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Prior studies of the neural representation of episodic memory in the human hippocam-
pus have identified generic memory signals representing the categorical status of test
items (novel vs. repeated), whereas other studies have identified item specific memory
signals representing individual test items. Here, we report that both kinds of memory
signals can be detected in hippocampal neurons in the same experiment. We recorded
single-unit activity from four brain regions (hippocampus, amygdala, anterior cingulate,
and prefrontal cortex) of epilepsy patients as they completed a continuous recognition
task. The generic signal was found in all four brain regions, whereas the item-specific
memory signal was detected only in the hippocampus and reflected sparse coding. That
is, for the item-specific signal, each hippocampal neuron responded strongly to a small
fraction of repeated words, and each repeated word elicited strong responding in a small
fraction of neurons. The neural code was sparse, pattern-separated, and limited to the
hippocampus, consistent with longstanding computational models. We suggest that the
item-specific episodic memory signal in the hippocampus is fundamental, whereas
the more widespread generic memory signal is derivative and is likely used by different
areas of the brain to perform memory-related functions that do not require item-
specific information.
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The hippocampus is essential for the formation of declarative (conscious) memory (1,
2), including both episodic memory (memory for events) and semantic memory
(factual knowledge). Episodic memories represent the “what, when, and where” infor-
mation about remembered events (3). Here, we focus on the neural representation of
episodic memory for events, specifically words presented and later repeated in a contin-
uous recognition memory format (4).
Bilateral hippocampal lesions result in substantial anterograde amnesia for new

events, whether memory is tested by recall or recognition (5). By contrast, bilateral
lesions to a more anterior medial temporal lobe structure-the amygdala-have no such
effect (6). One might therefore expect to find single-unit activity associated with epi-
sodic memory in the hippocampus but not in the amygdala. Yet, the earliest single-
neuron studies failed to detect hippocampal neurons that fired differentially to recently
presented test items vs. novel items. This was true in studies with humans (7, 8) and
monkeys (9–11). One early study with monkeys identified a few such neurons in the
hippocampus (12), and other studies found them in areas other than the hippocampus
(e.g., inferomedial temporal cortex or inferotemporal temporal cortex) (9–11, 13, 14).
Overall, this was not the pattern anticipated from lesion studies.
Subsequent studies successfully detected some memory-related neural activity

(15–17), observing that ∼10% of hippocampal neurons exhibited differential firing
rates based on item status, with some firing more for repeated items and others firing
more for novel items. Surprisingly, similar “memory-selective” neurons were also reli-
ably detected in the amygdala at approximately the same frequency. Yet, these
memory-selective neurons responded differentially to the generic, categorical status of
test items (repeated vs. novel) and thus are not episodic memory signals (i.e., signals
representing memory for specific events). According to neurocomputational models
dating back to Marr (18), episodic memory representations in the hippocampus are
supported by sparse neural codes (19–21). If memories for individual items are sparsely
coded in largely nonoverlapping (pattern-separated) neural assemblies, it should be pos-
sible to find neurons that respond to particular repeated items, rather than to an item’s
generic status. Two recent single-unit studies with humans detected such neurons in
the hippocampus, but not in the amygdala (22, 23), apparently reflecting sparsely
coded episodic memories. In the present study, we tested 1) whether the generic and
the item-specific signals coexist in neural firing patterns recorded during the same
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memory task, and 2) whether the two kinds of signals are pre-
sent exclusively in the hippocampus or are also evident in other
brain regions.
During a continuous recognition memory procedure, neu-

rons were simultaneously recorded from four brain regions:
hippocampus, amygdala, anterior cingulate cortex, and prefron-
tal cortex. Altogether, 55 continuous recognition memory ses-
sions were completed by 34 epilepsy patients who had
implanted clinical depth electrodes with microwires measuring
single-unit activity (SUA) and multiunit activity bilaterally
(24). We limited the present analyses to SUA. Words were pre-
sented consecutively and repeated once after varying lags;
patients judged each word as either “novel” or “repeated.”
Thus, repeated words differed from their earlier presentations
as novel words only with respect to their combined “what,
when, and where” episodic status (3).

Results

Behavioral Performance. Average behavioral performance was
well above chance and below ceiling: 83.5 ± 2.0% correct
rejections for first word presentations, and 80.6 ± 2.8% hits
for repeated words. The average d 0 across sessions was 2.20
(min = 0.12, max = 3.69).

Identifying the Generic Memory Signal. A generic memory sig-
nal would be evident if neurons produced firing rates that dif-
ferentiate novel and repeated items. In prior work, some
memory-selective neurons exhibited higher firing rates for
repeated items (repetition detectors),* whereas others exhibited
higher firing rates for novel items (novelty detectors). This pat-
tern was also observed in our data using the same method that
was used in prior work (13–15). Aggregated across sessions and
patients, 38 hippocampal neurons (out of 397 recorded; 9.6%)
exhibited statistically significant repetition/novelty signals
(Fig. 1, see SI Appendix for representative raster plots). Of these
memory-selective neurons, 20 were repetition detectors and 18
were novelty detectors (see Materials and Methods). Using an
alpha level of 0.05, the expected number of memory-selective
neurons detected by chance would be 397 × 0.05 = 19.9. The
observed number of 38 was greater than chance (P < 0.001,
Fig. 1). These memory-selective neurons were active across

entire sessions, changing their firing rates in response to either
repeated or novel items enough to generate statistically reli-
able effects.

We found a similar pattern in the amygdala, where 30 neu-
rons (out of 378, or 7.9%) exhibited significant repetition/nov-
elty signals (Fig. 1). There were 10 repetition detectors and 20
novelty detectors. The expected number of neurons detected by
chance would be 378 × 0.05 = 18.9. The observed number of
30 was greater than chance (P < 0.01). We repeated this analy-
sis in areas beyond the medial temporal lobe (i.e., the prefrontal
cortex and anterior cingulate) and again found significant num-
bers of memory-selective neurons (Fig. 1). In the prefrontal
cortex, we found 22 such neurons (6 repetition detectors and
16 novelty detectors) out of 276 recorded neurons (8.0%). In
the anterior cingulate, we found 47 memory-selective neurons
(18 repetition detectors and 29 novelty detectors) out of 344
recorded neurons (13.7%). Each count in these areas was
higher than expected by chance (prefrontal cortex: 276 ×
0.05 = 13.8, P < 0.05; anterior cingulate: 344 × 0.05 = 17.2,
P < 0.001). Thus, the generic memory signal was found in
every brain region that we examined.

Identifying the Item-Specific, Sparsely Coded Memory Signal.
A sparsely coded signal can be identified by comparing the
shapes of the full distributions of normalized spike counts for
novel items vs. repeated items. If the episodic memory signal
reflects sparse coding, then the repeated-item distribution
should selectively exhibit a small percentage of outliers. These
outliers would reflect the strong response of a small percentage
of neurons to a small percentage of repeated items. If present,
the outliers would be expected to increase the first four
moments of the repeated-item distribution (mean, variance,
skewness, and kurtosis) relative to the novel-item distribution,
with skewness and kurtosis being much more sensitive than the
mean and variance (25).

A visual method for comparing the shapes of two distribu-
tions is to generate empirical quantile-quantile (QQ) plots
(26). Quantiles refer to rank-ordered data, broken into sub-
groups containing equal percentages of the data. For our analy-
ses, the relevant empirical QQ plots consist of the quantiles of
normalized spike counts for novel words (x-axis) vs. the quan-
tiles of normalized spike counts for repeated words (y-axis),
constructed separately for each of the four brain regions (Fig. 2).
If these two distributions of normalized spike counts have the
same shape (e.g., two log-normal distributions), the QQ plot will
be linear, even if the distributions have different means and/or

Fig. 1. Number of neurons that exhibited generic memory signals (repeated vs. novel) in the hippocampus, amygdala, prefrontal cortex, and anterior cin-
gulate. In each of the four regions, the total number of neurons exhibiting a generic memory signal exceeded the number expected by chance, using an
alpha level of 0.05 (the dotted line) based on the total number of neurons recorded per region. For example, 38 neurons in the hippocampus exhibited a
generic memory signal, which was significantly above the 19.9 expected by chance.

*The term “familiarity detector” has been used by others to refer to neurons that respond
more to repeated items than to novel items. However, the term “familiarity” is often used
as well to refer to a theoretical memory signal that is neither context-dependent nor
hippocampus-dependent. We therefore use the more theoretically neutral term
“repetition detector.”
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SDs. However, if the repeated-item distribution is more skewed
to the right than the novel-item distribution, as predicted by neu-
rocomputational models, the QQ plot will instead exhibit a char-
acteristic, nonlinear deflection.
For the hippocampus, the points on the QQ plot fall mostly

along the diagonal line but show a sharp upward deflection for
the highest-ranking points (Fig. 2A, see SI Appendix for repre-
sentative raster plots). As indicated by the light symbol shading
at the rightmost portion of the QQ plot, the deflection reflects
a very small percentage of recordings that exhibited markedly
strong responses to specific repeated words. Indeed, when only
0.25% of the top-ranking recordings from both distributions
were removed, retaining 99.75% of the recordings, the upward
deflection was no longer apparent (Fig. 2B). This is evidence of
sparse coding in hippocampal neurons. By contrast, similar pat-
terns of sharp upward deflections were not observed in the
amygdala, prefrontal cortex, or anterior cingulate (Fig. 2 C–H ).
We next tested whether the nonlinear QQ plot apparent

visually in the hippocampus reflected a statistically reliable
departure from linearity. We did so by testing whether the
skewness and kurtosis for the repeated- and novel-item distribu-
tions differed significantly according to a bootstrap test (see
Materials and Methods). Indeed, although both distributions
were positively skewed (repeated: skewness = 2.77; novel: skew-
ness = 2.09), the repeated distribution was significantly more
skewed (P = 0.002). The repeated distribution also had signifi-
cantly higher kurtosis than the novel distribution (20.11 vs.
6.44, P = 0.006). By contrast, in the other three brain regions,
neither skewness nor kurtosis differed significantly across the
repeated vs. novel distributions (Table 1), consistent with the
interpretations from visual inspections of the QQ plots.
Next, we tested the interaction between the skewness differ-

ence in the hippocampus vs. the skewness difference in the other
three brain regions. The interaction between the hippocampus

and the amygdala (P = 0.001) and the interaction between the
hippocampus and the anterior cingulate cortex (P = 0.002) were
both highly significant, whereas the interaction between the hip-
pocampus and the prefrontal cortex just missed being significant
(P = 0.057). For kurtosis, all three interactions were significant
(P = 0.004 for the hippocampus vs. the amygdala; P = 0.007 for
the hippocampus vs. the anterior cingulate; and P = 0.043 for
the hippocampus vs. the prefrontal cortex).

We next asked whether the findings in the hippocampus might
be based on only a few patients, sessions, neurons, or stimuli
(Table 2). In fact, the top 0.25% of normalized spikes to repeated
words came from 25 different patients (out of 30 patients with
single-unit data from the hippocampus) across 38 different ses-
sions (out of 51 sessions with single-unit data from the hippocam-
pus). In addition, each of these 38 sessions contributed 1 to 11
unique single neurons to the top 0.25% (mean = 2.95 neurons
per session). On average, each of these neurons responded strongly
to 1.66 unique repeated words (range = 1–11).

Discussion

In this study, we found that individual hippocampal neurons
exhibit two distinct memory signals. One signal is generic: the
recorded neurons respond differentially depending on the cate-
gorical status of test items (novel vs. repeated). In each region,
∼10% of neurons were either novelty detectors or repetition
detectors, responding consistently across trials. This signal was
also widespread, as it was found in all four brain regions that
we examined (hippocampus, amygdala, prefrontal cortex, and
anterior cingulate). The other memory signal was item-specific
and pattern-separated: each neuron responded strongly to a
small fraction of repeated words (∼1.66 words), and each
repeated word elicited strong responding in a small fraction of
neurons (∼1.18 neurons). These neurons are different from

Fig. 2. QQ plots of the normalized spike counts in response to novel words (x-axis) and repeated words (y-axis) for the hippocampus (A and B), amygdala
(C and D), prefrontal cortex (E and F), and anterior cingulate (G and H). Top panels plot 100% of the data for each region (hippocampus: 77,431 recordings;
amygdala: 65,219 recordings; prefrontal: 47,399 recordings; anterior cingulate: 62,205 recordings). The dark symbols indicate high-density data points, rep-
resenting thousands of recordings; the light symbols indicate low-density data points, representing a very small percentage of recordings. Bottom panels
show the same data after removing the 0.25% recordings with the highest spike counts from both the novel-word and repeated-word distributions. For the
hippocampus, the points fell mostly along the diagonal line but exhibited a sharp upward deflection (A), indicating that some neurons responded strongly to
some repeated words. After removing the top 0.25% of the data, the upward deflection for the hippocampus disappeared (B), indicating that only a very
small percentage of neurons spiked more in response to repeated words than novel words. By contrast, the plots for the other three regions did not exhibit
similar upward deflections. Thus, the activity pattern signaling episodic memory was identified only in the hippocampus.
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concept neurons (discussed below), which fire strongly whenever
the item is presented, both on the first presentation in the exper-
imental context (i.e., when the item was novel) as well as on the
second presentation (when the item was repeated). The item-
specific episodic memory signal was found in (and only in) the
hippocampus. The coexistence of these two memory signals (i.e.,
generic vs. item-specific) in the same set of neural recordings has
not been previously documented, nor has the regional specificity
of those signals (i.e., widespread vs. hippocampus-specific).
Neurocomputational models (18–21) predict that item-specific

episodic memories are sparsely coded in the hippocampus and
with largely nonoverlapping neural ensembles (pattern-separated).
Applied to the continuous recognition task, these models predict
that, for test items equated in every respect except their episodic
occurrence in the experimental context (novel vs. repeated), these
signals should be selectively detected for repeated items. To detect
them, we compared the shapes of neuron-by-item normalized
spiking distributions for novel vs. repeated items (22, 23). Unlike
the standard method used to detect the generic memory signal,
the method of analysis that detected the item-specific signal is not
intuitive and to our knowledge has not been used by other labora-
tories investigating the neural representation of memory. To
employ this method would presumably require an explicit inten-
tion to test the predictions of neurocomputational models (27).
Our analyses showed that episodic memory is very sparsely coded
(detected in only ∼0.25% of the data), item-specific, pattern-
separated, and found only in the hippocampus. We therefore sug-
gest that this signal represents the episodic memory of individual
items/events and is fundamental for the formation of episodic
long-term memory.
Previous single-unit studies with humans typically searched

in the medial temporal lobe only for the generic memory signal,
finding it in the amygdala and the hippocampus (15–17). We
detected the generic memory signal not only in both the

amygdala and the hippocampus but also in areas beyond the
medial temporal lobe (i.e., in the prefrontal cortex and anterior
cingulate cortex). Similarly, a recent study found the generic
signal outside the medial temporal lobe, in parietal cortex (28).
Therefore, this signal is not only generic but is also widespread
in the brain.

What role might the widespread generic memory signal play?
Hippocampal neurons that sparsely code item-specific, episodic
memories may distribute generic information to other brain
regions (and to other neurons in the hippocampus) to perform
memory-related functions not requiring item-specific informa-
tion. For example, the prefrontal cortex may determine whether
the memory signal for a test item is strong enough to exceed a
decision criterion. Because that decision would evaluate mem-
ory strength, as represented by the generic signal, item-specific
content would not be required. Similarly, parietal cortex may
play a role in assessing confidence (29, 30), which again
requires only information about memory signal strength. On
this view, the item-specific memory signal in the hippocampus
is fundamental, coding episodic memory for individual items/
events, whereas the generic memory signal—the focus of much
prior research—is secondary and derivative.

The item-specific and generic memory signals reported here
invite an interpretation in terms of recollection and familiarity,
respectively (31). One suggestion has been that the hippocam-
pus selectively supports recollection whereas a different struc-
ture, such as perirhinal cortex, supports the generic familiarity
memory signal (32, 33). However, contemporary models of
human recognition memory hold that the familiarity signal is
determined by contextual associations (the word is familiar
because it was encountered on an earlier list in the experimental
context) even in the absence of the experience of recollection ().
Moreover, the association between an item and the experimental
context is widely thought to require the hippocampus (1, 21, 38).
This would explain, for example, why patients with bilateral
lesions limited to the hippocampus exhibit an impairment in
familiarity in addition to an impairment in recollection (5, 39).

Our findings contradict a recent claim (40) that episodic mem-
ories in the human hippocampus are not stored as sparsely coded,
pattern-separated representations. The claim instead is that con-
cept neurons code episodic memories. Concept neurons fire selec-
tively when specific concepts (e.g., “Eiffel Tower”) are evoked,
whether the evoking stimulus is an image representing the con-
cept, its printed name, or its spoken name (41). Critically, con-
cept neurons can expand their tuning, responding to unrelated
stimuli that have been paired with the relevant concept (42). For
example, if the Eiffel Tower and the actor Jackie Chan are shown
together during an experiment, the “Eiffel Tower neuron” will
subsequently increase its firing rate to a Jackie Chan image pre-
sented alone.

Table 1. Statistical moments of the distributions of normalized spike counts associated with single-unit recordings
made to novel and repeated items

Hippocampus Amygdala Anterior cingulate Prefrontal

Repeated Novel Repeated Novel Repeated Novel Repeated Novel

Mean �0.007 �0.015 0.039 0.025 0.032 0.037 �0.023 �0.042
SD 0.99 1.007 1.049 1.022 1.053 1.041 0.978 0.988
Skewness 2.77 2.09 1.97 2.02 2.43 2.53 2.84 2.62
Kurtosis 20.11 6.44 5.75 6.69 11.49 12.84 14.43 11.91

With regard to both skewness and kurtosis, the difference between repeated vs. novel items was significant only in the hippocampus (P = 0.002 and P = 0.006, respectively). With
regard to both the mean and the SD, the difference between the repeated vs. novel item spike-count distributions was not significant in any of the four brain regions.
The mean and SD are less sensitive to the presence of outliers than are skewness and kurtosis (25).

Table 2. Characteristics of the recordings from the
hippocampus

100% data 0.25% data

Recordings (word presentations x
recorded neurons)

77,431 186

Patients 30 25
Sessions 51 38
Unique neurons 396 112
Unique words 821 144
Average unique neurons per session 7.76 2.95
Average unique words per neuron 187.96 1.66
Average unique neurons per word 7.95 1.18
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In our view, these neural signals do not reflect episodic
memories. Concept neurons respond to any stimulus that
evokes their preferred concepts (e.g., Jackie Chan evoking the
concept of the Eiffel Tower), suggesting that they code factual
knowledge (i.e., semantic memory). Episodic memory (as in
the present study) carries what, when, and where information
about the test stimuli (3). As noted by others (43, 44), the tasks
used in concept cell studies do not require patients to appreci-
ate such specific information. Perhaps that is why concept neu-
rons, like the widespread generic memory signal, have been
found in brain areas besides the hippocampus (41). By contrast,
our study required patients to appreciate precisely that kind of
information, and it yielded clear evidence of sparsely coded,
pattern-separated episodic memory signals in the hippocampus.
Studies using other methodologies have also identified pattern-
separated memory signals in the hippocampus (45–47).
In our experiment, concept neurons that respond to seman-

tic meanings would have responded to both presentations of a
word (novel and repeated). By contrast, we observed neurons
that fired differentially for particular repeated words and there-
fore integrated stimulus information about the attributes of
“what” (i.e., this particular word), “when” (presented a few
minutes ago), and “where” (in this experimental context). This
item-specific neural code for episodic memory was sparse,
pattern-separated, and limited to the hippocampus.

Materials and Methods

Participants. The participants were 34 patients (mean age, 41 ± 2.02 y; 21
females and 14 males; all but 2 were right-handed) with drug-resistant temporal
lobe epilepsy that required implantation of depth electrodes (Ad-Tech Medical)
for clinical evaluation and consideration of possible surgical resection of their sei-
zure foci. The patients completed 55 total sessions, with individual patients com-
pleting 1 to 4 sessions. An additional 10 sessions from 6 of the 34 patients and
all of the data from 1 additional patient were excluded from analysis because of
low recognition memory performance (d0 no greater than 0).

Informed Consent. Decisions about whether to implant the depth electrodes
and where to implant them were made by their treating neurologists and were
based solely on clinical criteria. Patients who were deemed to require depth elec-
trodes were provided with a copy of surgical consent forms. They were also
made aware of the risks and benefits in undertaking depth electrode implanta-
tion and intracranial monitoring as well as the subsequent surgical resection.

Decisions pertaining to microwire placement and recording for research pur-
poses were independent from the clinical decisions about implanting the depth
electrodes. The potential placement of microwires was discussed with the patient
and their family. After all concerns were discussed, the patients were asked if
they would agree to microwire placement. If they did agree, they then signed a
statement of consent to microwire placement and recording (see SI Appendix for
additional information). All patients provided informed consent to participate in
the research, using a protocol approved by the Institutional Review Board of St.
Joseph’s Hospital and Medical Center.

Microwire Implantation. The extracellular potentials corresponding to single-
neuron activity were recorded from the tips of 38-μm-diameter microwires
implanted along with a clinical depth electrode (Ad-Tech Medical Corporation,
Racine, WI) used to record clinical field potentials (48, 49). Each depth electrode
contained a bundle of nine microwires, implanted stereotactically (Medtronic
Stealth Station) using a 3 T structural MRI. Target locations were chosen by
selecting a trajectory for the depth electrode which positioned the low-
impedance contacts along the shaft of the depth electrode in clinically mandated
areas with the tip of the depth electrode ∼3 mm superficial from the deepest
part of a target structure, such as the hippocampus. Electrodes were inserted
through a skull bolt with a custom frame to align the depth electrode along the
chosen trajectory. The error in tip placement using this technique is estimated to
be ±2 mm, based on manual inspection of preoperative MRI and postoperative

computed tomography in several cases, and is similar to that previously
reported) for a laterotemporal approach (50). While this accuracy is insufficient
to determine subfields within the hippocampus or nuclei within the amygdala, it
does ensure that the microwires are within the target brain area.

Experimental Design. The patients were tested using continuous recognition
memory: words were presented in a series, with most words repeated after 0, 1,
3, 7, 15, or 31 intervening words. The task was to judge whether each word was
novel (i.e., presented the first time) or repeated (i.e., presented a second time).
The words were presented either visually on a computer screen or auditorily
through headphones. Across 55 sessions (from 34 patients), there were 35 visual
sessions and 20 auditory sessions. QQ plot data from the visual sessions (focus-
ing on recordings from the hippocampus and amygdala only) were analyzed in
a previous report (22). Single-unit recordings from each structure were available
for most of these sessions (hippocampus = 51 sessions, amygdala = 45 ses-
sions, prefrontal cortex = 38 sessions, and anterior cingulate = 45 sessions). As
is typically done, we treated these 55 sessions as if they were independent,
although some patients completed more than one session. Different sessions for
any given patient were conducted on different days; it is typically assumed that
different neurons were recorded during each session, as depth electrodes shift
slightly as patients move around.

For the visual sessions, 360 words (120 one-syllable, 120 two-syllable, and
120 three-syllable words) were used, each of which was repeated once. The
words were taken from the Medical Research Council Psycholinguistic database
(51). Another set of 45 one-syllable words were used as fillers that were never
repeated. Three nonoverlapping word sets could be presented; these were used
for patients who volunteered for multiple sessions. Each session comprised 255
trials (240 trials wherein each of 120 words were presented twice along with15
filler trials). One patient completed more than four sessions, and thus saw one
repeated set of words, but this repetition did not affect memory performance. In
each trial, a word was visually displayed on a computer screen for 1,500 ms, fol-
lowed by a question mark as a response prompt. Patients had up to 2,000 ms to
indicate whether the word was novel or repeated. Trials ended when responses
were entered. There was a jittered intertrial interval (mean = 888 ms; SD = 552
ms). (In some trials of the visual task, the prestimulus time period included the
time when patients made their response on the previous trial. Excluding those
trials from the analysis had a negligible effect on the results.) The procedure for
the auditory sessions was similar: Each auditory session included 615 trials
wherein 300 unique words were repeated once and 15 filler words were pre-
sented once. The response prompt appeared at the end of the audio file for the
trial. There was a jittered intertrial interval that lasted for an average of 1,055 ms
with a SD of 53 ms. Data are available at the Open Science Foundation reposi-
tory at https://osf.io/9tgmx/. This is the same data set that was analyzed by
Urgolites et al. (52) to investigate a different issue, namely, the effect of presti-
mulus activity on subsequent memory.

Statistical Analysis. We first identified neurons that responded differently to
words that were novel vs. repeated. For each neuron in each brain region, raw
poststimulus spike counts from 200-1,000 ms after presentation of the repeated
or novel item (i.e., from 200-1,000 ms after presentation of the visual words for
the visual sessions and from 200-1,000 ms after completion of the word sound
file for the auditory sessions) were compared for novel and repeated words,
using paired t tests. Neurons were classified as “repetition detectors” if they
spiked more to repeated words than novel words (P < 0.05), and as “novelty
detectors” if they spiked more to novel words than repeated words (P < 0.05).
Raw spike counts were used, as in earlier studies that identified repetition and
novelty neurons (15–17).

Second, we assessed the sparse coding signal in all four brain regions. For
every recorded neuron, we computed poststimulus (200-1,000 ms after stimulus
presentation) normalized spike counts for each trial (i), where a “trial” refers to a
word presentation. For each neuron (j), baseline spike counts (1,000-200 ms
before the onset of the word) were computed across all trials in that session
(mean and SD of spike counts, μj and σj, respectively). Normalized poststimulus
spike counts for a given trial (Nij) in which sij raw spike counts were recorded on
trial i for neuron j is given by Nij = (sij � μj)/σj. A quantile-quantile (QQ) plot
was generated for each brain area for the full distribution of rank-ordered, nor-
malized spike counts for novel and repeated items. Each distribution contained

PNAS 2022 Vol. 119 No. 19 e2115128119 https://doi.org/10.1073/pnas.2115128119 5 of 6

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115128119/-/DCSupplemental
https://osf.io/9tgmx/


the spike count for all recorded neurons in response to all test stimuli across all
patients and sessions. Skewness and kurtosis were also calculated for each distri-
bution. We conducted bootstrap analyses to examine whether the skewness and
kurtosis differed reliably for the novel- and repeated-item distributions. For each
test (e.g., comparing skewness for novel and repeated items in the hippocam-
pus), 10,000 bootstrap trials were performed. In each case 1) the normalized
poststimulus spike counts from all repeated words (nRepeated) and all novel words
(nNovel) were combined; 2) n spike counts were randomly sampled with replace-
ment from the combined dataset and labeled as nRepeated bootstrap “targets,”
and then n spike counts were randomly sampled with replacement from the
combined dataset and labeled as nNovel bootstrap “foils”; and 3) the difference
between the statistic of interest (e.g., skewness) of those two bootstrap samples
was computed. The proportion of the 10,000 bootstrap trials in which the absolute
value of the difference was greater than the observed difference yielded the
P value.

A similar bootstrap method was used in analyzing the interaction of the dif-
ference in a statistic (e.g., skewness) for novel and repeated items between the
hippocampus and each of the other three brain regions. For each analysis,
10,000 bootstrap differences between novel and repeated items in the hippo-
campus were compared with 10,000 bootstrap differences between novel and
repeated items for another region (e.g., amygdala). This generated 10,000 differ-
ence scores between the difference scores from within each of two regions (i.e.,

a difference between two sets of difference scores). The proportion of the 10,000
trials that had a difference greater than the observed difference between the two
regions yielded the P value.

Data Availability. Anonymized single-neuron data have been deposited in
Open Science Foundation (https://osf.io/9tgmx/) (53).
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