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MicroRNAs in cancer metastasis and angiogenesis
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ABSTRACT

Cancer metastasis is a malignant process by which tumor cells migrate from 
their primary site of origin to other organs. It is the main cause of poor prognosis 
in cancer patients. Angiogenesis is the process of generating new blood capillaries 
from pre-existing vasculature. It plays a vital role in primary tumor growth and 
distant metastasis. MicroRNAs are small non-coding RNAs involved in regulating 
normal physiological processes as well as cancer pathogenesis. They suppress gene 
expression by specifically binding to the 3’-untranslated region (3’-UTR) of their 
target genes. They can thus act as oncogenes or tumor suppressors depending on 
the function of their target genes. MicroRNAs have shown great promise for use in 
anti-metastatic cancer therapy. In this article, we review the roles of various miRNAs 
in cancer angiogenesis and metastasis and highlight their potential for use in future 
therapies against metastatic cancer.

INTRODUCTION

MicroRNAs (miRNAs, miRs) are a class of small 
endogenous non-coding RNAs, 21-25 nucleotides in 
length, which are highly conserved in evolution and 
usually exist as single copy or multi copy genes or as a 
gene cluster [1]. They are transcribed as long primary 
transcripts, which are subsequently processed by Drosha 
and Dicer [2]. Eventually, the mature miRNAs form 
a RNA-inducing silencing complex (RISC)-miRNA 
functional unit, which regulates the expression of nearly 

30% of the known human genes [3]. The miRNAs base-
pair with specific binding sites in the 3’-untranslated 
region (3’UTR) of their target messenger RNA (mRNA) 
and suppress gene expression at the post-transcriptional 
and translational levels [4]. The miRNAs are involved in 
a variety of biological processes such as cell proliferation, 
differentiation, apoptosis, survival, invasion, and migration 
[5–7]. Many studies have demonstrated that mutations 
in miRNA-encoding genes or deregulated expression of 
miRNAs are integral to many human diseases including 
cancers.

www.impactjournals.com/oncotarget/         Oncotarget, 2017, Vol. 8, (No. 70), pp: 115787-115802

                                                                    Review



Oncotarget115788www.impactjournals.com/oncotarget

Angiogenesis is defined as the formation of new 
blood vessels from pre-existing capillaries or post-
capillary venules [8]. Angiogenesis plays an important 
role in embryonic development as well as post-natal life 
[9]. Aberrant angiogenesis is central to many angiogenic 
diseases such as age-related macular degeneration 
(AMD) [10, 11], rheumatoid arthritis (RA) [12–14] and 
endometriosis (EM) [15, 16]. Aberrant angiogenesis is 
also critical for cancer metastasis [17–21].

Cancer is highly prevalent because of deterioration 
of the global ecological environment and the extension of 
life expectancy. In 2012, 14.1 million new cases of cancer 
were reported worldwide [22]. Unlike benign lesions, 
cancer subsequently metastasizes to distant tissues and 
organs, resulting in morbidity and mortality [23]. Although 
great advances have been made in the diagnosis and 
treatment of cancer metastasis, the prognosis of metastatic 
cancer patients remains extremely poor. Therefore, there 
is an urgent need to develop novel therapeutic approaches 
to treat cancer metastasis.

The role of miRNAs in anti-angiogenic therapy 
has emerged as a promising approach to treat metastatic 
cancers. In this review, we highlight recent findings 
about the role of miRNAs and their targets in cancer 
angiogenesis and metastasis. We also discuss the 
implications of miRNA-based therapeutic strategies 
targeting angiogenesis in metastatic cancer.

BIOGENESIS OF MIRNA

MiRNAs are non-coding, small, single-stranded 
RNAs that are derived from the primary transcript called 
pri-miRNA, which is transcribed by RNA polymerase II 
[24]. The pri-miRNAs are characterized by the presence of 
a single or multiple imperfect hairpin structures with a stem 
of approximately 33 base-pairs [1]. Subsequently, the pri-
miRNA precursor undergoes a two-step processing pathway, 
mediated by two ribonucleases, Drosha and Dicer belonging 
to the RNase III family [2]. In the nucleus, Drosha cleaves 
the pri-miRNA to generate an approximately 70 nucleotides 
long pre-miRNA, which is exported to the cytoplasm via an 
exportin-5-dependent mechanism [25–27]. In the cytoplasm, 
the pre-miRNA is further processed by Dicer to generate a 
mature, functional, double-stranded miRNA [28]. Then, the 
guide strand or mature miRNA is integrated into a multi-protein 
complex, RISC, which contains the argonaute (AGO) protein 
that plays a central role in RNA silencing. RISC uses the guide 
strand to target complementary 3’-UTR of mRNA via Watson-
Crick base pairing [29, 30]. The other strand which is known as 
miRNA* or passenger strand is eventually degraded [31]. The 
miRNA binding to the 3’-UTR leads to mRNA degradation 
or translational repression, the extent of which is dependent 
on the degree of complementation. Besides, RISC can also 
target 5’-UTR of mRNA and activate translation [32]. The 
biogenesis of miRNA is shown in Figure 1.

Figure 1: Biogenesis of miRNA. MiRNA is first transcribed by RNA Pol II. Then, the pri-miRNA is processed by the enzyme Drosha 
and Dicer. The mature miRNA is integrated into RISC, thereby leading to mRNA degradation, translational repression or translational 
activation.
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CANCER ANGIOGENESIS

Avascular, vascular and metastatic stages are the 
three stages of cancer. During the avascular stage, the 
tumor obtains nutrients and oxygen needed for growth 
by passive diffusion. However, the tumor growth is 
only about 1-2 mm in diameter without sufficient blood 
supply provided by angiogenesis [33]. Thus, angiogenesis 
is essential for uncontrolled growth of tumors. Initially, 
the pro- and anti-angiogenic factors are balanced in the 
tumor microenvironment. Cancer angiogenesis is similar 
to physiological angiogenesis and involves formation of 
new blood vessels through proliferation, migration and 
differentiation of endothelial cells (ECs) using pre-existing 
vascular structures [34]. Cancer angiogenesis is a complex 
multi-stage process involving degradation of vascular 
basement membrane and extracellular matrix, proliferation 
and migration of vascular endothelial cells, formation of 
a new vessel lumen and vessel branches, and maturation 
of the new vessel [35]. This process is activated due to 
low oxygen microenvironment in a growing cancer [35]. 
In response to the hypoxic environment, cancer cells 
undergo an angiogenic switch. Thus, the production of 
pro-angiogenic factors such as vascular endothelial growth 
factor (VEGF) and proteolytic enzymes [36] is increased 
and the induction of anti-angiogenic factors including 
angiopoietin 2 [8], angiostatin [37] and endostatin [38] 
is attenuated. Subsequently, the increased production 
of pro-angiogenic factors results in the activation of EC 
proliferation, differentiation, and migration. Eventually, a 
capillary network is successfully set up. The process of 
cancer angiogenesis is shown in Figure 2.

Unlike physiological angiogenesis, cancer 
angiogenesis is an inefficient process with sub-optimal 
perfusion, lack of vessel integrity and disorganized 
vessel network [39]. However, the newly-formed 
premature vessels provide the growing tumor tissue 
with adequate metabolites [40]. The immature structure 
of newly-formed blood vessels results in cancer cells 
gaining access to circulation. Moreover, the irregular 
and disorganized structure of blood vessels results in a 
high density vascular bed, which enhances the contact 
area between cancer and circulation, resulting in 
greater access for cancer cells to enter into circulation 
and promote distant metastases [40]. The number of 
metastasis sites positively correlate with the number of 
cancer cells initially entering the circulation [41]. Taken 
together, cancer angiogenesis not only acts as a bridge 
between primary cancer and circulation, but also plays 
a significant role in cancer metastasis. Metastatic cancer 
also undergoes three stages of development similar to 
primary cancer, which includes the avascular, vascular 
and metastatic stages. This vicious cycle results in 
morbidity and mortality of cancer patients. Therefore, 
cancer angiogenesis is pivotal to both initiation and 
progression of metastatic cancer.

CANCER METASTASIS

Metastasis is closely related to poor prognosis of 
cancer patients [42]. It is the leading cause of cancer-
related deaths and therefore critical for early diagnosis 
and treatment. About 50% of all cancer patients show 
clinically detectable metastasis at the time of diagnosis. 
However, micrometastases remain undetectable in a large 
number of cancer patients by the currently employed 
techniques [43].

Metastasis is defined as the process by which 
cancer cells translocate from their primary cancer location 
to distant organs via the circulatory system or body 
cavities and subsequently establish a secondary cancer 
at the new tissue site [44]. As shown in Figure 3, cancer 
metastasis is an intricate process involving a number of 
sequential steps like (1) alteration and rearrangement 
of cytoskeleton, (2) degradation of extracellular matrix, 
(3) local invasion, (4) intravasation, (5) transport and 
survival in the circulatory system, (6) extravasation, and 
(7) settlement and proliferation in a new site [45]. Cancer 
metastasis has been well investigated in clinical studies. 
Despite being the central focus of clinical research, the 
specific mechanism of cancer metastasis has not yet been 
fully elucidated. It is widely thought that cancer metastasis 
occurs in association with the degradation of extracellular 
matrix [46], epithelial-mesenchymal transition (EMT) 
[47–49], overexpression of matrix metalloproteinases 
(MMPs) [50, 51], immune evasion [52], the homing of 
circulating cancer cells and cancer stem cells (CSCs) [53] 
as well as cancer microenvironment and angiogenesis [54].

DYSREGULATED MIRNAS IN CANCER 
ANGIOGENESIS AND METASTASIS

Anti-angiogenic and anti-metastatic miRNAs

MiRNAs targeting VEGF signaling

Vascular endothelial growth factor (VEGF) consists 
of VEGFA, VEGFB, VEGFC, VEGFD and placenta growth 
factor (PGF) [55]. Ectopic expression of VEGF partly 
accounts for cancer progression because of its involvement 
in cancer angiogenesis and metastasis [56, 57]. Many 
miRNAs regulate the VEGF expression. MiRNA-29c 
overexpression inhibits angiogenesis by downregulating 
VEGF [58]. Moreover, upregulation of miRNA-29c 
suppresses in vitro glioma cell migration and invasion due 
to reduced MMP-2 levels [58]. Wang et al. reported that 
the low expression of miRNA-195 promotes angiogenesis 
and metastasis of HCC via VEGF and the pro-metastatic 
factors, VAV2 and CDC42 [59]. Ghosh et al. showed that 
miRNA-199a-3p was downregulated in HCC tissues; its 
overexpression suppressed cancer growth, angiogenesis 
and lung metastasis by suppressing VEGFA, VEGFR1, 
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VEGFR2, HGF and MMP2 [60]. Tu et al. showed that 
miRNA-497 inhibited breast cancer angiogenesis by 
targeting VEGFR2 [61]. Twist-induced downregulation 
of miRNA-497 promoted angiogenesis and metastasis 
of pancreatic cancer and was associated with high levels 
of VEGFA [62]. Besides, miRNA-497 suppressed HCC 
angiogenesis and metastasis by inhibiting VEGFA [63].

MiRNAs targeting HIF signaling

Hypoxia-inducible factor (HIF) is a transcriptional 
factor that responds to low oxygen levels. The 
dysregulation of HIF is vital for the formation of blood 
vessels in cancer, thereby accelerating cancer progression. 
Cha et al. showed that overexpression of miRNA-519c 
attenuated angiogenic activity of endothelial cells and 

Figure 2: The process of cancer angiogenesis. This process is usually activated in a low oxygen microenvironment. Cancer 
angiogenesis involves multiple steps, including degradation of vascular basement membrane and extracellular matrix, 
proliferation and migration of vascular endothelial cells, formation of a new vessel lumen and vessel branches, and maturation 
of the new vessels.

Figure 3: The process of cancer metastasis. A series of sequential steps are involved in cancer metastasis, such as alteration 
and rearrangement of cytoskeleton, degradation of extracellular matrix, local invasion, intravasation, transfer and survive in 
the circulatory system, extravasation, settlement and proliferation in a new organ (like lung and liver).
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suppressed angiogenesis and metastasis by reducing 
HIF-1α levels [64]. Therefore, cancer patients with high 
miRNA-519c levels had better prognosis [64]. Zhang et al. 
showed that miRNA-145 directly targeted HIF-2α, thereby 
inhibiting angiogenesis and metastasis of neuroblastoma 
[65]. Moreover, miRNA-145 negatively regulated gastric 
cancer angiogenesis and metastasis by suppressing Ets-1 
transcription factor [66]. Mutations in p53 are positively 
correlated with cancer growth and angiogenesis because 
it regulates apoptosis, DNA repair, and cell-cycle 
progression via transcription of several miRNAs [67]. 
Yamakuchi et al. showed that p53 activated miRNA-107 
transcription, which suppressed expression of HIF-1β, 
thereby inhibiting cancer angiogenesis, growth, and VEGF 
expression [68].
MiRNAs targeting angiopoietin-2 signaling

Angiopoietin-2 is a member of angiopoietins, 
which is mainly produced by ECs [69]. It facilitates 
VEGF-induced angiogenesis in multiple cancers. 
Therefore, inhibiting angiopoietin-2-related pathway 
suppresses cancer angiogenesis and metastasis [70, 71]. 
Ting et al. demonstrated that miRNA-542-3p inhibited 
angiopoietin-2 by directly binding to its 3’UTR [72]. 
Furthermore, miRNA-542-3p is a promising prognostic 
marker to monitor progression of breast cancer because its 
expression negatively correlates with clinical progression 
of stage III and stage IV breast cancer patients [72]. In 
HCC, downregulation of miRNA-542-3p is associated 
with intrahepatic metastasis and venous infiltration 
[73]. Fan et al. showed that reduced miRNA-543 levels 
correlated with colorectal cancer (CRC) metastasis [74]. 
In osteosarcoma, the expression of miRNA-543 was 
inhibited by connective tissue growth factor (CTGF), 
which resulted in increased Angiopoietin-2 levels that 
induced osteosarcoma angiogenesis [75].
MiRNAs targeting MMP signaling

Matrix metalloproteinases (MMPs) are calcium-
dependent zinc-containing endopeptidases, which are 
essential for tissue remodeling associated with cancer 
angiogenesis and metastasis. MiRNA-9 induction 
inhibited MMP14 levels, which resulted in reduced 
angiogenesis, invasion and metastasis of neuroblastoma 
cells, both in vitro and in vivo [76]. Li et al. showed that 
MMP-14 was also a direct target of miRNA-181-5p in 
breast cancer cells, which resulted in attenuating breast 
cancer cell migration, invasion and angiogenesis [77]. 
Moreover, Ghosh et al. demonstrated that miRNA-199a-
3p suppressed HCC growth, invasion, migration and 
angiogenesis by partially targeting MMP2 [60].
MiRNAs targeting LRP-6 signaling

Low-density lipoprotein receptor-related protein 6 
(LRP6) and LRP5 are part of the LRP5/LRP6/Frizzled 
co-receptor, which is involved in the Wnt/β-catenin 
signaling [78]. LRP6 promotes cancer metastasis by 

participating in the canonical Wnt pathway in a variety of 
cancers such as triple negative breast cancer [79]. Fan et 
al. found that miRNA-454 inhibited cancer angiogenesis 
and metastasis by targeting LRP6 in pancreatic ductal 
adenocarcinoma (PDAC) [80]. The miRNA-454 
overexpressing PDAC cells suppressed formation of 
capillary tube-like structures by HUVEC cells, thereby 
showing its role in inhibiting angiogenesis [80]. Xenograft 
experiments demonstrated decreased lung metastasis from 
miRNA-454 overexpressing PDAC cells than controls 
[80]. In another study, Du et al. showed that miRNA-
126-3p partially suppressed angiogenesis and metastasis 
of HCC by targeting LRP6 [81]. Moreover, Sasahira et 
al. demonstrated that miRNA-126 inhibited metastasis in 
OSCC by suppressing VEGFA [82]. Therefore, miRNA-
126-3p and miRNA-454 as well as LRP6 are potential 
targets for the treatment of cancer angiogenesis and 
metastasis.
MiRNAs targeting IL-6 signaling

Interleukin 6 (IL-6) is an inflammatory cytokine, 
which plays a role in cancer metastasis by downregulating 
E-cadherin [83]. Higher levels of serum IL-6 in patients 
with advanced or metastatic cancer suggest that it 
promotes metastasis. Yang et al. demonstrated that 
miRNA-26a inhibited in vitro HCC cell invasiveness and 
migration as well as in vivo metastasis by downregulating 
IL-6 [84]. Moreover, miRNA-26a also suppressed HCC 
angiogenesis [85]. MiRNA-451 is downregulated in 
human osteosarcomas and is implicated in suppressing 
angiogenesis and metastasis by targeting IL-6R [86]. 
Moreover, upregulation of miRNA-451 suppressed in vitro 
migration and angiogenesis of osteosarcoma cells [86]. 
Liu X et al. showed that miRNA-451 suppressed HCC 
angiogenesis by blocking the IL-6R/Stat3 pathway [87]. 
Thus, miRNA-451 demonstrates therapeutic potential as 
an anti-angiogenesis and anti-metastatic target.

Other miRNAs

MiRNA-34a

CD44 antigen is a cell-surface glycoprotein that 
is relevant to cancer therapy and prognosis because of 
its role in cell-cell interactions as well as cell adhesion 
and migration [88]. Yu et al. reported low miRNA-34a 
levels in human bladder cancer tissues [89]. Moreover, 
overexpression of miRNA-34a inhibited angiogenesis 
and metastasis of bladder cancer cells by targeting CD44 
[89]. Therefore, miRNA-34a and CD44 are potential 
anti-angiogenic and anti-metastatic therapeutic targets in 
bladder cancer patients.

MiRNA-101

Smits et al. showed that miRNA-101 inhibited 
proliferation, angiogenesis and migration of glioblastoma 
cells by targeting enhancer of zeste homolog 2 (EZH2)
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[90]. Moreover, Tang et al. showed that miRNA-101 was 
downregulated in nasopharyngeal carcinoma tissues and 
cell lines. They further showed that overexpression of 
miRNA-101 suppressed angiogenesis and lung metastasis 
by targeting Integrin subunit alpha 3 (ITGA3) [91].
MiRNA-124

Wang et al. demonstrated that upregulation of 
miRNA-124 attenuated in vitro migration, invasion 
and vasculogenic mimicry of bladder cancer cells by 
downregulating ubiquitin-like with PHD and RING finger 
domain 1 (UHRF1) [92]. In cervical cancer, miRNA-214 
inhibited vasculogenic mimicry, migration and invasion by 
suppressing angiomotin-like protein, AmotL1 [93]. These 
studies imply that miRNA-124 and its related targets are 
potential targets for anti-angiogenic and anti-metastatic 
cancer therapy.
MiRNA-135a

MiRNA-135a is a tumor suppressor, which is 
reported to be downregulated in human prostate and 
gall bladder cancers [94, 95]. Cheng et al. reported that 
miRNA-135a levels were downregulated in gastric 
cancer tissues and cell lines [96]. They showed that 
miRNA-135a inhibited gastric cancer angiogenesis 
and metastasis by targeting the focal adhesion kinase 
(FAK), which regulates VEGF signaling [96]. Wang 
et al. showed low miRNA-135 expression in NSCLC 
tissues [97]. Overexpression of miRNA-135 suppressed 
in vitro NSCLC cell proliferation, invasion, migration and 
angiogenesis and induced cell apoptosis by blocking the 
IGF-1/PI3K/Akt signaling pathway [97].
MiRNA-218

Alajez et al. showed that miRNA-218 inhibited 
nasopharyngeal cancer progression by targeting survivin 
and SLIT2-ROBO1 pathway [98]. MiRNA-218 expression 
was silenced by DNA methylation in oral squamous 
cell carcinoma [99]. These findings suggested that 
miRNA-218 was a tumor suppressor. Zhang et al. showed 
decreased expression of miRNA-218 in gastric cancer 
[100]. MiRNA-218 inhibited gastric cancer angiogenesis 
and metastasis by downregulating ROBO1 [101]. These 
data suggested that miRNA-218 suppressed gastric cancer 
metastasis by inhibiting angiogenesis via a ROBO1-
dependent mechanism.
MiRNA-320

Neuropilin 1 has been implicated in cancer 
angiogenesis and metastasis because of its interaction 
with VEGFA [102–104]. Neuropilin 1 is a target of 
miRNA-320 and its expression inversely correlates with 
miRNA-320 in oral squamous cell carcinoma (OSCC) 
[105, 106]. The overexpression of miRNA-320 suppresses 
OSCC angiogenesis [105]. Furthermore, inhibition 
of miRNA-320 accelerates the growth and metastasis 
of cholangiocarcinoma suggesting that it suppresses 

angiogenesis by depleting neuropilin 1 levels [106]. These 
results demonstrate the potential of miRNA-320 and 
neuropilin 1 as anti-angiogenic or anti-metastatic cancer 
therapeutic targets for OSCC.
MiRNA-409-3p

Angiogenin or ribonuclease 5 is a potent stimulator 
of angiogenesis [107, 108]. Weng et al. showed that 
overexpression of miRNA-409-3p decreased angiogenin 
mRNA and protein levels by binding to its 3’-UTR, 
thereby inhibiting fibrosarcoma vascularization and 
metastasis [109]. Conversely, knockdown of miRNA-409-
3p increased fibrosarcoma progression [109]. Therefore, 
miRNA-409-3p is a potential target in fibrosarcoma 
therapy.
MiRNA-590-5p

Multiple studies have demonstrated the role of 
miRNA-590-5p in the initiation and progression of CRC 
[110–112]. Zhou et al. showed decreased miRNA-590-5p 
expression in human colorectal cancer (CRC) cells and 
tissues, demonstrating that miRNA-590-5p was a tumor 
suppressor in CRC [113]. Subsequent in vivo studies 
revealed that miRNA-590-5p knockdown promoted cancer 
angiogenesis, growth and lung metastasis, whereas its 
overexpression attenuated CRC progression by regulating 
nuclear factor 90 (NF90)/VEGFA signaling axis [113]. 
These data indicate that miRNA-590-5p is a potential 
target for human CRC therapy.
MiRNA-1301

There is increasing evidence that miRNA-1301 
prevents angiogenesis and metastasis in hepatocellular 
carcinoma patients. MiRNA-1301 suppresses 
dissemination and metastasis of HCC cells via p53 
[114]. Yang et al. demonstrated that miRNA-1301 was 
downregulated in HCC tissues and cell lines [115]. 
Moreover, miRNA-1301 targets B-cell CLL/lymphoma 
9 (BCL9), which regulates β-catenin cofactors that are 
necessary for the transcription of Wnt target genes [115, 
116]. Further studies demonstrated that miRNA-1301 
inhibited hepatocellular carcinoma cell migration, 
invasion, and angiogenesis by decreasing Wnt/β-catenin 
signaling via BCL9 [115].

Pro-angiogenic and pro-metastatic miRNAs

MiRNA-93

The miRNA-106b-25 cluster, which is a paralogue of 
miRNA-17-92 and miRNA-106a-363 clusters, consists of 
three mature miRNAs, namely miRNA-106b, miRNA-93, 
and miRNA-25 [117, 118]. The miRNA-106b-25 cluster is 
highly expressed in several human cancers and performs 
oncogenic function by suppressing P21 and Bim [119]. 
Jonathan et al. demonstrated that the miRNA-106b-25 
cluster regulated the function of angiogenic bone marrow-
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derived stromal cells and endothelial cells and therefore 
was closely connected with angiogenesis [120]. Moreover, 
miRNA-93 promoted cancer growth and angiogenesis 
by targeting integrin-β8 [121]. Furthermore, miRNA-93 
enhanced human breast cancer angiogenesis and promoted 
metastasis to lung tissue by suppressing the large tumor 
suppressor homology 2 (LATS2) protein, which is 
associated with cancer cell death [122]. Altogether, 
inhibition of miR-93 is a feasible approach to mitigate 
breast cancer angiogenesis and metastasis.
MiRNA-378

MiRNA-378 is widely recognized as an oncogene 
that promotes cancer growth, survival, angiogenesis and 
metastasis [123]. The levels of miRNA-378 are frequently 
increased in cancer tissue or serum of cancer patients 
and associated with poor prognosis [124, 125]. Lee et al. 
demonstrated that miRNA-378 enhanced U87 cancer cell 
survival and promoted cancer growth and angiogenesis 
[126]. SuFu, a negative regulator of Sonic Hedgehog 
(SHH) signaling, which facilitates large vessel formation 
by inducing the expression of pro-angiogenic cytokines 
including VEGF and Ang-1 is a miRNA-378 target 
[126]. FUS-1 is another direct target of miRNANA-378. 
FUS-1 overexpression reverses cancer cell survival and 
angiogenesis effects mediated by miRNA-378. Moreover, 
miRNA-378 is associated with brain metastasis of non-
small cell lung cancer cells [127]. Furthermore, stable 
miRNA-378 overexpression increases non-small lung 
carcinoma growth, angiogenesis and metastasis by 
enhancing the expression of VEGF and Ang-1 [123]. 
These findings suggest that miRNA-378 is a potential 
target for anti-metastatic cancer therapy.
MiRNA-155

MiRNA-155 is frequently overexpressed in various 
types of human cancer and is linked to cancer angiogenesis 
and metastasis [128, 129]. Kong et al. found that the 
ectopic expression of miRNA-155 accelerated cancer 
angiogenesis and correlated with poor prognosis in triple-
negative breast cancer [130]. MiRNA-155 overexpression 
induced network formation, proliferation, invasion and 
migration of human umbilical vein endothelial cells 
(HUVEC). There was an inverse correlation between 
miRNA-155 and Von Hippel–Lindau (VHL) expression. 
VHL overexpression rescued angiogenesis induced by 
miRNA-155, which indicated that miRNA-155 promoted 
angiogenesis by targeting VHL. The VHL protein is a 
component of the protein complex that possesses ubiquitin 
ligase E3 activity and is involved in the ubiquitination 
and degradation of HIF [131]. Petrovic et al. suggested 
that miRNA-155 promoted lymph node metastasis 
by investigating miRNA-155 levels in normal breast 
tissue, non-invasive and invasive breast carcinoma, and 
metastatic lymph nodes [132]. Johansson et al. showed 
that miRNA-155 targeted CCAAT-enhancer binding 
protein beta (C/EBPβ), which is a differentiation factor 

for the mammary epithelium and related to epithelial-
mesenchymal transition (EMT) [133]. These results 
suggest that miRNA-155 is a potential therapeutic target 
to treat angiogenesis and metastasis of breast cancer.
MiRNA-494

MiRNA-494 is overexpressed in many cancers and 
plays a key role in cancer development and progression 
[134, 135]. Faversani et al. reported that miRNA-494 
expression correlated with poor prognosis of lung cancer 
patients. Its overexpression enhanced motility and 
metastasis of lung cancer cells by activating NOTCH1 
pathway and repressing PTEN/PI3K/AKT signaling 
[136]. Mao et al. showed that high miRNA-494 levels in 
lung cancer facilitated migration of vascular endothelial 
cells (ECs) and promoted angiogenesis by targeting 
PTEN, thereby activating Akt/e-NOS pathway. Moreover, 
intra-tumoral administration of miRNA-494 antagonists 
effectively suppressed lung cancer angiogenesis [137]. 
Therefore, miRNA-494 is a promising target for anti-
angiogenic and anti-metastatic therapy for lung cancer 
patients.

MiRNA-296

The high expression of pro-angiogenic growth factor 
receptors on endothelial cells is a common feature of 
angiogenic blood vessels. These receptors include vascular 
endothelial growth factor receptor (VEGFR) and platelet-
derived growth factor receptor (PDGFR), which are targets 
for anti-angiogenic therapies [138, 139]. Wurdinger et al. 
reported that miRNA-296 regulated levels of VEGFR2 and 
PDGFRß in angiogenic endothelial cells [140]. Moreover, 
they showed that Hepatocyte growth factor-regulated 
tyrosine kinase substrate (HGS), which degrades PDGFRß 
and VEGFR2 was highly repressed by miRNA-296 [140–
142]. While miRNA-296 overexpression decreased HGS 
protein levels and increased PDGFRß and VEGFR2 levels 
that promoted angiogenesis, miRNA-296 antagonists 
attenuated cancer angiogenesis [140]. Additionally, 
clinical tissue microarrays showed that miRNA-296 
was frequently upregulated in prostate cancer. Systemic 
delivery of miRNA-296 inhibitor decreased the incidence 
of pulmonary cancer metastasis by directly binding to the 
3’UTR of intercellular adhesion molecule 1 (ICAM1) 
[143]. Therefore, miRNA-296 is a potential target in anti-
angiogenic and anti-metastatic cancer therapy.

MiRNA-1246

MiRNA-1246 is a p53 transcriptional target, which 
participates in the regulation of the known anticancer 
functions of p53, such as activating DNA repair proteins 
and initiating apoptosis [144]. MiRNA-1246 promotes 
the development and progression of colorectal cancer 
[145]. Wang et al. demonstrated that miRNA-1246 
overexpressing colorectal cancer cells exhibited higher 
invasive and migration capacity than controls [146]. 
In colorectal cancer tissues, miRNA-1246 levels were 
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Table 1: Summary of dysregulated miRNAs in cancer angiogenesis and metastasis

Name Expression Tumor Angiogenesis Metastasis Target gene Reference

miR-29c Down Glioma Suppression Suppression VEGF, MMP2 57

miR-195 Down Hepatocellular carcinoma Suppression Suppression VEGF, VAV2, 
CDC42

58

miR-199a-3p Down Hepatocellular carcinoma Suppression Suppression VEGFA, 
VEGFR1, 

VEGFR2, HGF, 
MMP2

59

miR-497 Down Hepatocellular 
carcinoma, breast cancer, 

pancreatic cancer

Suppression Suppression VEGFA, AEG-1, 
VEGFR2

60, 61, 62

miR-519c Down Lung adenocarcinoma, 
breast cancer

Suppression Suppression HIF-1alpha 63

miR-145 Down Gastric cancer, 
neuroblastoma

Suppression Suppression HIF-2alpha, Ets1 64, 65

miR-107 Down Colon cancer Suppression Suppression HIF-1beta, VEGF, 
BDNF

67

miR-542-3p Down Breast cancer, 
hepatocellular carcinoma

Suppression Suppression ANG2 71, 72

miR-543 Down Osteosarcoma, colorectal 
cancer

Suppression Suppression ANG2, KRAS, 
MTA1, HMGA2

73, 74

miR-9 Down Neuroblastoma Suppression Suppression MMP14 75

miR-181-5p Down Breast cancer, colon 
cancer

Suppression Suppression MMP14 76

miR-454 Down Pancreatic cancer Suppression Suppression LRP6 79

miR-126-3p Down Oral squamous 
cell carcinoma, 

hepatocellular carcinoma

Suppression Suppression VEGFA, LRP6, 
PIK3R2

80, 81

miR-26a Down Hepatocellular carcinoma Suppression Suppression IL-6, HGF 83, 84

miR-451 Down Osteosarcoma, 
hepatocellular carcinoma

Suppression Suppression IL-6R 85, 86

miR-34a Down Bladder cancer Suppression Suppression CD44 88

miR-101 Down Glioblastoma, 
nasopharygeal carcinoma

Suppression Suppression EZH2, ITGA3 89, 90

miR-124 Down Bladder cancer, cervical 
cancer

Suppression Suppression UHRF1, AmotL1 91, 92

miR-135a Down Gastric cancer, non-small 
cell lung cancer

Suppression Suppression FAK, IGF-1 95, 96

miR-218 Down Gastric cancer Suppression Suppression ROBO1 99, 100

miR-320 Down Oral squamous 
cell carcinoma, 

cholangiocarcinoma

Suppression Suppression Neuropilin 1 104, 105

miR-409-3p Down Fibrosarcoma Suppression Suppression Angiogenin 108

(Continued )
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higher than adjacent normal tissues [147]. Yamada et 
al. demonstrated that promyelocytic leukemia protein 
(PML), a tumor suppressor protein required for the 
assembly of a number of nuclear structures [148] and a 
regulator of the Smad 2/3 signaling, was a direct target 
of miRNA-1246 [147]. Besides, CRC cell-derived 
microvesicles with miRNA-1246 facilitated CRC 
angiogenesis by downregulating PML. These findings 
show that miRNA-1246 is a potential therapeutic target to 
treat colorectal cancer angiogenesis and metastasis.
MiRNA-181a

MiRNA-181a is associated with T cell sensitivity, 
vascular development, cerebellar neurodegeneration 
and diabetes mellitus [149–152]. Sun et al. showed that 
miRNA-181a is oncogenic and upregulated in high grade 
chondrosarcoma by hypoxia [153]. The overexpression of 
miRNA-181a decreased regulator of G-protein signaling 
16 (RGS16), which suppresses CXC chemokine receptor 4 
(CXCR4) signaling. This resulted in increased expression 
of VEGF and MMP1 that promote chondrosarcoma 
angiogenesis and metastasis [153]. Thus, miRNA-181a is a 
potential therapeutic target for inhibiting chondrosarcoma 
angiogenesis and metastasis.
MiRNA-221 and miRNA-222

Epithelial-mesenchymal transition (EMT) in breast 
cancer is aberrantly activated by overexpression of 
miRNA-221 and miRNA-222, which target adiponectin 
receptor 1 (ADIPOR1) [154, 155]. Jikuzono et al. 
showed that miRNA-221/222 cluster was upregulated 
in metastatic minimally invasive follicular thyroid 
carcinoma (MI-FTC) [156]. Yang et al. reported that 
Tissue inhibitor of metalloproteinase 2 (TIMP2) was a 
direct target of miRNANA-221/222 in gliomas [157]. 
TIMP2 overexpression suppressed glioma angiogenesis 

and metastasis, which was enhanced by miRNA-221/222 
[157]. Therefore, miRNA-221 and miRNA-222 are 
potential targets in the treatment of metastatic follicular 
thyroid carcinoma.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

Metastasis is the main cause of cancer-related 
deaths and is a big challenge in improving survival of 
cancer patients. Recent advances in the understanding of 
mechanisms underlying metastasis have opened up novel 
avenues to overcome the bottleneck in metastatic cancer 
therapy. Angiogenesis is a key step in cancer metastasis, 
which provides the channel for dissemination of cancer 
cells. Hence, blocking angiogenesis represents an effective 
therapeutic strategy for metastatic cancer. Anti-angiogenesis 
drugs have played a primary role in the treatment of a 
variety of metastatic cancers such as metastatic renal cell 
carcinoma [158]. However, the outcomes are unsatisfactory 
due to adverse effects such as bleeding and resistance to 
anti-angiogenic therapy [159, 160]. Therefore, novel 
alternatives of anti-angiogenic therapy are necessary. In 
the last decade, considerable evidence has accumulated 
about the involvement of miRNAs in cancer angiogenesis 
and metastasis. Table 1 shows few selected miRNAs that 
regulate cancer angiogenesis and metastasis. Studies 
have shown that dysregulation of these miRNAs greatly 
impacts cancer angiogenesis and metastasis. Huang et al. 
demonstrated that miRNA-30a negatively correlated with 
hematogenous metastasis of clear cell renal cell carcinoma 
by targeting angiogenesis-specific delta-like 4 (DLL4) 
[161]. This demonstrated that the regulation of miRNAs in 
angiogenesis contributed to cancer metastasis. Furthermore, 
rapid development of miRNA antagonists, mimics and 

Name Expression Tumor Angiogenesis Metastasis Target gene Reference

miR-590-5p Down Colorectal cancer Suppression Suppression NF90 112

miR-1301 Down Hepatocellular carcinoma Suppression Suppression BCL9 114

miR-93 Up Breast cancer Promotion Promotion Integrin-beta8, 
LATS2

120, 121

miR-378 Up Non-small cell lung 
cancer

Promotion Promotion Sufu, Fus-1, 
HMOX1

125, 126

miR-155 Up Breast cancer Promotion Promotion VHL, C/EBPbeta 129, 131

miR-494 Up Lung cancer Promotion Promotion NOTCH1, PTEN 135, 136

miR-296 Up Prostate cancer Promotion Promotion HGS, ICAM1 139, 142

miR-1246 Up Colorectal cancer Promotion Promotion PML, CCNG2 145, 146

miR-181a Up Chondrosarcoma Promotion Promotion RGS16 152

miR-221/222 Up Thyroid carcinoma, 
glioma

Promotion Promotion ADIPOR1, 
TIMP2

153, 156
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delivery technologies has enabled the use of miRNAs in 
metastatic cancer therapy. However, the direct connection 
between the role of miRNAs in angiogenesis and cancer 
metastasis remains to be established. Besides, miRNA-
based therapy is still not available in clinical settings. 
Nevertheless, with greater advances in technology, it is a 
matter of time before effective miRNA-based therapy is 
applied in the area of cancer angiogenesis and metastasis.
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