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Abstract: This research uses mathematically derived visual logistics to interpret COVID-19 molecular
and rapid antigen test (RAgT) performance, determine prevalence boundaries where risk exceeds
expectations, and evaluate benefits of recursive testing along home, community, and emergency
spatial care paths. Mathematica and open access software helped graph relationships, compare
performance patterns, and perform recursive computations. Tiered sensitivity/specificity comprise:
(T1) 90%/95%; (T2) 95%/97.5%; and (T3) 100%/≥99%, respectively. In emergency medicine, median
RAgT performance peaks at 13.2% prevalence, then falls below T1, generating risky prevalence bound-
aries. RAgTs in pediatric ERs/EDs parallel this pattern with asymptomatic worse than symptomatic
performance. In communities, RAgTs display large uncertainty with median prevalence boundary
of 14.8% for 1/20 missed diagnoses, and at prevalence > 33.3–36.9% risk 10% false omissions for
symptomatic subjects. Recursive testing improves home RAgT performance. Home molecular tests el-
evate performance above T1 but lack adequate validation. Widespread RAgT availability encourages
self-testing. Asymptomatic RAgT and PCR-based saliva testing present the highest chance of missed
diagnoses. Home testing twice, once just before mingling, and molecular-based self-testing, help
avoid false omissions. Community and ER/ED RAgTs can identify contagiousness in low prevalence.
Real-world trials of performance, cost-effectiveness, and public health impact could identify home
molecular diagnostics as an optimal diagnostic portal.

Keywords: Emergency Use Authorization (EUA); endemic; false omission rate (RFO); home testing;
point-of-care testing (POCT); positive predictive value geometric mean-squared (PV GM2); prevalence
boundary; recursive protocol; tier; visual logistics

1. Introduction

Now in the third year of the Coronavirus disease 19 (COVID-19) pandemic, we observe
worldwide proliferation of novel COVID-19 diagnostic tests. Proliferation of COVID-19
commercial diagnostics authorized with limited clinical validation; emergence of highly
contagious Omicron, BA.2, and other variants and sub-variants; distribution of one billion
rapid antigen tests (RAgTs) [1,2]; the new White House “test (in pharmacies) and treat”
program [3]; and relaxed preventative measures, such as safe spacing and masking, call for
analysis of COVID-19 test performance along spatial care paths where people choose their
own testing options—that is, select their own “diagnostic portals.” A spatial care path is the
most efficient route taken by individuals and patients when receiving care in the healthcare
small-world network of home, community, and emergency medicine settings [4–6].

Prevalence, the percentage of a population affected with COVID-19 at a given time,
can vary unpredictably in different locales, because of severe acute respiratory syndrome
Coronavirus 2 (SARS-CoV-2) variants, super spreaders, asymptomatic carriers, migrating
hotspots, episodic re-openings, incomplete testing, delayed reporting, and other factors,
such as erratic sampling and marginal reliability of rushed-to-market COVID-19 tests. Clin-
ical performance depends on whether there are symptoms or not, the patient’s viral load,
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and the timing, location, and quality of the environment, specimen collection (e.g., saliva,
and anterior nasal, mid-turbinate, or nasopharyngeal swab), and testing method.

Nonetheless, a large surge in clinical evaluations published recently paints a clear pic-
ture of what to expect. Expectations are at the heart of public acceptance and empowerment.
Americans can choose from an array of self-testing options, use COVID-19 tests mailed to
them at no cost by the government, and engage several different diagnostic portals. Future
public health practices will hinge on fundamental understanding of how point-of-need
testing meets or defeats attempts to keep families safe, temper contagiousness of new
variants, safeguard schools and workplaces, and transition smoothly forward.

Therefore, the main goal of this article is to facilitate informed selection of diagnostic
tests when faced with the multi-dimensional challenges of fluctuating endemic disease,
newly emerging variants, increasing prevalence, and variably accessible testing options
with complex performance patterns. Another goal is to minimize false omissions, that is,
missed diagnoses that unknowingly elevate risk, create local recurrences, spread contagion,
and adversely interrupt personal life, community activities, and work productivity.

2. Methods and Materials
2.1. Emergency Use Authorizations

Assays should be well balanced; that is, they should achieve both high sensitivity and
high specificity. Adverse patterns identify tests that do not perform well but have received
Food and Drug Administration (FDA) Emergency Use Authorization (EUA). Positive
percent agreement (PPA) and negative percent agreement (NPA) data were extracted
from FDA lists of EUAs [7] for home RAgTs and home LAMP (loop-mediated isothermal
amplification) tests collated up to the beginning of January 2022. In the Supplementary
Materials at the end of this article, Table S1 lists EUA PPA and NPA claims. Donato et al. [8]
provided the only independent clinical evaluation of sensitivity and specificity for a LAMP
molecular home self-test found during searches.

2.2. Clinical Evaluations

A total of 82 clinical studies were tabulated. Table 1 summarizes performance metrics
for the primary study groups (left column) and lists supporting tabulations
(right column) found in the Supplementary Materials. Papers generated by PubMed,
other searches, and bibliographies of systematic reviews and meta-analyses comprised
(a) 34 clinical evaluations [9–42] of the use of RAgTs in communities (see Table S2);
(b) 30 clinical evaluations [43–72] of RAgTs applied in emergency medicine (emergency
rooms and emergency departments), including 9 with results for pediatric patients [58,65–72]
(Table S3); and (c) 18 clinical evaluations [73–90] that reported results for PCR-based testing
of saliva in community groups of strictly asymptomatic subjects (Table S4). No human
subjects were involved in this research.

2.3. Sensitivity and Specificity Metrics

Sensitivity and specificity metrics from community (Table S2) and emergency medicine
evaluations (Table S3) were subdivided into symptomatic and asymptomatic groups (see
Table 1). Merging raw data was not practical in light of heterogeneity, missing elements,
unbalanced study designs, and inconsistent reporting in the clinical evaluations. Some
studies were reported prior to peer review by medRxiv and preliminarily in various
journals. In essence, each study generated results reflected in sensitivity and specificity
median performance for each clinical setting.

2.4. Bayesian Mathematics and Performance Tiers

Please refer to open access papers by Kost [91–93] in the Archives of Pathology & Labo-
ratory Medicine for descriptions of mathematical methods, visual logistics, computational
design, and open access software. Table S5 lists Bayesian equations derived to generate the
graphics displayed in this paper. Table 2 presents the mathematical design criteria for the
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three tiers, which are intended to systematically harmonize Bayesian post hoc performance
criteria. The design criteria encompass and simultaneously integrate the performance level,
sensitivity, specificity, target prevalence boundary, and false omission rate, RFO, which
reflects risk of missed diagnoses.

Table 1. Performance Metrics for Home, Community, and Emergency Medicine COVID-19 Testing.

Clinical Space Median [N, Range] Median [N, Range] Data Source

Home Self-Tests Supplemental Table S1

Rapid antigen tests PPA 86.6 [12, 83.5–95.3] NPA 99.25 [12, 97–100] Manufacturer FDA EUA claim
(not substantiated)

Isothermal (LAMP)
molecular tests PPA 91.7 [3, 90.9–97.4] NPA 98.2 [3, 97.5–99.1] Manufacturer FDA EUA claim

(not substantiated)

Isothermal (LAMP)
molecular test Sensitivity 91.7 [1, CI NR] Specificity 98.4 [1, CI NR] One independent clinical

evaluation, see Donato et al. [8]

Community RAgTs Sensitivity Specificity Supplemental Table S2

Overall 69.85 [24, 30.6–97.6] 99.5 [24, 92–100] Performance evaluations

Symptomatic 81.0 [19, 47.7–96.5] 99.85 [16, 85–100] Symptomatic subjects

Asymptomatic 55.75 [20, 37–88] 99.70 [16, 97.8–100] Asymptomatic subjects

Automated antigen
tests-overall 62.3 [3, 43.3–100] 99.5 [3, 94.8–99.9] Evaluations using automated

laboratory instruments (small set)

-symptomatic 73 [3, 68.5–88.9] 100 [3, 100] Symptomatic subjects for above

Emergency Medicine RAgTs Sensitivity Specificity Supplemental Table S3

EM Overall 68.79 [20, 17.5–94.9] 99.5 [20, 92.1–100] ER and ED evaluations

Symptomatic 77.9 [15, 43.3–95.8] 99.5 [14, 88.2–100] Symptomatic EM subjects

Asymptomatic 48.1 [11, 28.6–92.1] 98.85 [10, 92.3–100] Asymptomatic EM subjects

Pediatric EM 71.3 [10, 42.9–94.1] 99.55 [10, 91.9–100] Pediatric ER/ED patients only

Ped. Symptomatic 74.89 [6, 45.4–87.9] 99.79 [6, 98.5–100] Symptomatic EM children

Ped. Asymptomatic 35.09 [2, 27.27–42.9] 99.7 [2, 99.4–100] Asymptomatic EM children

Saliva Testing Sensitivity Specificity Supplemental Table S4

Asymptomatic,
molecular diagnostics 63.6 [19, 16.8–95] 98.85 [14, 95–100] Community evaluations with

strictly asymptomatic subjects

Abbreviations: CI, 95% confidence interval; ED, emergency department; EM, emergency medicine; ER, emergency
room; EUA, Emergency Use Authorization; FDA, Food and Drug Administration; LAMP, reverse transcription
loop-mediated isothermal amplification; NR, not reported; PPA, positive percent agreement; NPA, negative
percent agreement; Ped., pediatric; POC, point of care; and RAgTs, rapid antigen tests.

Table 2. Performance Tiers with Coordinated and Integrated False Omission Rates and Prevalence
Boundaries Bracketing Community Immunity from 50% to 85%.

Tier Performance Level Sensitivity, % Specificity, % Target Prevalence Boundary [Actual] at RFO of 5% 10% 20%

1 Low 90 95 33% (33.3) 50% (51.4) 70% (70.3)

2 Marginal 95 97.5 50% (50.6) 70% (68.4) 85% (83.0)

3 High 100 ≥99 No Boundary No Boundary No Boundary

Abbreviation: RFO, false omission rate.

2.5. Prevalence Boundaries

A prevalence boundary is defined as the prevalence at which the rate of false omissions,
RFO, exceeds a specified risk tolerance, such as 5% (1 in 20 diagnoses missed) or 10%
(1 in 10 missed). Please note that RFO = 1 − (Negative Predictive Value) [Equation (20)]
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in Supplementary Materials. Prevalence boundary is calculated using Equation (26) in
Table S5 and is apparent where the RFO curve intersects the horizontal line demarcating
risk tolerance. Users can select the level of risk based on COVID-19 management and
mitigation objectives.

The sensitivity needed to achieve a desired prevalence boundary given the specificity,
RFO, and prevailing prevalence can be calculated using Equation (27a,b) in Supplementary
Materials (newly derived). For example, if the prevalence is 50.6%, and you do not want
to miss more than 1 in 20 diagnoses of COVID-19 (RFO = 5%), then given a specificity of
97.5%, Equation (26a) in Supplementary Materials predicts you will need a test with at least
95% sensitivity, that is, Tier 2 performance (see Table 2).

2.6. Pattern Recognition

Visual logistics reveal performance patterns and diagnostic pitfalls over the entire
range of prevalence. The approach to pattern recognition presented here, called “predictive
value geometric mean-squared (PV GM2),” is strictly visual [91–93]. The PV GM2 curve rep-
resents a distinguishing “fingerprint” of performance, and thus far in this research, no two
fingerprints have coincided. PV GM2 curves visualize how low (≤20%), moderate (20–70%),
and high (≥70%) prevalence affect diagnostic performance in a single continuous graphic.

Point values of PV GM2 at fixed prevalence should not be compared because of po-
tential duplicity of the values at different levels of prevalence. Unrealistic comparisons
(e.g., test sensitivity 10% and specificity 100%) should be avoided as they produce mean-
ingless curves. The point of PV GM2 visualization is to differentiate performance patterns
for tests achieving at least Tier 1 sensitivity and specificity criteria (see Table 2), or if below
Tier 1 (“subtier”), then to understand why and where performance fails and crosses below
the Tier 1 threshold.

2.7. Recursion

The recursive formulas for positive predictive value (PPV) [Equation (22a)] in
Supplementary Materials and negative predictive value (NPV) [Equation (22b)] in
Supplementary Materials allow calculations of predictive value geometric mean-squared
(PV GM2) and RFO performance for repeat testing. When testing only twice with the same
assay, single equations can be derived to graph recursive PV GM2 and RFO versus preva-
lence from 0 to 100% and to conveniently determine graphically the recursive prevalence
boundaries at user-defined risk levels of 5% and 10% for missed diagnoses.

3. Results

Figure 1 illustrates patterns of low, high, and median performance documented by eval-
uations of RAgTs conducted in communities of several countries and states in the United
States. RAgTs display large uncertainty with a median prevalence boundary of 14.8% for
1 in 20 missed diagnoses (RFO 5%). Median sensitivity of 69.85% (range 30.6–97.6%) ex-
plains the rapid fall off of PV GM2 due to increasing false negatives as prevalence increases,
while median specificity achieves Tier 3. Figure 2 compares performance for asymptomatic
and symptomatic subjects, the latter showing peak performance at 9% prevalence and a
prevalence boundary of 21.7% (at 5% RFO). Median sensitivity for symptomatic subjects
was 81.0%. For automated instrument antigen tests, it is 73% (see Table 1 and Table S2).

Figure 3 presents patterns of RAgT performance for evaluations conducted in emer-
gency medicine settings [emergency rooms (ERs) and emergency departments (EDs)] (see
Table 1 and Table S3). Median sensitivity of 68.79% and specificity of 99.5% generate peak
performance at 13.2% prevalence. The prevalence boundary for RFO of 5% was 14.4%,
almost identical to that seen in Figure 1. Figure 4 compares performance for symptomatic
and asymptomatic general populations and children seen in ERs and EDs, with the former
marginally better than the latter. The right column of the inset table lists prevalence at
peak performance.
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Figure 1. Performance of rapid antigen testing in community settings. Predictive value geometric
mean-squared (PV GM2) curves reflect performance (left vertical axis) over the entire range of
prevalence (horizontal axis). RFO, the false omission rate (right axis), indicates the frequency of missed
diagnoses. PV GM2 and RFO curves are plotted for low, median, and high sensitivity/specificity
documented in published clinical studies conducted in community settings (see Supplementary
Materials). Performance Tiers 1 and 2 are plotted in green. The black horizontal line represents a
risk level of 5% where 1 in 20 diagnoses will be missed. A prevalence boundary (PB) is the point at
which the risk of a missed diagnosis exceeds the threshold of 1 in 20, that is, the point at which risk of
contagion rises significantly and quickly.

Figure 2. Comparison of symptomatic versus asymptomatic community rapid antigen testing
performance based on evidence.
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Figure 3. Real-world performance of rapid antigen testing in emergency medicine.

Figure 4. Comparison of symptomatic versus asymptomatic rapid antigen test performance in
emergency medicine. The blue PV GM2 curves illustrate RAgT performance for pediatric patients
presenting to emergency rooms (ERs) and emergency departments (EDs). The curves show that
RAgTs are “unbalanced” in contrast to the design of the performance tiers. Please see the legend in the
inset table for prevalence at points of best performance. For asymptomatic patients, performance falls
off quickly as prevalence increases, which limits use in emergency medicine settings where, through
self-selection by sick patients, one would expect prevalence to be higher than in the community.
COVID-19 detection is more likely in symptomatic patients, in part because of higher viral loads.

There were no evaluations conducted directly in homes for EUA tests with real-world
data generated by laypersons who perform the self-testing. Therefore, Figures 5 and 6 illus-
trate performance based on manufacturer claims in information for users (IFUs) documents.
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Figure 5 also illustrates the theoretical improvement in performance achievable by repeat
testing, typically within three days, as described in IFUs. Manufacturers made no claims
regarding recursive testing. As can be seen in Figure 5, repeat testing pushes performance
up to Tier 2. Figure 6 shows individual performance for three home molecular (LAMP)
self-tests, as claimed by manufacturers. One independently conducted clinical evaluation
by Donato et al. [8] was found. Real-world evidence revealed Tier 1 performance (curve
“CCE”) versus the claim of Tier 2.

Figure 5. Performance of rapid antigen testing for home self-testing based on manufacturer claims
in FDA EUA authorizations. Theoretical analysis of manufacturer claims shows that repeat testing
yields higher performance and prevalence boundaries. Median recursive performance achieves Tier
2. The median recursive prevalence boundary of 74.3% reflects a reasonable minimum for Omicron,
BA.2, and other emerging variants and sub-variants.

Figure 6. Performance of molecular diagnostics for home self-testing. In the case of home
molecular diagnostics, one independent clinical evaluation, shown by the “CCE” curves, achieved
Tier 1 performance.
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Figure 7 summarizes the foregoing results from a risk perspective by plotting RFO
versus prevalence with the threshold of a missed diagnosis at 1 in 10 (RFO 10%). Recall,
RFO = 1 − NPV. Interestingly, the curves group into clusters for asymptomatic (purple) and
symptomatic (red) subjects, while the Donato et al. [8] evaluation of home molecular testing
(curve “HMDx”) demonstrated a Tier 1 prevalence boundary of 56.9%. Even at a relatively
high 10% risk of missed diagnoses, prevalence boundaries for asymptomatic subjects are
low (17.5–23.2%), including for self-collected saliva specimens obtained in community
sites from asymptomatic subjects with PCR-based testing performed later, typically within
24–72 h in reference laboratories (see Table 1 and Table S4).

Figure 7. False omission rate topology for asymptomatic and symptomatic subjects. The purple
cluster shows performance for asymptomatic subjects in emergency medicine (EMA) and community
(CA) settings, while the red cluster reflects results for symptomatic subjects. Saliva testing for
asymptomatic subjects (SA, purple), with specimen collection at points of need and PCR analysis
performed in laboratories, did not differ substantially from rapid antigen testing. “HMDx” represents
one clinical evaluation of molecular self-testing, which achieved performance between Tier 1 and Tier
2. In this case the risk of a missed diagnosis (RFO) is 10%, shown by the red horizontal line.

4. Discussion
4.1. Missed Diagnoses

SARS-CoV-2 prevalence in South African blood donors skyrocketed to 71% even before
the Omicron-driven wave arrived [94]. This variant peaked in the United States, only to
be followed by the more contagious BA.2 variant. Omicron is sweeping Southeast Asia.
For example, Thailand has reported over 50,000 new cases per day, and Vietnam, 120,000.
These outbreaks bump prevalence to levels requiring Tier 2 performance to avoid excessive
false negatives.

Mathematical transformation of pre-test to post-test probability of COVID-19 [92,93]
allows computation of RFO, the false omission rate [Equation (20), Table S5], and deter-
mination of the prevalence boundary (PB) [Equation (26)] in Supplementary Materials.
Shallow PBs limit the clinical usefulness of RAgTs, because of excessive missed diagnoses.
If one knows test specificity, sets the RFO threshold (e.g., 5 or 10%), and establishes the PB
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appropriate for local prevalence, then Equation (27a) in Supplementary Materials can be
used to calculate the minimum test sensitivity required. Frequent false omissions result in
stealth spread of disease.

4.2. Transparency

Unfortunately, there is no way of singling out infectious patients who have false
negative test results without repeat testing or additional evaluation. Using quantitative
high sensitivity synchrotron X-ray fluorescence imaging, Koller et al. [95] showed that
qualitative visual read-outs miss immobilized antigen-antibody-labeled conjugate com-
plexes of SARS-CoV-2 signals on lateral flow detection devices. On the other hand, one
report showed that ~92% of patients infected with SARS-CoV-2, but missed by antigen
testing, contained no viable virus [96]. Even the performance of a so-called “ultra-sensitive”
antigen test, after exclusion of samples with PCR cycle threshold >35, hovered around
Tier 2 for PPA and below it for NPA [97].

There is no explanation for why the PPA and NPA of assays documented in FDA
EUAs have not progressively improved. However, the FDA has not required improvement.
Liberal FDA approval seems to have diminished competition. One wonders what will
become of subtier rapid antigen tests in a competitive market following the end of the “EUA
era.” People purchasing test kits or ordering them free from COVIDtests.gov should receive
disclosure of specificity (to rule-in COVID-19) and sensitivity (to rule it out) documented
in clinical evaluations, and may need interactive apps to access prevailing prevalence.

The “ . . . successful implementation of rapid antigen testing protocols must closely
consider technical, pre-analytical, analytical and clinical assay performance and interpret
and verify test results depending on the pretest-probability of SARS-CoV-2 infection” [98].
With that advice, the International Federation of Clinical Chemistry (IFCC) COVID-19 Task
Force underscored the need for careful analysis of how prevalence impacts antigen test
results in different clinical settings. Consumer Reports and other public advocacy groups
may eventually compare and rank commercially available point-of-care antigen and saliva
tests for the public.

4.3. Public Health at Points of Need

The death toll of the pandemic, including excess deaths from neglect, is estimated
to be as high as 18.2 million [99] or even higher. The COVID-19 crisis has confirmed and
expanded worldwide what we learned during Ebola virus disease outbreaks in West Africa.
There is unequivocal need for point-of-care testing [4–6,100–105]. People in the United
States now have access to COVID-19 RAgTs and molecular diagnostics online, by mail,
and in neighborhood stores. With ubiquitous access comes responsibility—on the part
of academics, public health educational institutions, professional societies, governments,
industry, and global organizations to promote high quality testing.

The CORONADx Project in the European Union [106] is planned to produce afford-
able “PATHAG,” ultra-rapid COVID-19 antigen test strips for first-line screening; “PATH-
POD,” portable LAMP detection for mobile clinics and community health centers; and
“PATHLOCK,” kit detection using CRISPR-Cas13 technology. This initiative will add to
the massive expansion of point-of-care strategies and promote higher quality molecular
self-testing [1,2,104,105]. Ready access to rapid testing along spatial care paths from home
to hospital raises public expectations for controlling transmission, combatting COVID-19,
and forestalling future pandemics.

Children, teens, and young adults, even if vaccinated, may quietly spread disease,
especially now that the more infectious variants and sub-variants are elevating community
prevalence. Complicating matters, hospitals in some limited resource countries administer
fake vaccinations (injecting water) for monitory gain [107]. Nonetheless, the CDC views
vaccination rates as indicators of pandemic status worldwide [108], a reasonable position
confirmed by Omicron surges in Hong Kong and China where vaccination rates have been
low and vaccines less effective.
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Vaccination attenuates the severity of disease but does not necessarily eliminate
SARS-CoV-2 infection. Thus, individuals and their medical providers face the daunting
challenge of guessing local and regional prevalence in order to interpret test results. Public
health officials can help by periodically documenting prevalence and by encouraging self-
testing in communities and directly within homes. Pattern recognition by means of PV
GM2 and RFO curves allows healthcare providers to quickly tailor the quality of testing
to needs.

4.4. Focus, Standardization, and Risk Management

RAgTs now are ubiquitous worldwide. They enable people to test frequently and
inexpensively wherever they wish. Progressive societal “normalization” increases demand
for convenient, fast, and inexpensive test results for decision making in various settings
comprising public gatherings, communities, homes, schools, workplaces, factories, conva-
lescent care, prisons, university campuses, sports events, travel, airports, rural regions, and
limited-resource settings abroad.

Figures 2, 4 and 7 show RAgTs detect SARS-CoV-2 infections in symptomatic subjects
more effectively than asymptomatic, for whom community screening using PCR-based
saliva testing offers no significant diagnostic advantage (see Figure 7). Asymptomatic
RAgT and PCR-based saliva testing present the highest risk of missing diagnoses when
highly contagious new variants increase prevalence. Figure 7 provides an essential “bottom
line” for risk assessment. It illustrates the advantages of using the false omission rate (RFO)
and prevalence boundary (PB) as criteria for the selection an appropriate diagnostic portal
in the context of local prevalence.

Repeat rapid antigen home testing with the second test just before mingling is theoret-
ically sound (see Figure 5) and is encouraged in commercial products containing two tests
for screening but has not been validated. Home molecular testing one time shows promise
(see “HMDx” in Figure 7). Controlled studies using some of the nationally distributed
free tests could determine the efficacy of home self-testing, and should encompass both
RAgT and LAMP assays, as well as investigation of the effectiveness of repeat testing and
whether the second test should be independent (orthogonal) [93].

Weaknesses in COVID-19 rapid antigen test performance, even for products intro-
duced more than one year after the FDA first started granting COVID-19 EUAs, call for
standardization, or at least a process for attaining consistency and improving sensitivity.
The contrast in performance based on FDA EUA PPA and NPA metrics versus real-world
sensitivity and specificity from clinical investigations (Figures 1–4) demands multicenter
studies with diverse populations, well defined clinical settings, different age groups, and
large sample sizes.

5. Conclusions

Widespread availability of RAgTs encourages self-testing, but people receiving mil-
lions of free RAgTs for self-testing need guidance. If public health educational institutions
and practitioners adapt, learn, teach, and incorporate proven point-of-care strategies, they
will better mitigate variant surges and the future outbreaks [105,109–111]. RAgTs facilitate
transitioning risk avoidance to risk management, especially in limited-resource settings
where people cannot afford extended lockdowns, expensive PCR tests with delayed results,
and loss of employment. For those, we recommend mobile testing in vans and inexpensive
sample collection kiosks at sites of need [112].

Subtier tests should be improved or retired from FDA EUA status, because of poor
performance, uncertainty, and false omissions that increase exponentially with increasing
prevalence. Every step beyond a prevalence boundary magnifies chances of missing a
diagnosis (see Figure 7). Tier 3, with its 100% sensitivity, could eliminate false omissions and
prevalence boundaries. However, Tier 3 appears out of reach for the current generations of
RAgTs. The FDA should tighten authorization criteria and shift the evaluation paradigm
from template-based to clinical proof.
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Tier 2 performance represents an attainable, practical, and sustainable standard of ex-
cellence, in view of the fact that several EUA manufacturers have claimed that performance
threshold (see Supplemental Figure S1). The scheme in Table 1 can be used to establish
constraints on 95% confidence limits and reduce uncertainty. Supportive actions the FDA
should take comprise (a) tightening authorization thresholds and integrating prevalence
boundaries, (b) increasing sample sizes to generate robust confidence intervals, (c) requiring
comparison of symptomatic versus asymptomatic patients, (d) validating environmental
limits of reagents, (e) publishing post-market follow-up of performance.

Testing in homes and communities makes sense. When acute symptoms are present,
the analyses in this paper shows that rapid response use of RAgTs in communities and
ERs/EDs can mitigate spread by helping to immediately identify acute contagiousness in
low to moderate prevalence. Real-world trials of repeat testing, diagnostic cost-effectiveness,
and public health impact could identify home molecular diagnostics as an optimal di-
agnostic portal for self-testing and rapid decision making at most levels of prevalence.
Point-of-care testing has and will continue to provide a valuable resource for crisis response
in the current pandemic and whatever the future brings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12051216/s1, Figure S1: Rate of False Omissions for
FDA EUA COVID-19 Rapid Antigen Tests; Table S1: COVID-19 Tests with FDA Emergency Use
Authorization for Home Self-testing; Table S2: COVID-19 Antigen Test Performance for Symptomatic
and Asymptomatic Subjects in Community Settings; Table S3: COVID-19 Antigen Test Performance
in Emergency Medicine; Table S4: COVID-19 Saliva Testing Sensitivity and Specificity Performance in
Strictly Asymptomatic Sub-jects (no mixed populations)—Clinical Evidence; Table S5: Fundamental
Definitions, Derived Equations, Ratios/Rates, Recursive Formulas, Predictive Value Geometric Mean-
squared, and Prevalence Boundary; Table S6: Antigen Tests with FDA Emergency Use Authorization
Ranked by Positive Percent Agreement.
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