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Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women 
and a leading cause of female infertility worldwide. Defined clinically by the presence 
of hyperandrogenemia and oligomenorrhoea, PCOS represents a state of hormonal 
dysregulation, disrupted ovarian follicle dynamics, and subsequent oligo- or anovulation. 
The syndrome’s prevalence is attributed, at least partly, to a well-established association 
with obesity and insulin resistance (IR). Indeed, the presence of severe PCOS in human 
genetic obesity and IR syndromes supports a causal role for IR in the pathogenesis of 
PCOS. However, the molecular mechanisms underlying this causality, as well as the 
important role of hyperandrogenemia, remain poorly elucidated. As such, treatment 
of PCOS is necessarily empirical, focusing on symptom alleviation. The generation of 
knockout and transgenic rodent models of obesity and IR offers a promising platform in 
which to address mechanistic questions about reproductive dysfunction in the context of 
metabolic disease. Similarly, the impact of primary perturbations in rodent gonadotrophin 
or androgen signaling has been interrogated. However, the insights gained from such 
models have been limited by the relatively poor fidelity of rodent models to human PCOS. 
In this mini review, we evaluate the ovarian phenotypes associated with rodent models of 
obesity and IR, including the extent of endocrine disturbance, ovarian dysmorphology, 
and subfertility. We compare them to both human PCOS and other animal models of the 
syndrome (genetic and hormonal), explore reasons for their discordance, and consider 
the new opportunities that are emerging to better understand and treat this important 
condition.

Keywords: androgen, fertility, insulin resistance, mouse models, obesity, PCOS

Abbreviations: FSH, follicle-stimulating hormone; GnRH, gonadotrophin-releasing hormone; IR, insulin resistance; LH, 
luteinizing hormone; PCOS, polycystic ovary syndrome; T2DM, type 2 diabetes mellitus.
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inTRODUCTiOn

The association between obesity, insulin resistance (IR), type 
II diabetes (T2DM), cardiovascular disease, and non-alcoholic 
fatty liver disease is well-established in the literature, discussed 
commonly in the clinic, and subject to intensive investigation in 
laboratories worldwide (1, 2). Perhaps less recognized is obesity’s 
association with ovarian dysfunction, most commonly in the 
form of polycystic ovary syndrome (PCOS). Diagnostic criteria 
of PCOS incorporate three key features: biochemical and/or 
clinical evidence of androgen excess (including acne, hirsutism, 
and alopecia), ovarian dysfunction or anovulation (manifesting 
as absent or irregular menstruation), and the appearance of 
multiple peripheral cysts on ovarian ultrasonography (3). Rarer 
causes of raised androgen levels (such as an androgen-producing 
tumor) are first excluded. Metabolic dysfunction is common 
but not invariable in women with PCOS and so, although 
cross-sectional and longitudinal studies support a significant 
role for IR in the etiology of PCOS, diagnostic criteria do not 
currently incorporate metabolic parameters. Nevertheless, not 
only is PCOS the most common cause of anovulatory infertil-
ity and menstrual irregularity but (since it often manifests in 
the second and third decades) young women with PCOS also 
represent a large, identifiable group who may be at increased risk 
of metabolic (4–6) and cardiovascular diseases (7–10). Indeed, 
PCOS is a strong predictor of future T2DM (11). Women with 
PCOS therefore represent an important target for research and 
prevention.

The heterogeneous nature of PCOS, along with a lack of con-
sensus over precise diagnostic criteria, has complicated efforts 
to understand its pathogenesis. Familial clustering studies and 
monozygotic twin concordance reveal an important genetic 
predisposition to the syndrome. Genetic variants identified from 
candidate gene screening and genome-wide association studies 
implicate insulin, growth factor, and gonadotrophin signaling, 
cellular proliferation, and DNA repair pathways; however, they so 
far account for less than 10 percent of the syndrome’s heritability 
(12). The presence of PCOS-like features in animals exposed 
prenatally to androgens suggests that PCOS may have important 
developmental origins (13). Genetic and developmental influ-
ences likely interact with environmental factors in adolescence 
and adulthood to produce the complex physiological dysregula-
tion that characterizes this syndrome.

Hormonal models, in which rodents, sheep, and non-human 
primates are treated during development or postnatally with 
androgens (testosterone, DHT, or DHEA), estrogens, aromatase 
inhibitors, or antiprogestins, are widely employed in PCOS 
research (14–19). Genetic rodent models offer a complementary 
albeit underutilized strategy in this field, allowing the contribu-
tion of individual genes to be evaluated on “clean” genetic back-
grounds and providing tractable and affordable models in which 
to interrogate disease pathways (14, 20–23). Their value, however, 
depends on the fidelity of the model to human physiology and 
disease and the relevance of single-gene perturbations. After 
summarizing some main concepts relating to the pathogenesis of 
PCOS (Figure 1), we describe key rodent models relevant to the 
study of ovarian dysfunction in metabolic diseases (Table 1) and 

explore why their interpretation may be more complicated than 
initially apparent.

KeY PLAYeRS in PCOS PATHOGeneSiS

Metabolic Features of PCOS
While PCOS is robustly associated with impaired insulin sen-
sitivity and hyperinsulinemia (Table  1), this is independent of 
body weight, and a significant proportion of insulin-resistant 
women with PCOS are lean (44, 45). However, it is recognized 
that increased body weight exacerbates hyperandrogenism, oli-
gomenorrhoea, and metabolic risk in PCOS (46, 47), and genetic 
studies have revealed a role for obesity-associated genes (48, 49).

Several observations suggest that IR, and associated com-
pensatory hyperinsulinemia, may play a key pathogenic role in 
PCOS. Firstly, IR is more common in women with both hyper-
androgenism and anovulation, compared to weight-matched 
hyperandrogenemic women with normal ovulatory cycles (50). 
Second, interventions that increase insulin sensitivity improve, 
independent of weight loss, ovulatory function, menstrual cyclic-
ity, fertility, and hyperandrogenism in lean and obese patients 
(51–55). Third, a severe PCOS-like syndrome is a prominent 
(often-presenting) feature in patients with severe, genetic 
forms of IR (56) and is also reportedly associated with pan-
creatic insulinomata and excessive exogenous insulin in type 1  
diabetes (57, 58).

Importantly, PCOS likely represents a state of “partial” IR, in 
which preserved insulin signaling in ovarian theca cells causes 
excessive androgen synthesis and theca cell proliferation, with 
subsequent hyperandrogenemia (Figure  1) (59–62). Other 
potential effects of hyperinsulinemia include reduced hepatic 
synthesis of sex hormone-binding globulin, thereby increasing 
free testosterone, hypersecretion of pituitary luteinizing hormone 
(LH), and reduced insulin-like growth factor-binding protein 
(63–65). This latter effect potentially modulates the paracrine 
growth factor-dependent regulation of early follicle development 
and dominant follicle selection (Figure 1).

Ovarian Dysmorphology
The abnormal appearance of the ovarian cortex in PCOS rep-
resents inappropriate and excessive initiation of follicle growth 
from the primordial follicle pool, followed by developmental 
failure and growth arrest at the medium-sized antral stage 
(5–10  mm) (66–68). Loss of coordinated follicle development 
results in fewer or absent ovulations, and therefore subfertility. 
Histologically, the ovary contains a reduced number of corpora 
lutea (representing fewer ovulations), more atretic follicles, stro-
mal hypertrophy, and increased ovarian weight. As mentioned, 
hyperthecosis is prominent, with in  vitro evidence suggesting 
that abnormal thecal cell proliferation contributes to excessive 
androgen biosynthesis (62, 69).

Hormonal Dysregulation
While IR and hyperinsulinemia may play a central, and in some 
cases primary, role in PCOS pathogenesis, the importance of 
hyperandrogenism should be stressed. Not only is it a defining 
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FiGURe 1 | Proposed pathogenic mechanisms in obesity-associated ovarian dysfunction and subfertility. Schematic showing the major metabolic and 
reproductive pathways involved in PCOS. Systemic insulin resistance, commonly due to adipose tissue dysfunction in the context of obesity, results in 
compensatory hyperinsulinemia. At the ovary, insulin synergizes with luteinizing hormone (LH) to drive androgen synthesis. Disrupted insulin, growth factor, 
gonadotrophin, and sex steroid signaling in the ovary leads to failure of follicle development and ovulation. Genetic and developmental influences are also likely to 
play an important role.
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feature of the syndrome, both in ovulatory and anovulatory 
women, but other conditions associated with excessive androgen 
exposure (such as congenital adrenal hyperplasia and androgen-
secreting tumors) also produce features of PCOS (70). Moreover, 
administration of androgens in rodents, sheep, and non-human 
primates results in pathophysiological changes that closely resem-
ble features of PCOS in women. Androgens act at the ovary to 
disrupt follicular development and dominant follicle selection by 
promoting excessive early follicular growth, while systemic effects 
include development of IR and metabolic dysfunction (71–77). 
The role of androgens in PCOS may be particularly important 
during key developmental windows before the onset of IR (13). 
Prenatally, androgenized rhesus monkeys and sheep demonstrate 
ovarian hyperandrogenism and IR in adulthood, with increased 
follicle numbers, anovulation, and LH hypersecretion (78–81).

Dysregulation and reprograming of the hypothalamus– 
pituitary–ovarian (HPO) axis is common in PCOS, potentially 
driven by androgen exposure in  utero and manifesting as 
hypersecretion of LH, persistently rapid LH pulse frequency, 
and below-normal levels of follicle-stimulating hormone (FSH) 

(82, 83). These alterations likely contribute to disrupted follicle 
development in PCOS, while high levels of LH also synergize 
with insulin to promote theca androgen production (Figure 1). 
However, it is noteworthy that many patients have normal LH 
levels, suggesting that elevated gonadotrophin levels is unlikely 
to be the primary defect in PCOS (84).

OvARiAn DYSFUnCTiOn in GeneTiC 
MODeLS OF MeTABOLiC DiSeASe

Rodent Models of Obesity
While there is no spontaneously occurring animal model of 
PCOS, transgenic and knockout rodent models widely used in 
metabolic research provide opportunities to study specifically the 
association between metabolic disease and ovarian dysfunction. 
However, it is important to note that key differences exist between 
human and rodent ovarian function. Whereas in humans, full 
follicular differentiation occurs in the later stages of fetal develop-
ment, in rodents this occurs postnatally. The mouse estrus cycle 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TABLe 1 | Reproductive features of rodent models of obesity and insulin resistance.

Model Body 
weight

Associated 
metabolic 
phenotype

Sex 
steroids

Gonadotrophins Fertility Ovarian morphology Menstrual 
cyclicity

Comments Key 
reference

Human  
PCOS

↑ IR, ↑ insulin,  
T2DM, ↑ lipids 
(independent  
of BMI)

↑ T ↑ LH Subfertile Multiple small, cortical  
cysts due to follicular  
arrest, follicular atresia, 
↓ CLs

Oligo-/
amenorrhea

Insulin sensitizers 
improve menstrual 
regularity and 
hyperandrogenism.

(2)
↓ FSH

High-fat diet 
mouse

↑ IR, ↑ insulin, ↑ FBG N/R ↑ LH Subfertile Diminished follicular 
development, old CLs

Irregular Fertility restored 
after exogenous 
gonadotrophin 
(suggests HH).

(24, 25)
↑ FSH

ob/ob  
mouse

↑ IR, ↑ insulin, ↑ FBG, 
glucose intolerance, 
↑ lipids

↑ T LH → Infertile Ovarian atrophy, follicular 
atresia, ↓ CLs, no cysts

Acyclic, 
anovulatory

Ovarian interstitial 
cytolipema. Phenotype 
rescued with leptin.

(26–28)
↑ E2 ↓ FSH

db/db  
mouse

↑ IR, ↑ insulin,  
↑ FBG, glucose 
intolerance

↓ E2/P N/R Subfertile Ovarian atrophy, 
progressive follicular  
atresia

Irregular Ovarian interstitial 
cytolipema.

(29–32)

Zucker rat ↑ IR, ↑ insulin, ↑ FBG, 
glucose intolerance

↓ T LH → Subfertile ↑ total follicle numbers, 
follicular atresia

Irregular 
(prolonged 
diestrus)

(33, 34)
↓ E2 FSH →

Koletsky 
(JCR:LA-cp) 
rat

↑ ↑ insulin, ↑ FBG,  
↑ lipids

↑ T N/R Subfertile Ovarian atrophy, cystic 
follicles, follicular atresia, 
thin GC layer, ↓ CLs

Irregular (35, 36)
E2 →

NZO rat 
(polygenic)

↑ IR, ↑ insulin, ↑ FBG, 
↑ lipids

T → ↓ LH Subfertile ↑ ovarian volume, ↑ total 
follicle numbers, follicular 
atresia, ↓ CLs, no cysts

Irregular (37–39)
↓ E2 FSH →

Neuron-
specific IR 
deletion 
(mouse)

↑ Mild IR, ↑ insulin, 
↑ TGs

N/R N/R Subfertile Large, luteinized ovarian 
cysts, thecal-interstitial 
hyperplasia, ↓ CLs

Irregular (40)

IR/LepRPOMC 
(mouse)

↑ IR, ↑ insulin, glucose 
intolerance

↑ T ↑ LH Infertile Occasional cyst-like  
follicles

Acyclic, 
anovulatory

(41)

Neuron-
specific IRS2 
deletion 
(mouse)

↑ ↑ FBG, glucose 
intolerance

↓ T ↓ LH Infertile Small ovaries, ↓ total  
follicle numbers

Acyclic, 
anovulatory

(42)
↓ E2

AKT2 
deletion 
(mouse)

→ ↑ insulin (older  
mice only)

↑ T (older 
mice 
only)

LH normal Young mice 
fertile

Large luteinized cysts N/R Mice aged 120 weeks. (43)

CL, corpus lutea; E2, estradiol; FBG, fasting blood glucose; FSH, follicle-stimulating hormone; IR, insulin resistance; LH, luteinizing hormone; N/R, not reported; P, progesterone; 
PCOS, polycystic ovary syndrome; T, testosterone; T2DM, type 2 diabetes mellitus; TGs, triglycerides.
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lasts only 4–6 days, compared to 28 days in humans. Furthermore, 
rodents are polyovulatory, suggesting important differences in 
dominant follicle selection despite underlying similarities in the 
HPO axis.

In spite of these differences, various rodent models of obe-
sity do display reproductive phenotypes comparable to PCOS 
(Table 1). Diet-induced obesity in wild-type mice is associated 
with disrupted estrus cyclicity, fewer corpora lutea, reduced 
fertility, and metabolic dysfunction, supporting the notion that 
obesity-associated metabolic dysfunction may contribute to 
PCOS (24, 25, 85). Among the genetic models, female ob/ob and 
db/db mice, which, due to loss-of-function mutations in leptin 
and leptin receptor, respectively, are hyperphagic, severely obese, 
hyperinsulinemic, and hyperglycemic are also infertile, acyclic, 
and anovulatory (Table  1). Morphologically, they show utero-
ovarian atrophy, follicular atresia, apoptotic granulosa cells, 

deformed oocytes, absent corpora lutea, and no cystic structures 
(26, 27, 29–32). The endocrine profile of ob/ob mice includes 
elevated serum testosterone, estradiol, and progesterone, with 
reduced FSH but normal LH, while db/db mice have low estradiol 
and progesterone. The obese Koletsky and Zucker diabetic fat rats, 
both of which also lack functional leptin receptors, do exhibit 
estrus cycling (albeit irregularly) but are subfertile with increased 
follicle numbers, follicular atresia, and fewer corpora lutea. While 
androgen levels are elevated in the obese Koletsky, in Zucker, they 
are reportedly below normal (33–36). The New Zealand obese 
(NZO) mouse, notable for being a polygenic model of the human 
metabolic syndrome (37), also harbors leptin receptor variants 
and displays a reproductive phenotype similar to that of Zucker 
(Table 1) (38, 39).

In all of these models, reproductive dysfunction is at least 
partly attributable to loss of hypothalamic leptin signaling, 
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rather than obesity per se. Genetic leptin deficiency in humans is 
associated with low gonadotrophins and pubertal failure, which 
are restored with leptin replacement (86). Fertility, litter size, 
and estrus cyclicity of ob/ob mice were similarly ameliorated 
by human recombinant leptin (87, 88) or transplantation with 
wild-type adipose tissue (89, 90). Along with other peripheral 
signals, leptin is believed to modulate the activity of gonadotro-
phin-releasing hormone (GnRH) releasing neurons – and thus 
the entire HPO axis  –  in response to nutritional status (91). 
Indeed, low body weight is known to interfere with reproduc-
tive function and pubertal timing (92). Failure of central leptin 
action in rodent models of obesity therefore leads to infertility 
due to hypogonadotrophic hypogonadism and follicle develop-
ment (Figure 1). Indeed, human obesity is also associated with a 
degree of hypothalamic leptin resistance, which may contribute 
to HPO dysregulation in PCOS (93, 94). Reports of excess lipid 
accumulation in follicular cells of ob/ob mice and the obese 
Koletsky rat suggest an additional “lipotoxic” mechanism 
by which extreme obesity may produce ovarian dysfunction, 
although there are no reports of such a phenotype in PCOS (30, 
36).

In these models, the relative contribution of IR-associated 
hyperinsulinemia and central leptin resistance is difficult to 
disentangle, particularly since hypothalamic insulin signaling 
also regulates GnRH release and thus reproduction function 
(40, 41, 95–97). Mice with neuron-specific deletion of the insulin 
receptor gene (Insr) or hypothalamic POMC neuron-specific 
deletion of both leptin and Insr were hyperphagic, insulin 
resistant, and subfertile due to impaired follicular development 
(Table 1) (40, 41, 98). The combined knockout was notable for 
high levels of LH, hyperandrogenemia, and cyst-like follicles. 
POMC-specific deletion of leptin receptor alone produced 
only a subtle reproductive phenotype (99). Counterintuitively, 
pituitary-specific Insr knockout reportedly rescued the PCOS-
like phenotype associated with diet-induced obesity (24). These 
observations highlight complex interactions between leptin and 
insulin in their regulation of reproductive function. Indeed, 
studies in mammals and non-mammalian species reveal that 
nutritional status and reproductive capacity are tightly inter-
twined, ensuring that reproduction only proceeds if nutritional 
status is optimal (100).

Genetic Models of insulin Resistance
In humans, rare loss-of-function mutations in INSR not only 
cause extreme hyperinsulinemia but also oligomenorrhoea, 
hyperandrogenism, and excessive development of sex hormone-
dependent tissues (56). Common genetic defects in insulin sign-
aling are suggested to contribute to PCOS heritability (101, 102), 
and cellular studies reveal abnormalities in insulin-mediated 
insulin receptor autophosphorylation, IRS expression, PI3-kinase 
activation, GLUT4 expression, and insulin-stimulated glucose 
uptake in adipocytes and skeletal muscle from women with PCOS 
(103–107). However, the results of such studies are variable and 
need further verification.

Mice lacking functional insulin receptor develop profound 
metabolic abnormalities at birth and die within days. Of the 
tissue-specific knockouts, only those targeting the brain have a 

reported reproductive phenotype (108). Similar to the neuron-
specific Insr knockout, global deletion of Irs2 (but not Irs1) causes 
a combination of metabolic, reproductive, and ovarian features 
that likely result from disrupted central insulin and leptin action 
rather than abnormal systemic glucose metabolism (42) (Table 1). 
Thus, in addition to the impact of systemic hyperinsulinemia, the 
interpretation of global insulin signaling defects must consider 
the actions of insulin at the hypothalamus as well as disruption 
to the regulation of early follicle development by IGF1. There 
are no corresponding human syndromes of IRS dysfunction or 
deficiency with which to compare.

Downstream of IRS in the signaling pathway, non-functional 
mutations in human AKT2 result in ovarian hyperandrogen-
ism in the context of partial lipodystrophy, severe IR, diabetes, 
metabolic dyslipidemia, and fatty liver (109). In mice, global 
AKT2 deletion produced a somewhat comparable ovarian 
phenotype, with increased androgenic steroidogenesis in the 
theca-interstitium, theca-interstitial hyperplasia, hyperandro-
genemia, reduced corpora lutea, and ovarian cysts but normal 
LH levels (Table 1) (43). However, the large, luteinized, serous-
filled cysts were quite distinct from the ovarian morphology 
characterizing human PCOS. For unclear reasons, reproduc-
tive features were absent in younger mice, although could be 
induced by treatment with LH, perhaps due to synergism with 
hyperinsulinemia.

Other human lipodystrophy syndromes (genetic or acquired) 
are similarly characterized by severe IR, ovarian hyperandrogen-
ism, amenorrhea, and infertility (110–112). While genetic mouse 
models of generalized lipodystrophy manifest many metabolic 
features of the human diseases, “partial” lipodystrophy has 
been more challenging to model (113). Moreover, while the 
metabolic properties of these models have been interrogated in 
detail, their reproductive and ovarian phenotypes have not been 
reported widely. Studying these models may provide important 
new insights into the role of BMI-independent IR in PCOS-like 
ovarian dysfunction.

Genetic Models Targeting the HPO Axis
To better understand PCOS pathogenesis, rodent models of obe-
sity and IR should be considered alongside those in which other 
implicated systems are targeted. Transgenic mice with chroni-
cally elevated gonadotrophin levels have a thickened theca cell 
layer, similar to PCOS, with correspondingly increased estro-
gen and testosterone levels (23, 114). However, unlike PCOS, 
their ovaries contain large, hemorrhagic cysts, as do those of 
mice lacking LH receptor (114, 115). Global or theca-specific 
deficiency of estrogen receptor subunits ERα or ERβ, or global 
deficiency of aromatase, produces chronically elevated gonado-
trophins (due to lack of estradiol), arrested follicular growth, 
absent corpora lutea and anovulation (116–118). ERα knockout 
mice also show increased adiposity (without hyperphagia), IR, 
and diabetes (118, 119), whereas constitutive elevation of LH 
activity produces hyperphagic obesity with hyperleptinemia 
and hyperinsulinemia (120). These observations further illumi-
nate the complexity of nutritional and reproductive cross talk 
in humans, again challenging the value of simplified rodent 
models.
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TRAnSGeniC RODenTS AnD 
PCOS – nOT FiT FOR PURPOSe?

This discussion reveals that transgenic models of PCOS are 
complex, heterogeneous, and even the best examples deviate in 
important ways from the human syndrome. Models of obesity 
and IR have not typically been studied comprehensively from 
a reproductive perspective. Even when a reproductive deficit is 
noted, the ovarian and endocrinological phenotyping is often 
incomplete, with concerns raised over timing of the studies 
(relative to time of day, phase of the estrous cycle, and age of the 
animal), the rigor of morphological analyses, and the variability 
of ovarian appearances described as “cystic.” Furthermore, as 
outlined above, important differences exist between human and 
rodent ovarian function. Such differences may explain why the 
reproductive consequences of androgen exposure are less con-
sistent in rodents than in sheep or primates, and emphasize that 
results from rodent-based studies (genetic or hormonal) need to 
be extrapolated with caution to human PCOS (13, 23).

Emerging from this discussion is an important reminder 
that reproductive capacity and nutritional status are intertwined 
tightly through feedback and cross talk between reproductive and 
metabolic pathways. Across a wide range of species, including 
Caenorhabditis elegans and Drosophila, conserved mechanisms 
operate to regulate reproduction and energy homeostasis (121–
123). In rodent models of obesity, the same lesions that produce 
hyperphagia also directly impact on the HPO axis, thereby compli-
cating their interpretation. The bidirectional interaction between 
reproductive and nutritional signaling also operates systemically: 
while estrogen drives adipogenesis, and while testosterone drives 
food intake, both steroids in excess produce IR, hyperinsulinemia, 
high levels of circulating leptin, and reduced levels of adiponectin, 
all of which impact on the HPO axis and ovarian function. The 
hope of mimicking this complex network by perturbing single or 
a few genes is perhaps ambitious. Indeed, the notion that PCOS 
is precipitated by a single etiological factor is undoubtedly too 
simple. While monogenic perturbations in insulin signaling or 
adipose function in humans do produce PCOS-like syndromes, 
differences between human and rodent metabolism and repro-
duction mean that PCOS will not necessarily emerge from 
equivalent defects in mice. As in all complex human disease, the 
role of genetic, developmental, and environmental factors likely 
contribute heavily to the heterogeneity of human PCOS.

FUTURe OPPORTUniTieS

Complementary strategies are required to better understand 
this growing health problem. The combined use of hormonal 
treatments in transgenic animals may afford interesting, clini-
cally relevant insights. Primary follicular cell and whole follicle 

cultures, including from transgenic animals, facilitate the study 
of tightly regulated paracrine and autocrine networks in early 
follicle development that become disordered in PCOS (124). The 
ease and efficiency of CRISPR-Cas9-based gene editing tech-
nologies will doubtless prove invaluable, particularly to explore 
new susceptibility loci emerging from large GWAS studies (48, 
49, 101, 102, 125). Many of these loci implicate genes of largely 
unknown function. As they are investigated over the coming 
years, prudent selection of appropriate cell and animal systems 
will be imperative. The study of candidate genes in non-ovarian 
cell types is questionable, yet primary cultures are difficult to 
acquire and maintain, and ovarian cell lines are too atypical in 
their properties to be useful. Therefore, in spite of reservations 
highlighted above, transgenic rodent models will likely play an 
ongoing role in our effort to better understand and manage this 
challenging condition.

COnCLUSiOn

A clear relationship exists between obesity, metabolic dysregula-
tion, and ovarian dysfunction. However, the mechanisms of this 
association are poorly understood. Without detailed knowledge 
of the etiology of PCOS, management is limited to empirical and 
symptomatic treatment. While hormonal models of PCOS dem-
onstrate an important role for hyperandrogenemia, the reported 
genetic models incompletely replicate the PCOS phenotype. Their 
study has offered important insights into the interaction between 
metabolism and reproduction, but clear conclusions about PCOS 
pathogenesis have not been forthcoming. Nevertheless, specific 
models may prove useful for answering reductionist questions 
about aspects of the condition, such as disordered folliculogenesis 
or disruption of the HPO axis. Future efforts will benefit from 
ongoing combined study of humans, mouse models, and cells, 
driven by insights emerging from human genetic studies. These 
studies will continue to advance our understanding of this 
important condition and, with time, support new approaches to 
addressing both the metabolic and reproductive problems faced 
by affected women.
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