
8.1. Experimental Developments

Phosphodiesterase (PDE) inhibitors, such as milrinone (PDE3) and sildenafil (PDE5),
have been investigated as possible agents of cardioprotection in several studies [116–120].
Hutschings et al. reviewed that PDE5 inhibitors effectively reduce infarct size and my-
ocardial dysfunction [121]. Treatment with PDE3 inhibitors provides cardioprotective
effects against I/R injury via activation of mitochondrial large-conductance calcium-
sensitive potassium (mBKCa) channels which finally results in suppression of mPTP
(Figure 1) [116–118].

Noteworthy—and relevant for a possible translation into the clinical setting—, pre-
conditioning effects of milrinone seem to depend on the anesthetic regimen: simultaneous
perfusion with propofol or dexmedetomidine results in complete abrogation of cardiopro-
tective properties by milirinone in isolated rat hearts [69]. This phenomenon was not found
for simultaneous administration of sevoflurane.

The inodilator levosimendan—an agent with both positive inotropic and vasodilating
effects—and its active metabolite OR-1896 also inhibit PDE3 [122]. Recently, the effect of
levosimendan against doxorubicin-induced cardiotoxicity was reported [123]. An acute,
single treatment with levosimendan reduced the detrimental effects of cardiotoxicity,
e.g., myocardial dysfunction or oxidative stress, through PDE3 inhibition, resulting in
an activation of the cAMP-PKA-PLN axis. This also led to a reduction of Ca2+ overload
in cardiomyocytes [123]. Further studies did show that protection against I/R injury by
levosimendan is meditated by mBKCa, channels [124,125]. Interestingly, this agent forfeits
its cardioprotective properties under simultaneous administration of propofol, but not
under sevoflurane or dexmedetomidine anesthesia [69].

8.2. Clinical Implications

In clinical practice, inotropic agents such as milrinone improve cardiac function and
have been shown to be beneficial in specific clinical situations, namely in cardiac surgery
patients [126]. Clinical studies on cardioprotective effects of milrinone are not yet available.

9. Future Perspectives

The above cited data show a significant gap between experimental evidence and
clinical effectiveness for perioperative cardioprotection. Various confounders and specific
clinical circumstances have been suggested as underlying reasons [127]. These include
age, presence of comorbidities, duration of disease and co-morbidity, co-medication for
treatment of disease, acute treatment related to the intervention, use of anesthetic and
analgesic drugs, as well as differences in measurement of end-points in experimental and
various clinical settings [128].

Future studies should not only try to identify new cardioprotective agents, but also in-
vestigate a broader variety of cells—e.g., endothelium, neurons, etc.—and pathways—e.g.,
circulating cells, miRNA, mitochondrial receptor types—as possible targets of myocardial
conditioning strategies. This seems especially relevant, as optimal clinical cardioprotection
might need multiple interventions targeting different cell types and signaling pathways, as
well as different time-points of treatment during I/R injury. Recently, multitarget strategies
to reduce myocardial I/R injury have been formulated, looking for additive or synergistic
cardioprotection from combined agents or interventions [129]. These could target the
activation of pro-survival pathways (RISK, survivor activating factor enhancement (SAFE),
protein kinase G) plus inhibition of cell death pathways and / or protection against differ-
ent forms of cardiomyocyte death (necrosis, apoptosis, autophagy etc.) [130]. An example
might be the protection by xenon (targeting signal transduction pathways) combined
with hypothermia (targeting necrosis and apoptosis) [131]. Another strategy could be a
combined cardiomyocyte and non-cardiomyocyte protection, e.g., improving coronary
microcirculation by P2Y12-inhibitors. Co-medication might also enhance or restitute car-
dioprotection: statins have been shown to restore cardioprotection in diabetic animals [132],
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while other conditioning strategies seem to be less efficient in non-statin users [133]. Thus,
optimal co-medications need to be defined to optimize perioperative cardioprotection.

Looking at currently planned or already recruiting clinical trials, there are some
promising upcoming projects that might reveal important new information for the future.
An example is the ProCCard trial (NCT03230136) which is a multicenter RCT investigating
the effects of multimodal cardioprotection to reduce myocardial damage in patients under-
going cardiac surgery with CPB [134]. This trial combines five strategies of cardioprotection
in the intervention group: (1) RIPC applied before aortic cross-clamping, (2) maintenance of
anesthesia using sevoflurane, (3) tight intraoperative blood glucose management, (4) mod-
erate respiratory acidosis at the end of CPB and (5) a gentle reperfusion protocol following
aortic unclamping. The ProCCard trial already completed recruiting and might report first
results in 2021. In our own working group, we are planning another multicenter RCT. This
trial will investigate the effect of dexmedetomidine in cardiac surgery patients in terms of
I/R injury and will also consider other potential cardioprotective factors, like influence of
different anesthetic protocols.

10. Conclusions

To conclude, we have illustrated a variety of highly effective pharmacological ap-
proaches in protecting the heart against I/R injury in the experimental setting. However,
translation into the clinical setting remains challenging. Some potential confounders have
been identified that may contribute to the mainly negative results from previous clini-
cal studies and at least some of them might be modifiable in the perioperative setting.
With regard to future studies in this area, unraveling of the underlying cardiac but also
extracardiac pathways should be a major focus of research. Moreover, carefully designed
experimental and clinical studies evaluating combination of protective strategies target-
ing different cellular pathways, different cell types and different kinds of cell damage
are warranted.
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