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Abstract

Melioration learning is an empirically well-grounded model of reinforcement learning. By

means of computer simulations, this paper derives predictions for several repeatedly played

two-person games from this model. The results indicate a likely convergence to a pure Nash

equilibrium of the game. If no pure equilibrium exists, the relative frequencies of choice may

approach the predictions of the mixed Nash equilibrium. Yet in some games, no stable state

is reached.

Introduction

Various learning models have been analysed in the game-theoretic literature. The best known

ones, such as fictitious play or Bayesian learning, describe normative processes that enable the

players to find an equilibrium during the repeated play of a game [1]. Those models presume

that information about the preferences and past actions of all players is available. More

recently, researchers have evaluated whether equilibria can be reached without knowing the

preferences of other players [2] or even without considering the other players’ presence [3].

The latter condition was called radically or completely uncoupled learning.

In completely uncoupled learning, a player’s strategy is based only on his own previous

actions and rewards. Some dynamics still ensure the convergence to Nash ε-equilibria or pure

Nash equilibria [4]. More specifically, regret-testing [3, 5] and interactive trial-and-error (ITE)
learning [6] are two examples of completely uncoupled learning that imply this convergence.

Under the name of reinforcement learning, further completely uncoupled dynamics have

been analysed in different fields. For instance in economics, one of these models stems from

Roth and Erev [7]. In computer sciences, multiple studies in artificial intelligence deal with

algorithms of reinforcement learning, e.g. Q-learning or SARSA [8]. Also some psychological

models are entirely based on own experiences [9] and, hence, completely uncoupled.

In contrast to regret-testing or ITE learning, most models of reinforcement learning are not

guaranteed to converge to an equilibrium in interactive situations. Instead of being designed

to imply this convergence, they constitute simple and realistic representations of human learn-

ing. In particular psychological models have been built to represent the development of

human behaviour as realistic as possible while keeping it analytically tractable, e.g. [10].

This paper strives for the usage of a simple psychological model of completely uncoupled

learning. It is called melioration learning and may not converge towards equilibrium states.

The next section describes the underlying theory of decision-making and its implementation
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as instance of the Q-learning algorithm. Afterwards, the model is applied to various two-per-

son games. A connection to the previous literature is established by comparing its predictions

to the outcomes of the Roth-Erev model [7].

Melioration learning

Established by Herrnstein and Vaughan [11], melioration learning is a theory of individual deci-

sion-making from behavioural psychology. It was introduced as explanation of the matching
law [12], which describes an often observed regularity of individual behaviour [13–23]. In the

past, many empirical studies have validated the predictions of melioration learning [24–31].

Generally speaking, melioration learning states that behaviour is strengthened by highly

valued events that are perceived as consequences of this behaviour. In the original literature,

this process was phrased as “behaviour shifts toward higher local rates of reinforcement”

(p. 75, [12]). The local reinforcement rate was defined as “the reinforcement actually obtained

from an alternative [.] divided by the time allocated to it” (p. 76, [12]).

Elsewhere, Vaughan and Herrnstein [26] more formally described the process of meliora-

tion by a differential equation. Let there be a two-element choice set {1, 2}. Given a point in

time t 2 (0,1), pi(t) 2 [0, 1] denotes the relative frequency of having chosen alternative i 2
{1, 2}. The authors stated that the frequency p1(t) changes over time in accordance with

dp1ðtÞ
dt
¼ f v̂1ðtÞ � v̂2ðtÞð Þ: ð1Þ

In Eq (1), f : R! R is a differentiable and strictly monotonically increasing function with

f(0) = 0. The term v̂iðtÞ (i 2 {1, 2}) stands for the local reinforcement rate of alternative i at

time t.
Without specifying the function f of Eq (1), the melioration learning rule remains vague,

and long-term behaviour cannot be analysed. In contrast to previous specifications [32–34],

this paper presents a formal representation of melioration learning that is perfectly consistent

with Eq (1) and builds on a well-established algorithm of reinforcement learning. More pre-

cisely, melioration is suggested to be formalised by an instance of the Q-learning algorithm

[35] with ε-greedy strategy.

Q-learning is a form of temporal-difference (TD) learning and originates from a sub-field

of artificial intelligence [8]. While TD models were initially used to represent classical condi-

tioning [36], they can be “applied to stochastic sequential decision tasks to produce an analog

of instrumental learning” (pp. 541-542, [37]). A general model of sequential decision tasks is

specified in Definition 1 and illustrated in Fig 1.

Definition 1 Let E be a finite set of choice alternatives. A situation of sequential decision-

making is given by two stochastic processes ðXtÞ
1

t¼1
and ðRtÞ

1

t¼1
with values in E and [0,1),

respectively.

In the situation of Definition 1, decisions are made in discrete time steps t 2 N. At time t,
the actor emits an action by choosing an element Xt 2 E from the set of alternatives.

Fig 1. The situation of sequential decision-making.

doi:10.1371/journal.pone.0166708.g001
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Subsequently, a non-negative reward Rt is received from the social environment. In this paper,

the action-process ðXtÞ
1

t¼1
is specified by Algorithm 1, which contains an instance of Q-learn-

ing with ε-greedy strategy.

Algorithm 1 The melioration learning algorithm

Require:explorationrate ε 2 (0, 1), set of alternativesE
1: t 0
2: initialiseQ1(j) 0, for all j 2 E
3: initialiseK1(j) 0, for all j 2 E
4: repeat
5: t t + 1
6: r randomnumberbetween0 and 1 (uniformlydistributed)
7: if ε > r then
8: choosea randomactionXt e 2 E usinga uniformdistribution
9: else
10: choosean actionXt e such that Qt(e) = maxj 2 E Qt(j)
11: end if
12: observerewardRt = y
13: Kt+1(e) Kt(e) + 1
14: Qtþ1ðeÞ  QtðeÞ þ

1

Ktþ1ðeÞ
ðy � QtðeÞÞ

15: for all j 6¼ e do
16: Kt+1(j) Kt(j)
17: Qt+1(j) Qt(j)
18: end for
19: until termination

In Algorithm 1, an actor is assumed to maintain a set of Q-values {Qt(e)}e 2 E at every time

step t 2 N. The Q-values are initially set to zero and iteratively updated. At every round, an

alternative e 2 E is chosen randomly with probability ε or greedily otherwise. Greedy choice

means that an alternative with the currently highest Q-value is selected. The Q-value Qt(e) of

the chosen alternative e is modified by the realisation of Rt such that it equals the average of all

past rewards of e.
In the words of Herrnstein and Vaughan [11], Qt(e) corresponds to the local reinforcement

rate of action e 2 E at time t 2 N. If the actor always chooses an action with the currently high-

est Q-value, the relative frequency of this action increases as required by Eq (1). Consequently,

Algorithm 1 with ε = 0 conforms to the theory of melioration learning. A strictly positive

exploration rate ε> 0 allows a trade-off between exploiting the currently best actions and

exploring alternatives. If this rate decreases sufficiently slowly towards zero over time, past

research proved that Q-learning converges to optimal behaviour under certain assumptions of

stationarity [38, 39]. For example, convergence is assured if, for every t 2 N, the reward Rt is

bounded and its expected value depends only on Xt.

However, convergence of Q-learning is impeded if multiple persons interact and reinforce-

ments are contingent upon the decisions of everyone (p. 451, [40]). While equilibria are

reached in some instances of the prisoner’s dilemma or the coordination game [41–43], the

behaviour fails to converge in others. The results depend on the reward structure of the situa-

tion [44] as well as the particular version of Q-learning [45].

In the next section, various examples of two-person games are explored by agent-based sim-

ulations. The outcomes of Algorithm 1 are compared to the predictions of another model of

reinforcement learning, which is widely known in economics and was developed by Roth and

Erev [7]. Algorithm 2 specifies this model. Similar to Algorithm 1, an actor holds a set of values

{Pt(e)}e 2 E that reflect the previous experiences with the alternatives. In [7], these values are
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called propensities. At each time step, an alternative e 2 E is chosen with probability
PtðeÞP
j2E

Pt ðjÞ
.

The parameter εmaintains a level of exploration.

Algorithm 2 The Roth-Erev learning algorithm

Require:explorationrate ε 2 (0, 1), set of alternativesE
1: t 0
2: initialiseP1(e) 1, for all e 2 E
3: repeat
4: t t + 1

5: chooseactionXt e 2 E randomlyusingthe probabilities PtðeÞX

j2E
PtðjÞ

8
><

>:

9
>=

>;
e2E

6: observerewardRt = y
7: Pt+1(e) Pt(e) + (1 − ε)y
8: for all j 6¼ e do
9: Ptþ1ðjÞ  PtðjÞ þ

ε
jEj� 1

y

10: end for
11: until termination

There are two small differences between Algorithm 2 and the original model of [7]. First,

gradual forgetting is not considered because the melioration algorithm omits this feature as

well. Second, the exploration quantity ε
jEj� 1

y is added to all alternatives instead of just the “adja-

cent” ones. In [46], this approach was used for two-action games or if a linear order of the

alternatives was absent.

The following analysis focuses on the Roth-Erev model instead of other learning processes

because it is similar to melioration. Both models take a “mechanistic perspective on learning”,

which means that “people are assumed to learn according to fixed mechanisms or routines”

(p. 903, [47]). Additionally, simple versions with only one parameter (the exploration rate)

exist. Other models of reinforcement learning, such as regret-testing, ITE, Bush-Mosteller

[48], or experience-weighted attraction [49], require additional assumptions and the specifica-

tion of further parameters.

Results

Algorithms 1 and 2 were applied to different two-person games by means of agent-based simu-

lations. The simulations were implemented in NetLogo [50]. All games are presented in nor-

mal-form. The two players, which are also called agents, are labelled by “x” and “y”. Capitalised

letters or integers depict the alternatives. The following rules specify the simulations.

• For each game, a simulation of 20000 pairs of agents was run. Every agent interacted with

the same partner during the whole simulation.

• Half of the pairs of agents employed Algorithm 1 (melioration learning). The other half used

Algorithm 2 (Roth-Erev). In both cases, ε was set to 0.1.

• Every player repeatedly chose one of the alternatives according to Algorithm 1 or 2 until

1000 choices had been made.

• The agents observed only their own choices and rewards. They were not aware of the struc-

ture of the game or the partner’s choices and rewards.

• The payoff matrices show mean rewards. The actual rewards were drawn from normal distri-

butions with standard deviations of one.

Melioration Learning in Two-Person Games
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Statistical tests were omitted in the comparison of the two learning models because they are

largely unnecessary. Since there were 10000 pairs of agents in each group, any standard test

would have marked a difference as low as 150 pairs as statistically significant. For example, in

the histogram of Fig 2, the first two bars at (A,A) show a difference of 178 pairs. The reader

may decide whether the reported differences in numbers are theoretical or practical significant.
In the following, three classes of two-person games are distinguished. The first class con-

tains games in which both players have a (weakly) dominant alternative. Second, games with-

out dominant alternatives but with several pure Nash equilibria are considered. The last class

covers games with exactly one mixed Nash equilibrium. This division is not exhaustive, but it

clarifies the properties of melioration learning in two-person games.

Games with dominant alternatives

An alternative of a player is dominant if the choice of this alternative comes with a mean

reward that is strictly greater than the mean reward of any other alternative given one choice

of the partner and greater than or equal to the mean reward of any other alternative given the

other choices of the partner (cf. weak dominance in [51], p. 77). A representative member of

this class of games is the prisoner’s dilemma. In the example of Fig 2, alternative B is dominant

for both players. The outcome (B,B) is, therefore, a Nash equilibrium. All other outcomes are

optimal.

In Fig 2, the frequency distribution of pairs of agents at the 1000th round of the simulation

is shown (for the temporal development, see S1 Fig). It is distinguished between pairs of agents

who learned by melioration (mel) and pairs of agents who used the Roth-Erev model (RE).

Both types of agents predominantly chose the Nash equilibrium. Because of the exploration

rate, also the non-equilibrium outcomes (A,B) and (B,A) occurred. In case of melioration

learning, the frequencies approximated the expected ones: 10 000 � ε
2
� 1 � ε

2

� �
¼ 475. Agents

who used the Roth-Erev model showed slightly higher frequencies of non-equilibrium

outcomes.

Another example of a game with dominant alternative is called “guess 2

3
of the average”. Fig

3 contains a discrete version of this game with four alternatives. In this game, each player tries

to guess what two-thirds of the average of both guesses will be. The agent who is closest to this

value “wins” the game. In the particular example of Fig 3, one can choose an integer between 0

and 3. The choice of alternative 0 is dominant. The reward table and the simulation results are

displayed in the same plot by heat maps. The background colour of a cell is light grey if only

few pairs of agents chose this outcome at the 1 000th round of the simulation. It is close to

black if many pairs did so. The heat maps show that almost all agents learned to choose the

dominant alternative 0, which constitutes the only Nash equilibrium (see also S2 Fig).

Fig 2. A prisoner’s dilemma and simulation results.

doi:10.1371/journal.pone.0166708.g002
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While both models implied a tendency towards the dominant alternative, the Roth-Erev

model ended up slightly more often in outcomes with dominated alternatives. This effect was

more clearly seen in the game of Fig 4, in which alternative B is dominant for player x, and

alternative A is dominant for player y. Hence, the outcome (B,A) is a Nash equilibrium. Addi-

tionally, (A,A) and (B,B) are Nash equilibria, which are not payoff-dominated by (B,A) because

they involve the same mean rewards (p. 81, [52]). The simulations revealed that all agents pre-

ferred the first equilibrium (B,A) instead of (A,A) and (B,B). But the Roth-Erev model main-

tained a relatively high probability of choosing the dominated alternative. This probability did

not decrease with further rounds of the simulation (see S3 Fig).

In case of melioration learning, the acquisition of the dominant alternative was due to the

exploration rate. Exploration guaranteed that the fourth outcome (A,B) was selected occasion-

ally, especially in the beginning of the simulation. For player x, this meant that the average

value of alternative A (Qt(A)) was between 0 and 10. The Q-value of alternative B, on the other

hand, was approximately 10. The reverse held for player y, which led to the combination (B,A)

in rounds without exploration.

Result 1 In two-person games, the process of melioration learning yielded the choice of a

(weakly) dominant alternative.

Games with multiple pure equilibria

The exploration rate was a key factor in the simulations of the previous section because it ren-

dered dominated alternatives inferior. In games without dominant alternative, this argument

did not apply, and actors were not drawn to a single alternative. Games with a strictly mixed

Nash equilibrium are considered in the next section. In this section, games with at least two

pure equilibria are analysed.

A basic game with two or more Nash equilibria is the coordination game. It refers to a class

of situations in which the players prefer to coordinate their choices in some way. In the partic-

ular example of Fig 5, the outcomes (A,A) and (B,B) are pure Nash equilibria, and (A,A) pay-

off-dominates (B,B) because of higher mean rewards (p. 81, [52]). This game has an additional

mixed equilibrium with probabilities A : 4

9
;B : 5

9

� �
for both players.

At the 1000th round of the simulation, the agents chose mainly a pure Nash equilibrium

and the payoff-dominant one with a slightly higher frequency. In other words, most pairs of

agents were able to coordinate their choices. The deviations to (A,B) and (B,A) were due to the

Fig 3. The game “guess 2

3
of the average” and simulation results.

doi:10.1371/journal.pone.0166708.g003
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exploration rate and, similar to the previous simulations, more pronounced in case of the

Roth-Erev model.

Further simulations revealed that the particular reward structure affected the distribution

of agents among the two Nash equilibria. In particular, the frequency of the suboptimal equi-

librium (B,B) depended on its expected rewards. As seen in Fig 6, the higher its rewards, the

higher was its frequency (see also S4 Fig).

The distribution also changed with the rewards of the non-equilibrium outcomes (A,B) and

(B,A). In the game of Fig 7, these rewards are set by two parameters a and b. Depending on the

difference b − a, the agents were more strongly drawn to either (A,A) or (B,B). If a = 0 and

b = 10, almost all pairs of agents chose (B,B). The number of pairs at (B,B) decreased with the

difference b − a (see also S5 Fig).

Fig 4. A game with three optimal Nash equilibria.

doi:10.1371/journal.pone.0166708.g004

Fig 5. A coordination game and simulation results.

doi:10.1371/journal.pone.0166708.g005

Fig 6. Relationship between the rewards of (B,B) and frequencies.

doi:10.1371/journal.pone.0166708.g006
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This correlation can be explained when considering the melioration algorithm. The agents

attached values Qt(A) and Qt(B) to alternative A and B irrespective of the choice of the other

agent. Because of the exploration rate, also the outcomes (A,B) and (B,A) emerged occasionally.

This means that the value of action A increased with the reward a and the value Qt(B) with b.

Therefore, the tendency to choose (A,A) instead of (B,B) grew if a was raised or b was lowered.

The results of Fig 7 reflect a tendency towards the maximin alternative. An alternative is

maximin if its choice leads to a maximum of all rewards that are minimal over the choices of the

partner (p. 72, [51]). With a = 0 and b = 10, B was the maximin alternative for both players. On

the contrary, A was their maximin alternative if a = 8 and b = 2. In the case of a = b = 5, both

alternatives were maximin. Because the latter implied an indifference between the alternatives,

all four outcomes should have occurred with the same frequency. For the Roth-Erev model, this

was approximately correct. But agents who learned by melioration still coordinated their

actions, and slightly more agents ended up in (A,A) (9.567 pairs) than in (B,B) (8.498 pairs).

In comparison, the melioration model was more successful in the coordination of actions

than the Roth-Erev model. The latter led to non-equilibrium outcomes more frequently than

predicted by the exploration rate. This was even more apparent in the “battle of the sexes”,

which is a particular kind of coordination game. It describes an interaction between two per-

sons with complementary preferences about two alternatives but with an additional preference

for choosing the same one. A sample reward matrix is given by the left-sided table of Fig 8.

There are two pure and one mixed Nash equilibria: (A,A); (B,B);

x : A : 3

13
;B : 10

13

� �
; y : A : 10

13
;B : 3

13

� �� �
. Both pure equilibria are optimal. The outcome (B,A)

consists of the maximin alternatives.

The simulations showed that most pairs of meliorating agents wound up in (A,A) or (B,B)

(see also S6 Fig). Because of the symmetry of the game, there is no criterion that favours one of

the two pure equilibria. Harsanyi [53] called this state bargaining deadlock between (A,A) and

(B,B). While Harsanyi suggested the third (mixed) equilibrium as solution to the game (p. 279,

[53]), simulations of melioration learning yielded an equal division of the pairs. If agents used

the Roth-Erev model, also the suboptimal maximin outcome (B,A) appeared frequently.

A similar effect arose in the game of chicken (right-sided table of Fig 8), which resembles a

basic conflict between two parties that requires the retreat of at least one of them to be solved.

In this case, agents who learned by melioration predominantly chose one of the two pure Nash

Fig 7. Relationship between non-equilibrium rewards and frequencies.

doi:10.1371/journal.pone.0166708.g007
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equilibria: (A,B) or (B,A). The Roth-Erev model implied the regular choice of the worst out-

come (B,B) (see also S7 Fig).

Finally, a game with more than two pure Nash equilibria was analysed. Fig 9 contains heat

maps of a dispersion game with four alternatives. It is, in some respect, the opposite of a coordi-

nation game. Each agent prefers not to match the choice of the other agent. This means that all

but the diagonal outcomes are optimal Nash equilibria. Consequently, most agents of the sim-

ulations were distributed evenly among the non-diagonal outcomes. Agents who applied the

Roth-Erev model were more often found in non-equilibrium outcomes (see also S8 Fig).

Result 2 In two-person games without dominant alternatives, agents who learned by melio-

ration arrived at one of the pure Nash equilibria. The frequency distribution over the equilibria

depended on the structure of the game.

Games without pure Nash equilibria

Simulations of games without pure equilibria required a higher number of rounds until the

behaviour of the agents had converged. Therefore, the following simulations were run with

only 2000 pairs of agents but for 20000 rounds of the game. The relative frequencies of choice

Fig 9. A dispersion game and simulation results.

doi:10.1371/journal.pone.0166708.g009

Fig 8. A “battle of the sexes” and a game of chicken.

doi:10.1371/journal.pone.0166708.g008
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were calculated for the whole period of 20000 rounds and for each agent separately. Further-

more, a slightly higher exploration rate (ε = 0.2) was assumed because it supported the speed

of convergence (see S9 Fig).

First, the game “matching pennies” as shown in Fig 10 was analysed. It is a zero-sum game,

and its single Nash equilibrium is given by the probabilities (A: 0.5,B: 0.5) for both players. Fig

10 contains histograms over the relative frequencies of alternative A. For both types of players,

the relative frequencies were in accordance with the probabilities of the mixed Nash equilib-

rium. The agents displayed a mix of alternatives in which each was chosen half of the time.

A similar result was obtained in the game “rock-paper-scissors”, which is zero-sum with

three alternatives per player (Fig 11). The agents’ behaviour approached the predictions of the

mixed Nash equilibrium: A : 1

3
;B : 1

3
;C : 1

3

� �
. The rate of convergence is seen in S10 Fig.

Fig 12 displays a game that is not zero-sum and has a single mixed Nash equilibrium at

x : A : 1

2
;B : 1

2

� �
; y : A : 5

7
;B : 2

7

� �� �
. In the past, this game was taken to model the interaction

between criminals and police [54] and was, therefore, called inspection game [55]. The criminal

(player x) chooses between committing a crime (A) or no crime (B). The inspector (player y)

either inspects the criminal (A) or spares him (B). Committing a crime is beneficial if and only

if no inspection takes place. An inspection is rewarding if and only if a crime occurs.

The simulation demonstrated that the behaviour of agents who learned by melioration

approached the Nash equilibrium (see also S11 Fig). Further simulations were run with differ-

ent payoffs for player x given the outcome (A,A). This payoff refers to the punishment of a

crime. Since the predictions of the Nash equilibrium for player x remained constant and the

results of the simulations stayed in line with the Nash equilibrium, criminals who learned by

melioration chose to commit a crime with a relative frequency of 0.5 regardless of the level of

punishment.

In previous research, laboratory experiments indicated that the level of punishment has an

effect on the crime rate. More specifically, the level of punishment was negatively correlated

with the crime rate [55]. However, the experiments lasted for only 15 rounds of decision-mak-

ing. If humans learn slowly, the behaviour might have not converged to a stable point yet. In

Fig 10. The game “matching pennies” and simulation results.

doi:10.1371/journal.pone.0166708.g010

Fig 11. The game “rock-paper-scissors” and simulation results.

doi:10.1371/journal.pone.0166708.g011
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Fig 13, the temporal development of the relative frequencies of committing a crime are shown

for the two games in [55]. All agents used the melioration learning model. The mean value of

1000 agents is plotted on a logarithmic scale of time. In case of low punishment (upper row),

the Nash equilibrium (0.5) was approached from above. If punishment was high (lower row),

the equilibrium was approached from below. Hence, there was a long period in which crime

rates were higher for low punishment than for high punishment. Also the inspection rates con-

formed qualitatively to the experimental results if it is focused on early rounds.

Last, some games impeded the convergence of the behaviour of agents who learned by

melioration or the Roth-Erev model. One example is presented in Fig 14. This game was some-

times referred to as Shapley’s game and known for its difficulties in regard to the convergence

of learning algorithms [56]. It is similar to the game “rock-paper-scissors” except for the diago-

nal rewards, which are (0, 0) instead of (5, 5). The Nash equilibrium is given by

A : 1

3
;B : 1

3
;C : 1

3

� �
.

The plots of Fig 14 depict the changes in relative frequencies of two particular players. If

agents learned by melioration, the relative frequencies of all three alternatives rose and fell in

sequence without any clear tendency towards convergence. This implied a constant change in

outcomes: from (B,A) to (C,A) to (C,B) to (A,B) to (A,C) to (B,C) and back to (B,A). Since the

time is on logarithmic scale, the lengths of the waves increased with time. But there was no

Fig 12. An example of the inspection game and simulation results.

doi:10.1371/journal.pone.0166708.g012

Fig 13. The inspection game with low or high punishment.

doi:10.1371/journal.pone.0166708.g013
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decrease in the height of the waves, which could have led to a stable outcome. In case of the

Roth-Erev model, the dynamic was slower, but no convergence was visible as well.

Result 3 In two-person games without pure Nash equilibrium, agents who learned by

melioration chose several alternatives with strictly positive relative frequency. In some of the

games, the long-term relative frequencies corresponded to the mixed Nash equilibrium. Other

games prevented the convergence of the agents’ behaviour.

Conclusion

A simple process of completely uncoupled learning was investigated. It differs from previous

models such as regret-testing or trial-and-error learning because, on the one hand, it is derived

from empirical research and, on the other hand, the convergence to equilibrium states in social

interactions is not guaranteed.

Nevertheless, computer simulations revealed that the outcomes of melioration were largely

in line with game-theoretical predictions. More specifically, actors who learned by melioration

chose a dominant alternative in two-person games. If no alternative was dominant, mainly

pure Nash equilibria occurred. The structure of the game, which includes the rewards of non-

equilibria, affected the distribution of outcomes. Compared to the Roth-Erev model, pure

equilibria were selected with a higher frequency, and the melioration model was more success-

ful in the selection of optimal ones.

In contrast to earlier models of learning, very few assumptions about available information

and cognitive skills are needed. The actors must remember their own choices, observe the sub-

sequent rewards, and be able to aggregate them to average values. They can neglect the other

actors, their decisions and outcomes. Furthermore, apart from the exploration rate, the

Fig 14. Shapley’s game and simulation results.

doi:10.1371/journal.pone.0166708.g014
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decisions are deterministic. No probabilities of choice and stochastically independent deci-

sions are required.

In the past, melioration was often seen as too simplistic to adequately represent the com-

plexity of human behaviour [57]. Yet, its predictions might be sufficiently accurate on a social

level. Another advantage of melioration learning is that, with Q-learning, there is an algorithm

that implements this theory and has been extensively studied in the past. First, this means that

results about its convergence can be appropriated for an application in social theory. Second,

multiple extensions of Q-learning exist. If melioration turns out to be too simple, there are

many ways to adjust the model in order to be a more realistic representation of human

behaviour.
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