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Impaired glucose metabolism and type 2 diabetes have been associated with cognitive

decline, dementia, and with structural and functional brain features. However, it is

unclear whether these associations differ in individuals that differ in familial longevity or

age. Here, we investigated the association between parameters of glucose metabolism

and microstructural brain integrity in offspring of long-lived families (“offspring”) and

controls; and age categories thereof. From the Leiden Longevity Study (LLS), 132

participants underwent an oral glucose tolerance test (OGTT) to assess glycemia

[fasted glucose and glucose area-under-the-curve (AUC)], insulin resistance [fasted

insulin, AUCinsulin, and homeostatic model assessment of insulin resistance (HOMA-IR)],

and pancreatic Beta cell secretory capacity (insulinogenic index). 3 Tesla MRI and

Magnetization Transfer (MT) imaging MT-ratio (MTR) peak-height was used to quantify

differences in microstructural brain parenchymal tissue homogeneity that remain invisible

on conventional MRI. Analyses were performed in offspring and age-matched controls,

with and without stratification for age. In the full offspring group only, reduced MTR

peak-height in gray and white matter was inversely associated with AUCinsulin, fasted

insulin, HOMA-IR and insulinogenic-index (all p < 0.01). When dichotomized for age (≤65

years and >65 years): in younger controls, significantly stronger inverse associations

were observed between MTR peak-height and fasted glucose, AUCglucose, fasted insulin,

AUCinsulin and HOMA-IR in gray matter; and for AUCglucose, fasted insulin and HOMA-IR

in white matter (all P-interaction < 0.05). Although the strength of the associations

tended to attenuate with age in the offspring group, the difference between age groups

was not statistically significant. Thus, associations between impaired insulin action and

reducedmicrostructural brain parenchymal tissue homogeneity were stronger in offspring

compared to controls, and seemed to diminish with age.

Keywords: brain, glucose, insulin, Magnetic Resonance Imaging (MRI), Magnetization Transfer Imaging (MTI), age,
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Introduction

There is increasing epidemiological evidence that metabolic
disorders, including type 2 diabetes (T2D) and its risk factors,
such as metabolic syndrome, are associated with risk of cognitive
decline and dementia, and with structural and functional brain
defects (Burns et al., 2012). T2D has been associated with white
matter lesions (Devisser et al., 2011), atrophy (Araki et al., 1994;
den Heijer et al., 2003), infarcts (Vermeer et al., 2003), cognitive
impairment, and risk of neurodegenerative diseases. Also in
the absence of T2D, impaired glucose regulation and higher
serum insulin concentrations were found to increase the risk of
cognitive decline (Stolk et al., 1997; Yaffe et al., 2006). Likewise,
metabolic syndrome was found to be associated with cognitive
impairment in middle-aged subjects (Wolf et al., 2007). There
are however indications that in old age, the association between
cognitive decline and metabolic syndrome, or its individual
components, notably obesity and impaired glucose metabolism
may be absent or even reverse (van den Berg et al., 2007).

Previously, the Leiden Longevity Study (LLS) (Schoenmaker
et al., 2006) was set up to investigate factors associated
with familial longevity. We recruited offspring of long-lived
nonagenarian siblings, who are predisposed to become long-
lived as well, and their partners as controls. We demonstrated
that the propensity for longevity in the offspring of these
families is marked by preserved insulin sensitivity and a
lower prevalence of T2D, compared to controls of similar
chronological age (Westendorp et al., 2009; Wijsman et al.,
2011). In this relatively healthy and cognitively intact middle-
aged to elderly population (Stijntjes et al., 2013), we recently
found that metabolic syndrome was specifically associated with
microstructural loss of homogeneity of brain parenchymal tissue
[assessed by magnetization transfer ratio (MTR) histogram
peak height], but not with macrostructural brain damage (Sala
et al., 2014). It is unknown whether specific measures of
glucose metabolism also associate with microstructural brain
parenchymal tissue homogeneity and whether these associations
are similar in offspring and controls.

In the current study of 132 participants, we aimed to
investigate the association between parameters of glucose
metabolism and microstructural brain parenchymal tissue
homogeneity in offspring of long-lived families and controls;
and with age. Parameters of glucose metabolism were derived
from 2-h oral glucose tolerance test (OGTT), and included fasted
glucose and area under the glucose curve (AUCglucose), which
are measures of glycemia; fasted insulin, area under the insulin
curve (AUCinsulin), and HOMA index of insulin resistance,
which are measures of insulin resistance; and insulinogenic index
which is a measure of pancreatic Beta cell secretory capacity.
Microstructural brain parenchymal tissue homogeneity was
assessed usingmagnetization transfer imaging (MTI), which is an

Abbreviations: AUC, Area Under the Curve; FMRIB, Functional MRI of the

brain; GM, Gray Matter; HOMA-IR, Homeostatic Model Assessment of Insulin

Resistance; LLS, Leiden Longevity Study; MR,Magnetic resonance; MRI, Magnetic

Resonance Imaging; MTI, Magnetization Transfer Imaging; MTR, Magnetization

Transfer Ratio; OGTT, Oral Glucose Tolerance Test; T2D, Type 2 Diabetes

Mellitus; WM, White Matter.

advanced, sensitive MRI technique that quantitatively measures
microstructural brain parenchymal abnormalities, including
reductions in myelin content and in axonal numbers (Filippi
and Rocca, 2007) even in brain tissue that appears normal on
conventional MR imaging.

Materials and Methods

Ethics Statement
The Medical Ethical Committee of Leiden University Medical
Centre approved this study. All participants gave written
informed consent to be included in the study.

Study Subjects
Subjects were recruited from the Leiden Longevity Study (LLS),
a family based study that was set up to identify genetic factors
and biomarkers of familial longevity (Schoenmaker et al., 2006).
The LLS consisted of 1671 offspring of Caucasian, nonagenarian
siblings (aged older than 89 years for men and 91 years for
women, and having at least one sister or a brother fulfilling
the same age criteria). Also, 744 of the offspring’s partners were
included as controls. All eligible subjects were included without
selection on health or demographic characteristics.

Of the 2415 subjects in the offspring/partner group, a random
subset of 370 subjects underwent MRI scans of the brain and
another random subset of 234 subjects underwent an oral glucose
tolerance test (OGTT) (Rozing et al., 2010). A total of 132 subjects
without diabetes, and with complete datasets for OGTT, 3 Tesla
brain MRI and MTI were included for the analysis performed
in this study. Furthermore, the participants underwent three
cognitive tests-Stroop test, Digit Symbol Substitution Test
(DSST) and 15-Picture Word Learning Test (15-PLT). Stroop
test and DSST were used to evaluate attention and processing
speed, while 15-PLT was used for memory function. Outcome
parameter for Stroop test was defined as the time needed to
complete the test, while outcome parameter for the DSST was the
number of correct digit-symbol combinations within 90 s. For 15-
PLT, 15 pictures were successively presented at a rate of one per
2 s after which the subject was asked to recall as many pictures as
possible. This procedure was carried out three times (PLT1, PLT2,
and PLT3). After 20min, delayed recall was tested. Outcome
parameters were the number of correct pictures after each trial
(PLT-immediate) and after 20min (PLT-delayed) (Stijntjes et al.,
2013).

Oral Glucose Tolerance Test
In the morning after a 10-h overnight fast, fasted glucose and
insulin levels were measured, after which subjects ingested a
solution containing 75 g anhydrous glucose in 5min. Thereafter,
venous blood samples were collected at 30, 60, and 120min for
determination of plasma glucose and insulin. Areas under the
curves (AUCs) obtained in the OGTT were calculated using the
trapezoid formula (Pruessner et al., 2003). Homeostatic model
assessment of insulin resistance (HOMA-IR) was calculated by
the product of the fasting insulin level (mU/L) and the fasting
glucose level (mmol/L) divided by 22.5. Insulogenic index was
calculated by dividing increments of insulin at 30min compared
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to fasting insulin values by the corresponding increment of
30min glucose levels compared to fasted glucose values.

Biochemical Analysis
Plasma and serum aliquots were frozen at −80◦C. All serum
measurements were performed using fully automated equipment.
Glucose levels were measured using Hitachi Modular P 800 from
Roche (Almere, the Netherlands), with coefficient of variation
(CV) formeasurement less than 5%. Insulin levels weremeasured
using the Immulite 2500 from DPC (Los Angeles, CA). CV was
less than 8%.

Brain MRI Protocol

Image Acquisition
Subjects underwent imaging on a whole body MR system
operating at field strength of 3 Tesla (Philips Medical Systems,
Best, the Netherlands). 3D T1-weighted, T2-weighted FLAIR
(fluid attenuated inversion recovery), T2*-weighted images, and
MTI images were acquired. The dimensions of the images
have been previously described in detail (Altmann-Schneider
et al., 2013). Image processing and analysis was done using the
analytical techniques and tools of the FunctionalMRI of the Brain
(FMRIB) Software Library (FSL).

Brain Volumes
Gray and white matter volumes were calculated using FSL-
tool Structural Image Evaluation Normalization of Atrophy
(SIENAX). From the whole head input data, brain and skull
images were extracted via SIENAX and affine registered to MNI
(Montreal Neurological Institute) 152 (Jenkinson et al., 2002).
A volumetric scale factor was thus obtained for normalization
of head size, after which total brain tissue volume with separate
estimates of gray and white matter were obtained.

Magnetization Transfer Imaging (MTI)

Definitions: MTI
MTI is based on interactions between immobile protons
(macromolecular protons, probably contained in the cell walls)
and free protons of tissue. Mean magnetization transfer ratio
(MTR) reflects the average MTR value per structure. MTR
peak location reflects the most common MTR value. The peak
height of the MTR histogram indicates the number of voxels,
which show the most common MTR value per structure, and
is considered to be a measure of uniformity of the underlying
voxels.

MTI Protocol
Raw magnetization transfer scans were split into M0-sequence
(without saturation pulse) and the M1-sequence (acquired after
application of a saturation pulse). Brain masks for white matter
and cortical gray matter were created using FAST (FMRIB’s
automated segmentation tool) (Zhang et al., 2001) and FIRST
(FMRIB’s integrated segmentation tool) on 3D T1-weighted
images. To correct for possible partial volume effects, an eroded
mask of these segmentations was created by removing one voxel

in-plane for all mentioned volumes-of-interest (VOIs) (van den
Bogaard et al., 2013). Then, the 3D T1-weighted images were
registered to the M0 image using FMRIB’s registration tool
(FLIRT), and the transformation matrix of this registration was
used to register all brain masks to the MTI volumes. Afterwards,
individual MTR maps were calculated voxel by voxel following
the equation MTR = (M0–M1)/M0. MTR histograms were
generated for each VOI. Mean MTR as well as MTR peak height,
normalized for the size of the VOI, and MTR peak location were
calculated. All MTI measures below −3 or above 3 standard
deviations were excluded from statistical analysis.

VBM (Voxel Based Morphometry) analysis was used to study
the focal differences and spatial distribution of the changes in
gray matter (GM). GM partial volume MTR maps were aligned
to MNI152 standard space using the non-linear registration tool
FNIRT (FMRIB’s non-linear image registration tool). To improve
the quality of normalization, averaging the obtained registered
GM MTR maps of all subjects created a study-specific MTR
template. The native individual MTR maps were then non-
linearly re-registered to this template, divided by the Jacobian of
the warp field and smoothed with an isotropic Gaussian kernel
with a sigma of 3mm.

Statistical Analysis

Distributions of continuous variables were examined for
normality, logarithmically transformed when appropriate,
and used in calculations. Median [interquartile range (25th,
75th percentile)] was reported for raw values of variables that
were eventually logarithmically transformed (fasted insulin,
AUCinsulin, HOMA-IR and insulogenic index). Differences in
sex, smoking status, hypertension, cerebrovascular accident
(CVA), myocardial infarction (MI), and use of lipid lowering
drugs between the different groups were calculated using Pearson
Chi-Square (χ2) test. Differences in age, BMI, glucose related
characteristics, and MRI related characteristics were calculated
using independent samples T-test for offspring/partner
differences. Correlation between cognitive tests and gray and
white matter MTR peak height was assessed using bivariate
Pearson correlation analysis.

Z-values were calculated for standardization of variables.
The relation between markers of glucose metabolism and brain
structures was determined using linear regression and univariate
analysis of variance, and presented as standardized Betas with
corresponding p-values. Homogeneity of variance assumption
was tested using Levene’s test. Statistical significance was set as
p < 0.05. Analyses were performed in offspring and controls
before and after stratification of offspring and controls into 2
groups based on age (≤ 65 years, > 65 years). Initial analyses
were adjusted for age and sex. Extended models further included
smoking status, BMI, use of anti-hypertensive drugs, and use of
lipid lowering agents. To check for the effect sizes and interaction
between the offspring and controls, an interaction term was
added to the model while correcting for covariates. Similar
analyses were performed to compare association between OGTT
parameters and MRI markers of brain microstructure between
age groups.
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For statistical analyses, Statistical Package for Social Sciences
(SPSS) software for windows (version 20.0) was used. Forest plots
were made using GraphPad Prism version 5 (GraphPad, San
Diego, CA).

For MRI data, the FSL randomize tool was used to
perform permutation-based non-parametric testing (n = 5000
permutations) for voxel-wise statistical analyses of theMTR data.
Threshold-Free Cluster Enhancement (TFCE) was applied to
correct for multiple comparisons. Significance was set at a TFCE
corrected p < 0.05.

Results

The current study was performed in a subgroup of 132
participants of the LLS, with the aim of investigating the
association between OGTT derived parameters and brain
integrity in groups that differ in familial longevity and in
age. After measurement of fasted glucose and insulin levels,
participants underwent a 2-h oral glucose tolerance test (OGTT).
Parameters derived from the OGTT included measures of
glycemia (fasted glucose and AUCglucose); measures of insulin
resistance (fasted insulin, AUCinsulin, andHOMA index of insulin
resistance); and a measure of pancreatic Beta cell secretory
capacity (insulinogenic index). Brain volumes were measured
using MRI. Furthermore, Magnetization Transfer Ratio (MTR)
histogram peak height (henceforth referred to as MTR peak
height) was measured using magnetization transfer imaging
(MTI). MTR peak height provides an estimate of microstructural
brain parenchymal homogeneity, with lower MTR peak height
being indicative of loss of homogeneity of the brain tissue.
Characteristics of the study subjects are presented in Table 1, for
the full study sample and stratified for offspring and controls.
The study population from which both OGTT data as well as
MTR and MTI data were available (N = 132) consisted of
47% males, with mean age of 66.2 ± 6.6 years. Mean BMI
was 26.4 ± 3.9 and mean fasted glucose was 5.08mmol/L.
Characteristics were similar between offspring (N = 75) and
controls (N = 57), except for use of lipid lowering drugs, fasted
glucose, and AUCglucose, which were significantly higher in the
partner group.

Also, the outcomes of the cognitive tests were not significantly
different in offspring and controls (Table 1). Furthermore, from
the cross-sectional data, no significant correlation was found
between the cognitive tests, which are a measure of functional
brain integrity, and MTR peak height, which is a measure
microstructural brain parenchymal tissue homogeneity, either
in the whole group (n = 132) or in offspring and controls
(Supplementary Table S1).

Familial Longevity: Markers of Glucose
Metabolism and Microstructural Brain
Parenchymal Tissue Homogeneity
To investigate the association between markers of glucose
metabolism and microstructural brain parenchymal tissue
homogeneity (assessed using MTR peak height) in individuals
that differ in familial longevity, analyses were done in the
offspring of long-lived families and controls (Table 2). In the

TABLE 1 | Characteristics of study subjects.

Whole group Familial longevity

Offspring Controls

Number of

participants

132 75 57

DEMOGRAPHICS

Age in years (range) 66.2 (49–84) 66 (52–84) 66 (49–81)

Men, n (%) 62 (47) 43 (57) 27 (47)

BMI in kg/m2 26.4 (3.9) 26.6 (4.2) 26.3 (3.6)

Current smoking, n (%) 11 (8.3) 4 (5) 7 (12)

MEDICAL HISTORY

Hypertension, n (%) 29 (22) 15 (20) 14 (25)

CVA, n (%) 1 (0.8) 1 (1.3) 0 (0)

Myocardial infarct, n (%) 1 (0.8) 0 (0) 1 (1.8)

Lipid lowering

medication use, n (%)

14 (10.6) 4 (5) * 10 (18)*

GLUCOSE RELATED CHARACTERISTICS

Fasted glucose in

mmol/L

5.08 (0.6) 4.97 (0.5)* 5.21 (0.6)*

AUC glucose 13.93 (3.5) 13 (3)* 15 (4)*

Fasted insulin in pmol/L,

median (IQR)

7 (4, 10) 7.0 (4.0, 10.0) 7.0 (3.5, 10.5)

AUC Insulin, median

(IQR)

93.7 (64, 140) 93.7 (65, 139) 91.8 (60, 155)

Insulinogenic index,

median (IQR)

13.7 (8, 20) 15 (9, 20) 10 (7, 18)

HOMA-IR index, median

(IQR)

1.5 (0.9, 2.2) 1.4 (0.9, 2.2) 1.6 (0.8, 2.5)

BRAIN VOLUMES (cm3)

White matter 699 (38) 694 (41) 705 (34)

Gray matter 702 (40) 702 (36) 702 (45)

MTR PEAK HEIGHT, PIXEL COUNT × 103

White matter 117 (24) 118 (25) 116 (23)

Gray matter 74.3 (1.2) 75 (13) 73 (10)

COGNITIVE TESTS

DSST, correct answers 46.46 (9.5) 46.0 (13.2) 46.33 (12.4)

Stroop test, seconds 47.95 (12.5) 48.41 (13.2) 48.26 (11.4)

15-PLTi, correct pictures 10.38 (1.9) 10.27 (1.9) 10.54 (1.9)

15-PLTd, correct

pictures

11.35 (2.0) 11.51 (2.1) 11.08 (1.9)

Unless otherwise stated, values are means (standard deviation). Age refers to age at

MRI examination. Brain volumes are normalized for skull size. BMI, body mass index;

CVA, cerebrovascular accident; DSST, digit symbol substitution test; AUC, area under

the curve; IQR, interquartile range (25th, 75th percentile); 15-PLTi, 15-Picture Word

Learning Test-immediate recall; 15-PLTd, 15-Picture Word Learning Test-delayed recall.

*p-value < 0.05.

offspring, decreased gray matter (GM) MTR peak height was
significantly associated with higher indices of reduced insulin
action [fasted insulin (p = 0.007), AUCinsulin (p < 0.001),
HOMA-IR (p = 0.007)] and OGTT-derived measure of
pancreatic Beta cell secretory capacity [insulinogenic-index (p <

0.001)]. Similar results were obtained for white matter. In the
controls, similar trends were seen but the effects were smaller and
did not reach statistical significance.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 May 2015 | Volume 7 | Article 92

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Akintola et al. Glucose, insulin, and the aging brain

TABLE 2 | Association of MTR peak height with markers of glucose

metabolism in offspring and controls.

Offspring Controls P interaction

Beta p-value Beta p-value

GRAY MATTER

Fasted glucose −0.166 0.289 −0.135 0.140 0.856

AUC glucose −0.062 0.693 −0.145 0.119 0.733

Fasted insulin −0.378 0.007 −0.079 0.384 0.070

AUC insulin −0.473 <0.001 −0.107 0.245 0.021

HOMA-IR index −0.382 0.007 −0.091 0.314 0.083

Insulinogenic index −0.383 <0.001 −0.106 0.374 0.101

WHITE MATTER

Fasted glucose −0.104 0.486 −0.014 0.896 0.745

AUC glucose −0.097 0.518 −0.157 0.147 0.691

Fasted insulin −0.371 0.005 −0.050 0.638 0.082

AUC insulin −0.430 0.001 −0.129 0.225 0.086

HOMA-IR index −0.366 0.006 −0.047 0.658 0.091

Insulinogenic index −0.294 0.005 −0.038 0.785 0.150

MTR histogram height from magnetization transfer MRI was used as a measure of

microstructural brain parenchymal tissue homogeneity. All insulin values were log-

transformed. Associations are from linear regression analysis, corrected for age and

sex, and are presented as standardized Beta coefficients (per increase in SD) with

corresponding P-values.

The bold values represent significant results (p-values < 0.05).

From VBM analysis, statistically significant associations
between GM MTR were observed with different OGTT derived
insulin parameters (p < 0.05) in the offspring, spatial
distributions of these focal differences are shown in Figure 1.
Similar significant associations were not observed for the
controls.

Chronological Age: Markers of Glucose
Metabolism and Microstructural Brain
Parenchymal Tissue Homogeneity
With the aim of investigating the effect of age on the association
between parameters of glucose metabolism and MTR peak
height, the offspring and controls were stratified based on age into
two groups: subjects ≤ 65 years and > 65 years. The results are
presented in Table 3 and Figure 2.

Amongst the offspring, there were 35 subjects in the younger
group (≤ 65 years), with mean age 61.3 (SD 3.2), age range 52–65
years. The older offspring consisted of 40 subjects with mean age
71.2 (SD 3.9), age range 66–84 years. In the younger offspring,
decreased MTR peak height in cortical GM was significantly
associated with higher fasted insulin (p = 0.038), AUCinsulin

(p = 0.005), HOMA-IR (p = 0.033) and insulinogenic-index
(p = 0.007). Likewise, in the white matter, decreased MTR
peak height was significantly associated with OGTT derived
measures of insulin resistance, namely, fasted insulin (p =

0.012), AUCinsulin (p = 0.002), HOMA-IR (p = 0.010), and
insulinogenic-index (p = 0.032). Thus, in the younger offspring,
parameters of reduced insulin action were significantly associated
with decreased microstructural brain parenchymal homogeneity
in both gray and white matter. Similar trends were seen in the

older offspring (> 65 years), but the effects were smaller and
mostly did not reach statistical significance.

Of the controls, there were 30 subjects in the younger control
group, with mean age 60.4 (SD 4.6) years, and age range 49–
65 years. The older controls consisted of 27 subjects, with mean
age 71.7 (SD 4.5) years, age range 66–82 years. In the younger
controls, higher fasted glucose (p = 0.020), AUCglucose(p =

0.001), fasted insulin (p = 0.037), and HOMA-IR (p = 0.022)
were associated decreased MTR peak height in cortical GM.
Similar trends were seen in the white matter, but these did not
reach statistical significance, except for AUCglucose (p = 0.013).
In contrast, in the older controls, no significant associations were
found between OGTT-derived parameters of glucose or insulin
metabolism and MTR peak height in gray or white matter.

From the comparison of the age categories in offspring and
controls, although the association between OGTT parameters
and gray and white matter integrity were present in the offspring
and controls ≤ 65 years, the differences in the strength of
the observed associations between age categories were only
significant in the controls, as indicated by the Pinteraction in
Table 3. A visual representation of the associations according to
age categories is shown in Figure 2.

Sensitivity Analyses

The aforementioned associations in the offspring, controls, and
in both age groups of offspring and controls did not materially
change after adjustment for age, gender, descent, smoking status,
BMI and use of anti-hypertensive drugs. In addition, since there
was a significant difference between the offspring and controls
in the use of lipid lowering drugs, all the analyses were repeated
with adjustment for use of lipid lowering drugs. The results did
not materially change. In the offspring group, decreased GM
MTR peak height, an index of microstructural brain parenchymal
homogeneity was significantly associated with higher indices of
insulin resistance (fasted insulin, AUCinsulin and HOMA-IR, all
p < 0.01, see Table 2). After adjusting for use of lipid lowering
drugs, decreased GM MTR peak height was still significantly
associated with higher indices of insulin resistance (fasted insulin
(β = −0.411, p = 0.018), AUCinsulin(β = −0.415, p = 0.009),
HOMA-IR (β = −0.436, p = 0.013), and insulinogenic index
(β = −0.410, p = 0.012). Conversely, in the controls, GM
MTR peak height was not significantly associated with indices
of decreased insulin action, neither before nor after adjustment.
Similarly, adjustment for lipid lowering medication did not
materially change any of the results for white matter (Table 2)
in offspring or controls (data not shown).

Discussion

We report two main findings: Firstly, parameters of reduced
peripheral insulin action were associated with reduced
microstructural brain parenchymal homogeneity in the offspring
group, but associations were less strong and did not reach
statistical significance in the control group. Secondly, OGTT
derived parameters of glucose metabolism were associated with
reduced microstructural brain parenchymal homogeneity in
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FIGURE 1 | Spatial distribution of associations between cortical

gray matter MTR and insulin parameters in offspring and

controls. Voxel-based analysis of associations between cortical gray

matter magnetization transfer ratio (MTR) and OGTT-derived insulin

parameters in offspring (A) and controls (B). Colored areas in brain

slices show statistically significant associations between gray matter

MTR and OGTT derived insulin parameters, with the different colors

indicating significant associations as follows: fasted insulin in green,

insulin Area Under the Curve (AUC) in red, Homeostatic Model

Assessment (HOMA index) of insulin resistance in blue, and

insulinogenic index in pink. No colored areas are seen in the controls,

because the associations were not significant in the controls.

“younger” older adults, but associations seemed less strong
in older age groups. Thus, the associations between reduced
insulin action and reduced microstructural brain parenchymal
homogeneity seemed to dampen with age and to be stronger in
familial longevity.

Previous studies have shown inverse associations between
peripheral insulin action and brain structure and function.
Inverse associations between insulin parameters (fasted insulin,
HOMA-IR) and brain volumes as well as executive brain function
and memory were reported in healthy older participants of
the Framingham study (Benedetti et al., 2006). Furthermore, in
another cohort of non-demented older adults, higher insulin
levels (fasted insulin and AUCinsulin) and impairments in insulin
sensitivity were found to be associated with increased rate
of cognitive decline (Burns et al., 2012). In line with these
studies, we found an inverse association between parameters of
peripheral insulin action (fasted and AUCinsulin, HOMA-IR and
insulinogenic index) and brain microstructural integrity.

Changes in the direction and strength of associations with
age have previously been observed between other metabolic
risk factors and cognitive decline. While high blood pressure,
high cholesterol, and overweight are associated with cognitive
decline and risk of dementia in (advanced) middle-age (Kivipelto
et al., 2001; Yaffe et al., 2004; Whitmer et al., 2005), reversed
associations were observed in very old persons, in which high
blood pressure, high cholesterol and being overweight seem to

protect against cognitive decline (Weverling-Rijnsburger et al.,
1997; Elias et al., 2003). In our study population, we observed a
weakening in the association between reduced insulin action and
microstructural brain parenchymal homogeneity in advanced
middle-age. Notably, in our study, we used MTI, which has
the capacity of detecting microstructural changes in the aging
brain. The aging brain is characterized by decline in total and
segmental brain volumes, shrinkage of GM, loss of white matter,
nerve fibers (axons), myelin and cells (Meier-Ruge et al., 1992).
These subtle changes in microstructural brain parenchymal
homogeneity, even in brain tissue that appears normal on
conventional MR imaging sequences, can be detected and
quantified using magnetization transfer imaging (MTI) (Filippi
and Rocca, 2007). MTI is a sensitive MRI technique that is
based on the exchange of magnetization between protons bound
to macromolecules and protons of free water molecules inside
tissue. The scale of this exchange is reflected in the magnetization
transfer ratio (MTR) and peak height. The MTR peak height
is specifically a measure of microstructural brain parenchymal
tissue homogeneity (Rademacher et al., 1999) that is sensitive to
age-related and disease-related brain parenchymal abnormalities
(Benedetti et al., 2006; Sala et al., 2014), with a lower MTR
peak height reflecting loss of homogeneity of the brain tissue,
demyelination and axonal loss (Filippi and Rocca, 2007).

Due to the cross-sectional nature of our study, we cannot
make any causal inference. Theoretically however, there are
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TABLE 3 | Association of MTR peak height with markers of glucose metabolism in “younger” and “older” offspring and controls.

Offspring Controls

≤ 65 years (n = 35) > 65 years (n = 40) P-interaction ≤ 65 years (n = 30) > 65 years (n = 27) P-interaction

Beta P-value Beta P-value Beta P-value Beta P-value

GRAY MATTER

Fasted glucose −0.379 0.203 −0.147 0.442 0.763 −0.350 0.020 −0.041 0.742 0.033

AUC glucose −0.181 0.479 0.112 0.584 0.340 −0.487 0.001 0.114 0.341 0.002

Fasted insulin −0.485 0.038 −0.291 0.107 0.567 −0.293 0.037 0.231 0.104 0.014

AUC insulin −0.603 0.005 −0.322 0.069 0.293 −0.259 0.059 0.147 0.323 0.042

HOMA-IR −0.512 0.033 −0.297 0.104 0.555 −0.325 0.022 0.209 0.129 0.009

Insulinogenic Index −0.381 0.007 −0.442 0.014 0.623 0.003 0.986 −0.162 0.288 0.695

WHITE MATTER

Fasted glucose −0.386 0.160 −0.025 0.893 0.628 −0.149 0.418 0.133 0.330 0.128

AUC glucose −0.333 0.154 0.190 0.327 0.072 −0.444 0.013 0.055 0.686 0.033

Fasted insulin −0.537 0.012 −0.213 0.218 0.362 −0.239 0.152 0.253 0.113 0.047

AUC insulin −0.603 0.002 −0.239 0.158 0.150 −0.250 0.120 0.092 0.584 0.121

HOMA-IR −0.562 0.010 −0.206 0.239 0.351 −0.248 0.146 0.246 0.110 0.038

Insulinogenic index −0.289 0.032 −0.360 0.037 0.557 0.124 0.601 −0.111 0.518 0.704

All insulin values were log-transformed. Analyses were adjusted for age and sex, and associations are presented as standardized Beta coefficients (per increase in SD) with corresponding

P-values.

The bold values represent significant results (p-values < 0.05).

three possible interpretations for the inverse association between
parameters of glucose metabolism and microstructural brain
parenchymal homogeneity (brain integrity). The first theoretical
explanation is that loss of brain integrity is a consequence
of defects in glucose metabolism. T2D, characterized by
hyperglycemia, insulin resistance and hyper-insulinemia,
has been proposed to be involved in the pathogenesis of
neurodegenerative diseases (Ott et al., 1999; Luchsinger et al.,
2004; de la Monte and Wands, 2005), hallmark of which are
progressive loss of nerve fibers and cells. This may be due
to direct damage to the brain from high circulating glucose
levels. It may also be due to secondary effects, including
peripheral insulin resistance. A second theoretical possibility
is that defects in glucose metabolism are a consequence of
deficits in brain integrity. Emerging data from animal studies
that show that the brain plays a physiologic role in glucose
regulation (Lin et al., 2004; Lu et al., 2012; Morton et al., 2013;
Schwartz et al., 2013) may support this possibility. The third
possibility is that of the brain and metabolic dysregulation
both being consequences of another common determinant.
An example of a common pathway that may affect brain
function as well as insulin resistance is oxidative stress
(Jayaraman and Pike, 2014).

Several theoretical explanations exist for the observed
differences in the associations between insulin action and
microstructural brain parenchymal homogeneity with age and
familial longevity. It is becoming clearer that the brain plays
an important role in the regulation of peripheral glucose and
insulin action [4]. Age related brain changes (reduced myelin
and axons, and shrinkage of large neurons) are accompanied
by reduction in brain volumes and function (Meier-Ruge et al.,

1992). Brain control of glucose levels may also be affected, for
which the body may compensate by higher peripheral insulin
secretion. Our data show that higher insulin parameters are
associated with decreased myelin and axonal integrity, and
these are more pronounced in offspring and “younger” older
adults in whom glucose-regulatory compensatory mechanisms
are probably more intact. Another hypothetical possibility
is that in the elderly and controls, diseases may be more
prevalent that could reverse the association between insulin
action and microstructural brain parenchymal homogeneity. For
example, diseases that are associated with weight loss might
improve insulin sensitivity but decrease microstructural brain
parenchymal homogeneity. Systemic diseases such as chronic
kidney disease, chronic respiratory disease, diabetes mellitus, and
malignancies are more prevalent in the older adults, and may
cause weight loss, which in theory would be associated with
improved insulin sensitivity. However, since these are systemic
illnesses, the disease itself may also decrease the integrity of the
brain. For example, chronic kidney disease is associated not only
with weight loss, but also with microvascular damage in the brain
(O’Rourke and Safar, 2005).

This study is limited by its cross-sectional, observational
nature. As such, the findings are purely correlative and
descriptive. To clarify what is cause or consequence in the
relation between insulin parameters and reduced brain integrity,
intervention studies are required where insulin is specifically
targeted to the brain (via the intranasal route) (Chapman et al.,
2013), in humans of different age categories. Another limitation is
that although offspring of long-lived families are included, not all
of them would carry the longevity phenotype, leading to dilution
of the observed results.
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FIGURE 2 | Associations of OGTT parameters with gray and white

matter MTR peak height in offspring and control groups, stratified for

age. Forest plots showing the distribution of the association of OGTT

parameters (fasted glucose, AUCglucose, fasted insulin, AUCinsulin, and

HOMA-IR) with MTR peak height in gray and white matter in offspring and

controls. The offspring and control groups were stratified into two age

categories-≤ 65 years old (shown in pink color), and > 65 years (shown in

blue color). Associations are from linear regression analysis, correcting for

age and sex. Associations are presented as standardized Beta coefficients

with corresponding 95% CI.

Strengths of this study include the use of sensitive MRI
techniques, which have the discriminatory power to detect in vivo
microstructural brain changes even when peripheral glucose and
insulin levels are still within normal ranges. Another strength is
its unique design of investigating the relation of parameters of
glucose regulation and microstructural brain parenchymal tissue
homogeneity from two contrast points-familial longevity and
age. The incorporation of contrasts based on familial longevity
with the use of offspring and their partners reduces the potential
influence of environment, since the offspring share similar
lifestyle and similar socio-economic and geographic background
with their partners (age-matched controls), and so are highly
comparable.
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